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We discuss entanglement and critical properties of the spin-3/2 XXZ chain in its entire gapless region.
Employing density-matrix renormalization-group calculations combined with different methods based on level
spectroscopy, correlation functions, and entanglement entropies, we determine the sound velocity and the
Luttinger parameter of the model as a function of the anisotropy parameter. Then, we focus on entanglement
properties by systematically studying the behavior of Rényi entropies under both open and periodic boundary
conditions, providing further evidence of recent findings about entanglement entropies of excited states in
conformal field theory.
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I. INTRODUCTION

Since their first introduction,1 quantum spin chains have
been an incredibly fertile field for theoretical physicists. They
are in fact interesting for various reasons: first of all because
of their one-dimensional (1D) nature, which enhances the
importance of quantum fluctuations and forbids the application
of mean-field or other ordinary perturbative approaches;
secondarily because of the integrability of some of them and
the possibility of giving a description of their low-energy
sector by means of effective quantum field theories; and lastly
because of the availability of some numerical techniques that
appear to be particularly powerful in these cases.

Spin-1/2 quantum spin chains with nearest-neighbor
interactions2,3 have been widely considered in literature and
among them, the XXZ spin-1/2 chain is by far the most
studied, both analytically and numerically. Being integrable
via Bethe ansatz,2 it represents a yardstick for nonexact
techniques. Also, the physics of its low-energy sector is
described in the continuum limit by a special class of con-
formal field theories (CFTs)4,5 with conformal charge c = 1,
the so-called Tomonaga-Luttinger liquids (TLLs)6–8 which
represent a paradigm for all those models whose excitations
are of bosonic nature.9,10

Higher spin XXZ chains are also very interesting, because
they constitute examples of models for which, despite being
nonintegrable, one can provide quite well-known established
field theory descriptions.11,12 Moreover, their properties may
be quantitatively determined with good accuracy by means of
numerical simulations based on several efficient methods such
as exact diagonalization, quantum Monte Carlo, and density-
matrix renormalization group (DMRG).10 Thus, they represent
a decisively indicative and efficient test in order to establish
the validity of properties that, up to now, have been verified
mainly in integrable systems. In addition, the physics of these
models can also be studied experimentally: for example, the
spin-3/2 isotropic case is thought to model the behavior of
some kind of quasi-1D antiferromagnets of magnetic ions,
such as CsVCl3 (Ref. 13) and AgCrP2S6,14 whereas various
spin models may now be engineered in cold matter setups of
trapped ions15–17 and have promising future implementation
with ultracold atoms and molecules in strongly anisotropic
optical lattices18–21 and Rydberg atoms.22

In recent times, much attention has been devoted to the
connection between quantum phase transitions and entan-
glement properties in strongly correlated systems.23,24 In
particular, whenever the effective theory describing a system
is conformal, it is well known that a fruitful way to get
physical information from numerical simulations, especially
from DMRG25,26 calculations, is to look at quantities known
as Rényi entanglement entropies (REs).27–31 More specifically,
as will be recalled in the following, for TLLs the knowledge
of the REs yields a very careful estimation not only of the
central charge of the underlying critical theory,32–34 but also
of the decay exponents of correlation functions,30,35,36 which
are encoded in the so-called Luttinger parameter K .

The main aim of this work is to present a complete
investigation of critical and entanglement properties of the
S = 3/2 XXZ model over its gapless regime, and to compare
the accuracy of different analysis methods employed to ex-
trapolate thermodynamic quantities from finite-size numerical
calculations based on the DMRG algorithm. In the first part,
we will fully exploit the low-energy field theory of the XXZ

model and determine its relevant quantities by considering
different, independent observables; then, we will present
an investigation of the entanglement entropies for bipartite
intervals, considering both ground and excited states and
systematically comparing the numerical findings with CFT
predictions. The paper is structured as follows: in Sec. II, we
briefly review the main features of spin-S XXZ chains from
a field theoretical viewpoint, focusing on the TLL universality
class emerging in the half-integer S case. We present our
DMRG calculations and results on the S = 3/2 model in
Sec. III, together with a brief resumé of all applied techniques.
In Sec. IV, we perform a systematic investigation of the Rényi
entropies of both the ground and excited states and compare
the numerical findings with the predictions based on CFTs.
Finally, we summarize the results and draw our conclusions in
Sec. V.

