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Non-Zeeman splitting for a spin-resolved STM with a Kondo adatom in a spin-polarized
two-dimensional electron gas
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We theoretically investigate the spin-resolved local density of states (SR-LDOS) of a spin-polarized two-
dimensional electron gas in the presence of a Kondo adatom and a scanning tunneling microscopy probe. Using
Green’s function formalism and the atomic approach in the limit of infinite Coulomb correlation, an analytical
SR-LDOS expression in the low-temperature regime of the system is found. This formal result is given in terms
of phase shifts originated by the adatom scattering and Fano interference. The SR-LDOS is investigated as a
function of the probe position and different Fano factors. Our findings provide an alternative way to spin split the
Kondo resonance without the use of huge magnetic fields, typically necessary in adatom systems characterized
by large Kondo temperatures. We observe a non-Zeeman spin splitting of the Kondo resonance in the total LDOS,
with one spin component pinned around the host Fermi level. Interestingly, this result is in accordance to recent

experimental data [Phys. Rev. B 82, 020406R (2010)].
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I. INTRODUCTION

The scattering of electrons by a magnetic impurity in a
metallic environment is responsible for the manifestation of
the Kondo effect.! This phenomenon occurs as a result of
an antiferromagnetic coupling between the localized spin at
the impurity and the surrounding conduction electrons of
the host. In particular, at temperatures much lower than the
Kondo temperature Tk, an electron cloud emerges to screen
the magnetic moment placed at the impurity site. Thus, a
sharp resonance pinned at the Fermi energy appears in the
impurity density of states and characterizes the formation of
the Kondo peak. Such an effect was first observed in resistivity
measurements of magnetic alloys, later in transport properties
of quantum dots (QDs) performed in a two-dimensional
electron gas (2DEG).>"!! More recently, Kondo effect was
also measured using scanning tunneling microscopy (STM) in
the presence of impurities deposited on metallic surfaces.'>"’

In the context of unpolarized scanning tunneling mi-
croscopy probes, the conductance exhibits the Fano line
shape due to the quantum interference between the transport
channels given by the conduction bands and the adatom.?*>°
Additionally, for STM probes not very close to the metallic
host and in the low-temperature regime, the STM device probes
the local density of states (LDOS) of the sample.

In the case of spin-polarized STM probes, interesting new
features emerge as the spin splitting of the Fano-Kondo profile
of the conductance and the Fano-Kondo spin filter.**=3 In this
scenario, several experimental and theoretical works discuss
related phenomena employing ferromagnetic leads coupled to
QDs and adatoms.** In particular, in the emerging field of
spintronics, the interplay between the Fano-Kondo effect and
the ferromagnetism of a metallic environment plays a crucial
role in the manufacturing of novel spintronics devices.

In this work, we report an analytical description of the spin-
resolved local density of states (SR-LDOS) for an unpolarized
STM probe, hybridized with a single Kondo adatom in a
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ferromagnetic (FM) island, considered here as a spin-polarized
two-dimensional electron gas (SP-2DEG). Such analysis is
done in the framework of the single impurity Anderson
model’® (SIAM), using the atomic approach with infinite
Coulomb correlation®’° in order to determine the adatom
Green’s function (GF).

The main result of our simulations is the emergence of an
asymmetric spin splitting in the Kondo peak, which agrees
with some experimental works.>*#3474%-30 Here, we highlight
the experiment done by Kawahara et al.,* where the measured
LDOS shows that one spin channel has a Kondo peak pinned
at the vicinity of the host Fermi level, while the opposite is
shifted by the spin polarization of the 2DEG forming the island
surface. We note that the behavior we see here is not similar
to the usual Zeeman splitting due to an external magnetic
field.>>%7-23 In the present model, there are no external fields.

Contrary to the QD systems, where the Kondo temperature
is of the order of milliKelvin and the temperature could be
tuned to observe the suppression of the Kondo resonance, in
most STM systems,*” the Kondo temperature is of the order
of tens of Kelvin and the experimental STM setups do not
allow the temperature variation in such a range to observe the
evolution of the Kondo effect. On the other hand, to verify the
splitting of the Kondo peak in STM experiments, it is necessary
to apply a magnetic field of hundreds of Tesla, which is not
feasible. Thus, the type of experiment proposed in our work
could be useful to produce a splitting of the Kondo resonance
without huge magnetic fields.