II. MODEL HAMILTONIAN

The spin-S anisotropic Heisenberg model, also known
as the XXZ chain, is described by the following
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Hamiltonian:2

HXXZ =
L∑

i=1

(
Sx

i Sx
i+1 + S

y

i S
y

i+1 + �Sz
i S

z
i+1

)
, (1)

where �Si is a spin-S operator relative to the ith site and � is
the anisotropy coefficient. Here, S can take positive half-odd-
integer or integer values. In the simplest case S = 1/2, the
model is integrable by Bethe ansatz,2,3 it is critical for |�| �
1, and in the interval −1 < � � 1 its low-energy physics is
effectively described by a conformal field theory with central
charge c = 1.

The picture becomes more puzzling as one moves away
from the integrable S = 1/2 case. At the isotropic point � = 1,
chains with integer spin display a finite gap, whereas in the
half-integer case the system is gapless and still described by
a c = 1 CFT, as has been proved in a series of analytical
and numerical studies.11,12,37–39 In such gapless regime, which
persists in the finite range of interactions −1 < � � 1, the
low-energy spectrum is universally described by a TLL
Hamiltonian:6–10

H = vs

2π

∫
dx[(∂xϑ)2/K + K(∂xϕ)2], (2)

where ϑ and ϕ are conjugated density and phase bosonic fields,
while the two interaction-dependent parameters vs and K are
called sound velocity and Luttinger parameter, respectively.
Both the long-distance decay of correlation functions and
spectral properties are determined by vs and K; however,
since no exact solution is known except for S = 1/2, one has to
resort to unbiased numerical methods in order to quantitatively
estimate the dependence of such parameters with respect to
�. For the S = 3/2 case, which we are going to extensively
study in the following, various numerical studies have been
reported in literature, based on both exact diagonalization
of small systems38 and simulations based on the DMRG
algorithm;29,36,39 we will systematically refer to and compare
our results to the known ones in the remainder of the paper.

III. NUMERICAL RESULTS: CRITICAL PROPERTIES

In this section, we provide a complete study of the quantum
critical regime −1 < � � 1 for the S = 3/2 XXZ model
employing the DMRG technique, which allows one to estimate
both ground-state and excited-state properties with notable
accuracy. Being interested in various physical quantities such
as entropies, correlation functions, and spectral properties,
we employ simulations with both open (OBC) and periodic
(PBC) boundary conditions. While the former guarantee better
accuracy in the DMRG procedure, the latter are not affected by
boundary effects; providing estimates in both configurations
represents a good check for our final results. In order to
accurately determine all relevant quantities of interest, we
perform calculations with up to 512 (1156) states per block
for OBC (PBC), together with up to five sweeps for each
intermediate size during the infinite-size algorithm; in such
a setting, typical discarded weights are of order 10−8 (10−6)
during the last iteration.

Reliable estimates of the relevant physical quantities vs

and K may be obtained with different numerical analysis.

In the following, we will employ three alternative methods
based on independent quantities: energy scaling in the low-
energy spectrum, entanglement entropy, and spin fluctuations.
A detailed account on how such quantities are related to the
sound velocity and the Luttinger parameter is given in each of
the following sections.

A. Central charge

As a first step in our study, we extract the central charge of
the system from the scaling of the block von Neumann entropy
(VNE), which is defined as

S1(l,L) = −TrAρA log2 ρA. (3)

Here, the system of total length L is bipartite in two subsystems
A,B of length l,L − l, respectively, and ρA denotes the
reduced density matrix of A with respect to B. In a CFT,
one has32,33,35

S1(l,L) = c

3η
log2[L sin(πl/L)/π ] + s1 + Sosc

1 , (4)

where the coefficient η = 1,2 for PBC/OBC, s1 is a model-
dependent constant, and Sosc

1 represents finite-size oscillating
corrections.35 In a finite system under PBC, the central charge
can be determined by fitting the half-lattice entropy

S1(L/2,L) = c

3
log2(L/π ) + s1 (5)

as a function of the system size L by assuming a scaling form
of the type c(L) = c0 + a0L

a1 . Typical results are plotted in
Fig. 1: a best fit of Eq. (5) for L ∈ [28,60] gives excellent
agreement with the expected value, as c0 = 1.00 up to a 2%
error over the entire parameter range; for negative values of
�, even better agreement is reached. Alternative techniques to
extract c via finite-size scaling27,29 lead to comparable results.
A good estimate of the central charge represents a reliable
check of our numerical calculations, and is also required to
consistently perform a level spectroscopy analysis without
targeting excitations in momentum space.29,39

3.2 3.6 4
log

2
(L/ π)

3

3.3

3.6

3.9 S
1
(L/2,L)

Δ=−0.4
Δ=0.3
Δ=1

FIG. 1. (Color online) Finite-size scaling of the bipartite von
Neumann entropy as a function of the system size L ∈ [28,60]
for different values of the anisotropy coefficient �. Here, PBC
are considered in order to discard oscillatory corrections. Solid
lines represent fits with Eq. (5) yielding c = 0.995(4), 0.992(6), and
1.014(4) from top to bottom.
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FIG. 2. (Color online) Sound velocity vs as a function of � as
extracted from level spectroscopy methods (black crosses); at � = 1
the red circle denotes the spin-wave results vs = 3, and a previous
DMRG estimate (Ref. 39) vs = 3.87 is indicated by a red star. The
maximum error is of order 6 ∗ 10−2 at the antiferromagnetic point.
Inset: typical finite-size scaling of the ground-state energy density
εgs(L) for � = −0.5.

B. Sound velocity

Following standard level spectroscopy methods based on
the energy scaling of CFTs,5,29 the sound velocity vs of the
single-component TLL can be estimated by considering the
finite-size scaling of the ground-state energy density, which
under PBC reads as

εgs(L) = ε0 + vscπ

6L2
+ · · · , (6)

ε0 being the energy density in the thermodynamic limit,
and employing the previously found values of the central
charge. The large number of system sizes considered in our
calculations allows one to safely perform a four-parameter
fit of the form εgs(L) = a0 + a1/L

2 + a2/L
a3 ; typical fitting

results are shown in the inset of Fig. 2. At the antiferromagnetic
point � = 1, our results are in good agreement with a previous
DMRG study,39 where vs was extracted by targeting the first
excited states at finite momentum, and in sharp disagreement
with the spin-wave result,40 vSW

s = 3, in which quantum
fluctuations are only approximately treated. Including loga-
rithmic corrections according to the Wess-Zumino-Novikov-
Witten9,39 theory does not lead to appreciable differences.

The complete dependence of vs versus � is plotted in
Fig. 2 and suggests how, once approaching the ferromagnetic
phase transition, the velocity of the sound excitations seems to
approach zero. On the other hand, vs reaches its maximum
value at the Berezinskii-Kosterlitz-Thouless point,9 in full
analogy with the S = 1/2 case.3,9

C. Luttinger parameter

When dealing with models whose low-energy physics is
captured by the TLL Hamiltonian, the parameter K represents
a fundamental quantity as it determines the long-distance de-
cay of all correlation functions and thus which susceptibilities
are the most relevant in the microscopic model.10 We will
thus employ three complementary methods to extract such a
quantity from numerical simulations. This procedure allows
one to systematically check the validity of each method in
various parameter regimes and, close to the antiferromagnetic
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FIG. 3. (Color online) Finite-size scaling of the energy gap �g as
a function of 1/L2 for different values of �; solid lines are best fits
(see text). The Luttinger parameter estimated via Eq. (7) is, from top
to bottom, K = 2.44(0),2.95(9),3.69(4),6.03(1).

point, indicates which type of estimate is more affected by the
well-known logarithmic corrections.

As one way to estimate K , we make use of the previously
calculated vs and apply the level spectroscopy method by
targeting the first excited state with total magnetization
〈∑i S

z
i 〉 = 1 under PBC. Given its energy density ε+1(L), the

energy gap �g(L) = L[εGS(L) − ε+1(L)] scales to zero in the
thermodynamic limit as10,29

�g(L) = πvs

2KL
+ · · · . (7)

We thus performed a least-square regression fit as a function of
1/L2 and a nonlinear fit of the form �g(L) = b0/L

2 + b1/L
b2

in order to estimate the effect of higher-order corrections,
which turns out to be negligible if |�| � 0.9, as can be inferred
from typical finite-size scalings shown in Figs. 3 and 4. At the
antiferromagnetic point, however, the quality of the best fit
with just algebraic contributions turns out to be insufficient
due to the presence of strong logarithmic corrections.41 We
thus apply the same fitting procedure of Ref. 39, which
takes into account logarithmic corrections as ensuing from
the underlying SU(2) Wess-Zumino-Novikov-Witten field
theoretical structure,9,42 obtaining K = 0.499 ± 0.005 at the
critical point, in good agreement with previous numerical39

and analytical findings.12 A summary of the so-obtained results
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FIG. 4. (Color online) Finite-size scaling of the rescaled energy
gap �g as a function of 1/L2 (in logarithmic scale) for the same
anisotropies considered in Fig. 3: solid lines are best fits (see
text), showing how additional finite-size contributions are usually
negligible.
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over all the critical regime is presented in Fig. 8 and will be
discussed at the end of this section.

The second way of estimating K is the one introduced by
the authors in Ref. 30, based on the finite-size corrections of
the bipartite Rényi entropies:

Sα(l,L) = 1

1 − α
log2 TrA ρα

A (8)

whose scaling, for a CFT with c = 1, follows:35

Sα(l,L) = c
(
1 + 1

α

)
6η

log2[L sin(πl/L)/π ] + sα + Sosc
α (l,L),

(9)

where for α → 1 one recovers the von Neumann entropy (4).
The influence of the Luttinger parameter on such entanglement
entropies is encoded in the oscillating factor, which on a finite
chain of size L scales as29,30,35

Sosc
α (l,L) = cos(2kF l + ω)

fα

(
l
L

)
∣∣2 sin kF

ηL

π
sin πl

L

∣∣2K(L)/ηα
, (10)

where kF = π/2 is the Fermi momentum and fα(l/L) is a
scaling function.35 In order to circumvent finite-size correc-
tions to the central charge and nonuniversal features related to
fα , one can consider the following entropy difference:

dSα(L) = Sα

(
L

2
,L

)
− Sα

(
L

2
− π

2kF

,L

)
, (11)

which for L � 1, reduces to30

dSα(L) = π4
(
1 + 1

α

)
48η ln 2k2

F

1

L2
+ cos(kF L)

L2K/ηα

[
a + O

(
1

L

)]
.

(12)

The finite-size scaling of dSα with respect to the system size L

allows one to precisely estimate K under both OBC and PBC,
as discussed in detail in Ref. 30.47 Since it has been noticed that
the oscillation amplitude is very small for Heisenberg chains
with S > 1/2 and α 	 2, we employed REs with larger values
of α in order to get a reliable estimate from the DMRG results.
In particular, our estimates of K are mostly based on the α =
10 RE, as these data represent a good compromise between
small oscillation amplitude and slow oscillation decay.48

Typical results from both PBC and OBC with system
sizes L ∈ [28,60] (L ∈ [100,180]) are presented in Figs. 5
and 6. We notice that even though it considerably decreases
close to the ferromagnetic transition, the magnitude of the
oscillation is still large enough to perform accurate finite-size
scaling. For � > 0, comparable results may be obtained even
with smaller α’s. However, close to the antiferromagnetic
point, different types of corrections arise and the quality of
the fitting procedure rapidly decreases. Thus, extracting K

beyond � = 0.7 turns out to be numerically challenging.
As can be seen from Fig. 8, data points obtained via dSα

significantly deviate (with about a 5%–15% discrepancy) from
other estimates in this regime. Finally, let us point out that,
for � = −0.9, the decay exponent for PBC is so large that
oscillations are strongly dumped for large system sizes, so that
an accurate estimate of K is not possible; for OBC instead,
being the exponent smaller by a factor of 2, the estimate is

100 120 140 160 180
L

-0.1

-0.05

0

0.05

0.1

dS10( L) Δ=−0.9
Δ=−0.5
Δ=0.4

FIG. 5. (Color online) Oscillating factor of the α = 10 RE as
a function of the system size L for OBC. The amplitude of the
oscillations strongly decreases when approaching the ferromagnetic
point (Ref. 36), even though an accurate estimate of K is still
possible (with typical relative error around 10−2) by considering the
appropriate entanglement entropy.

still in very good agreement with all other methods, even for
� = −0.9.

The third way we estimate K is through spin fluctuations.43

For a bipartition as the one used to define the von Neumann en-
tropy, we define the quantity F = 〈(∑i∈A Sz

i )2〉 − 〈∑i∈A Sz
i 〉2.

For a TLL under PBC, spin fluctuations behave as10,30,43

F (l,L) = K

π2
ln

[
L

π
sin

(
πl

L

)]
+ A1 + O(l2K ) (13)

and provide a quantitative estimation of K .30,43,44 We em-
ploy such method by fitting the half-lattice spin fluctuation
F (L/2,L) as a function of the system size in the interval
L ∈ [28,60]; typical fitting results are illustrated in Fig. 7.
At the antiferromagnetic point � = 1, logarithmic corrections
to correlation functions severely modify Eq. (13): strong
oscillations, not captured by a quadratic TLL theory, emerge
with respect to the parity of L, preventing a reliable estimate
of K .

The results obtained in this section are all shown in Fig. 8,
from which one can see that they agree over almost the whole
anisotropy parameter range. In general, the level spectroscopy
method leads to more accurate estimates, as the quantities

30 40 50 60
L

-0.04

-0.02

0

0.02

0.04
dS10 (L)

Δ=−0.6
Δ=0
Δ=0.6

FIG. 6. (Color online) Oscillating factor of the α = 10 RE as a
function of the system size L for PBC. Continuous lines are guides
for the eye.
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CRITICAL PROPERTIES AND RÉNYI ENTROPIES OF . . . PHYSICAL REVIEW B 85, 165112 (2012)

2.6 2.8 3 3.2 3.4
ln( L/2)

1.2

1.3

1.4
F(L/2, L)

Δ=0.7
Δ=0.8
Δ=0.9

FIG. 7. (Color online) Spin fluctuations as a function of the
system size L under PBC. Solid lines are best fits with Eq. (13).

it relies on are very accurately estimated with DMRG, and
additional finite-size corrections seem to play a minor role;
on the contrary, RE estimates, which are extremely precise
for � < 0.6, may indeed suffer from both larger truncation
errors and stronger finite-size dependences close to the
antiferromagnetic point, resulting in a worst mutual agreement
with fluctuations and LS. Finally, all results are compared with
a previously stated conjecture based on exact calculations on
small system sizes38 which relates the Luttinger parameter KS

of a spin-S Heisenberg chain with the S = 1/2 case in the
� < 0 regime:

K(�)S = 2SK(�)1/2. (14)

Remarkably, as can be seen from Fig. 8, this conjecture appears
to be in semiquantitative agreement with the numerical results
even well beyond its original validity regime. Discrepancies
among the results emerge mainly close to the antiferromag-
netic point, where logarithmic corrections differently affect

-1 -0.5 0 0.5 1
Δ

0

5

10

K

Fl
LS
RE, OBC
RE, PBC

0.5 0.7 0.9

1.5

2

2.5

FIG. 8. (Color online) Estimate of the Luttinger parameter as a
function of the anisotropy parameter. In the legend, F l, LS, and RE
denote spin fluctuations, level spectroscopy, and RE results with OBC
or PBC. The dashed line is the conjecture of Ref. 38. The blue
diamond (� = 0.5) and the black square (� = 1) indicate the LS
and exact results given in Refs. 29 and 12, respectively. The inset
shows a magnification of the region close to the antiferromagnetic
point: here, REs do not provide fully reliable results due to the
presence of additional finite-size corrections, while predictions from
LS and spin fluctuations are in excellent agreement. In both panels,
numerical errors are smaller than the size of the symbols, except
for the � = −0.9 estimate based on RE with PBC: in this case, the
absolute numerical error due to the fitting procedure is of order 2 due
to a very strong size dependence of the fits.

the techniques we have presented: in this regime, level
spectroscopy turns out to be the most reliable method to extract
the Luttinger parameter, as field theoretical instruments allow
one to perform a more accurate scaling hypothesis with respect
to methods based on REs and fluctuations. Nevertheless,
the picture suggests that a deeper theoretical insight on the
analytical properties of both REs and fluctuations close to
critical point with logarithmic corrections may, in principle,
enlarge their regime of applicability.

IV. NUMERICAL RESULTS: ENTANGLEMENT
ENTROPIES AND CONNECTION WITH CFTs

A. Rényi entropies of excited states

In recent times, an analytical formula for the REs of low-
energy excited states in a CFT was derived and numerically
verified for various quantum spin chains.45,46 In particular, it
has been predicted that the trace of the reduced density matrix
ρα

A,ϒ of excited states generated by primary operators ϒ of
conformal weights h,h̄ satisfies the following relation:

α2α(h+h̄) TrA ρα
A,ϒ

= Z(α)

Z(1)α

〈 ∏α−1
j=0 ϒ(2πj/α)ϒ†(2π (j + l)/α)

〉
cy

〈ϒ(0)ϒ†(2πl)〉αcy

. (15)

Here, α is assumed to be a positive integer, but the result can be
analytically continued all α � 1; Z(α) is the partition function
on a torus of dimensions 2πα and 2 log2[L/π sin(πl/L)];
〈· · ·〉cy denotes the expectation value on the vacuum state on a
cylinder of length 2π . In particular, if ϒ is a vertex operator,
formula (15) predicts that the VNE (and, up to oscillating
terms, all REs) of the excited state generated by ϒ should
be equal to the one of the ground state. This finding has
been numerically verified in a series of exactly solvable spin
models in Refs. 45 and 46. In order to further strengthen it,
we considered the REs of the state generated by applying
a vertex operator on the ground state (which belongs to the
Sz

tot = ∑L
j=1 Sz

j = 0 sector) thus obtaining the ground state
in the Sz = 1 sector. Spanning the entire critical region and
employing PBC, we found excellent agreement with the CFT
prediction for both von Neumann and α > 1 REs. In the former
case, the entropy of excited and ground states coincide within
numerical uncertainty up to a constant shift of order 10−2, as
can be seen from typical data presented in the upper panel of
Fig. 9; for small systems up to L = 12, we further checked
this behavior with exact diagonalization.

We afterward checked the relation between the oscillation
corrections and the Luttinger parameter as extracted in the
previous section by considering REs with α > 1. Even in this
case, the agreement with the predicted behavior is remarkable,
except at the ferromagnetic point where the quality of the fit
significantly decreases. Results of Sex

α (l,60) as a function of l

are plotted in Fig. 9, lower panel, and suggest that the amplitude
of the oscillations follows a similar behavior as in the ground-
state case, namely, oscillations are more pronounced when
approaching the antiferromagnetic point.
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FIG. 9. (Color online) Upper panel: von Neumann entropies of
ground and excited states for several values of � as a function of the
block length l; here, L = 60 and PBC are considered. Lower panel:
α = 10 Rényi entropies of excited states at L = 60. Solid lines are
best fits obtained using Eq. (10) with kF = 31π/60.

B. Entanglement behavior of Heisenberg chains with different S

In a recent paper (Ref. 29), an interesting property concern-
ing entanglement entropies of XXZ chains was conjectured.
Based on numerical DMRG simulations, it was shown that,
under both OBC and PBC, the von Neumann entropy of XXZ

spin chains with different half-odd integer S � 5/2 satisfies
the following relation:

(ln 2)�S1(S) ≡ S1(l,L)S − S1(l,L)S−1 = 1

2S − 1
+ εS,

(16)

where εS → 0 in the L → ∞ limit. Such relation implies
that, independently on the anisotropy �, the nonuniversal
constant contribution acquires a universal form; interestingly,
it scales as the inverse of the difference between the one-site
Hilbert-space dimension of the S case minus the S = 1/2
one.

We systematically investigated the behavior of �S1(3/2) as
a function of � by employing PBC in order to get rid of the
oscillation contribution, which, as noticed in literature36 and
confirmed in the previous section, is extremely different for
different values of S. As a preliminary check, we compared
our value of �S1(3/2) at � = 1/2 with the one reported
in Ref. 29, finding indeed very good agreement up to the
different logarithmic basis employed here. Due to a very slight
l dependence of �S1(3/2), we mostly considered its mean
value in the interval of block length l ∈ [11,29] in systems with
up to L = 60 sites. A schematic plot of the entropy difference
at L = 58 is presented in Fig. 10: �S1(3/2) displays a notable
nonmonotonic � dependence. Similar plots are obtained with
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Δ
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FIG. 10. � dependence of �S1(3/2).

different L. In summary, our results firmly confirm that
Eq. (16) does not hold for S = 3/2, in accordance with Ref. 29.

V. CONCLUSIONS

In this work, we analyzed critical and entanglement
properties of the spin-3/2 anisotropic XXZ chain. By means
of DMRG simulations, we systematically calculated the sound
velocity and the Luttinger parameter in the entire critical region
with a variety of methods such as level spectroscopy, entropy
analysis, and spin fluctuations. At the antiferromagnetic point,
logarithmic corrections prevent an accurate estimate of the
Luttinger parameter via spin fluctuations and entropy oscilla-
tions, while level spectroscopy, where such corrections may be
systematically introduced, still provides reliable results. Such
findings benchmark the use of level spectroscopy techniques,
which stem as preferable over correlation function methods
based on fluctuations and Rényi entropies when approaching
and determining phase transition points with logarithmic
corrections. Away from such delicate regimes, all methods
give compatible results, in agreement with previous studies,
although REs usually require more accurate calculations since
their absolute value is very small in our case study.

Finally, we investigated in detail the behavior of Rényi
entropies of both ground and excited states. In the former
case, we compared the REs of the S = 1/2 and S = 3/2 cases,
proving that they are not connected by general relations as in
the S > 3/2 case. Then, we provided evidence that recent
results on the RE of certain excited states in a conformal field
theory are verified in the model of interest, presenting the first
numerical evidence of such expected behavior in nonintegrable
models. Even though the leading corrections to REs of excited
states and those of the ground state display the same type of
behavior,31,46 whether the combination of the two may allow
for a precise determination of physical quantities of interest
still stands as an open question.
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