This paper is organized as follows. In Sec. II, we show
the theoretical model for the STM in terms of the Anderson
Hamiltonian. We derive in Sec. III the SR-LDOS formula
with and without a STM probe. For both cases in the low-
temperature limit, we show that the SR-LDOS expression
can be labeled by phase shifts due to the adatom scattering
and Fano interference. In Sec. IV, we discuss the results
of the host Fano parameter, which displays spin-polarized
Friedel oscillations®'~®3 and we present a wide analysis of
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FIG. 1. (Color online) STM device composed by an unpolarized
probe and a Kondo adatom hybridized to a SP-2DEG. The parameters
V, tsr, and w are hopping terms. The letters d,, ¥,;, and Wg, denote,
respectively, the fermionic annihilation operators to the adatom, to
the site of the host side coupled to the adatom, and to the site just
below the probe.

the SR-LDOS as a function of the bias voltage for different
probe positions and Fano factors. The atomic approach is
employed considering an infinite Coulomb correlation in order
to calculate the adatom GF. We apply our formulation in Sec. V
to describe the Kondo peak splitting found in the experiment
of Ref. 49. The conclusions appear in Sec. VI, and in the
Appendices, we give details of the derivations of the atomic
GF for the adatom as well as for the host Fano factor.

II. THEORETICAL MODEL

A. Hamiltonian

In Fig. 1, we represent an unpolarized STM probe coupled
to the FM island hybridized to the Kondo adatom deposited
on its surface. Note that when the hopping term #;z > w,
the setup behaves as a single-electron transistor (SET),>?
which we call peak limit, due to the emergence of the Kondo
resonance in the LDOS energy profile as we shall see. The
other limit we call dip limit; it comprises the cases f;pg <K w
and fy;g >~ w, which resemble the T-shaped QD device’
characterized by a Fano-Kondo dip.

The system we investigated is described according to the
Hamiltonian

H = Hem + Hyrobe + 9 sy (1)

The first term represents the SIAM (Ref. 56)
Hem = Z ekac;ggc,;g + Z Eddidl7
ko g

+ Y Varo(cl do +dlcz,) + Udldrdld, (2)

ko
that assumes the island as a SP-2DEG described by the
operator cga (cz,) for the creation (annihilation) of an electron
in a quantum state labeled by the wave vector k, spin o, and

energy

eko = Dokpl(k — kiy) A3)
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which depends on the spin-polarized band half-widths D,
forming the host Fermi sea and the wave numbers kp,
evaluated at the Fermi energy e = 0.

For the adatom, dg (d,) creates (annihilates) one electron
with spin o in state E,;. The third term hybridizes the adatom
level and the host continuum of states. The coupling matrix
element is modeled as

v 14 r2
dko — — —m3 5 5 >
? A/ NFMJ F2 + 8,%0

which obeys a Lorentzian behavior for a sake of simplicity to
mimic a nonlocal coupling between the adatom and the island.
NeMo 1s the number of conduction states for a given spin and I'
is the width of this interaction around & . Coulomb correlation
between two electrons with opposite spins at the adatom site
is also taken into account and is represented by the letter
U. For simplicity, we consider the U infinite version of the
atomic approach®’® that gives the adatom GF. In particular,
taking the limit I" > &, in Eq. (4), we obtain a constant
Viko» 1.€., Vire = A"LMJ' This corresponds to the case of a
site of the FM island side coupled to the adatom, which we
designate local coupling. We mention that Egs. (3) and (4) were
previously applied in the context of unpolarized bulk electrons
in a system described by the Kondo model.®? In this work, we
employ the Lorentzian shape to emulate the nonlocality of the
adatom-island coupling.

The FM island is considered a spin-polarized electron bath,
with polarization given by

“

p — Pt )OFM¢, )
PrMt + PEM|
where
PPMe = ! (6)
2D,

is the host density of states in the flat band approximation.
This quantity is expressed in terms of

Dy
o =TT 5 @)
(1+0oP)
for a given spin o and the unpolarized density
_— ®)
Lo = 2Dy’

written in terms of the width Dy. The unpolarized part of the
system is the conduction band given by the Hamiltonian

7—{probe = Z gpb;r;g bﬁc s (9)
po

which corresponds to the second term in Eq. (1) for free
electrons in the STM probe. Such conduction electrons are

ruled by fermionic operators b;a and bj,. To perform the
coupling between Eqgs. (2) and (9), we have to define

Wi =Y bl (WWk, + tagdy + H.e.) (10)
;

as the spin tunneling Hamiltonian that hybridizes the STM
probe conduction states with those in the island and the adatom.
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The former hopping parameter we consider proportional to the
energy-independent term w, with the fermionic operator

1 i
— Ze kReo | (11)
k

Vo =

which describes a conduction state at the site R laterally
displaced from the adatom. This operator admits an expansion
in plane waves due to the assumption of an infinite 2DEG
forming the island surface. The second hybridization parame-
ter in Eq. (10) is proportional to the adatom operator d, and
the spatial-dependent hopping

lar = 140 eXp(—krp R), 12)

which provides a decreasing STM probe-adatom coupling.
This characteristic ensures a vanishing behavior for huge
lateral displacements, which was already employed in the
literature, 43132

B. Atomic approach

In order to implement the atomic approach,’’° we con-

sider the adatom-island coupling as local. Thus, we begin

HFM = Z Skacli['gclzn + Z EdXd,U(f
ko o
+ V(X;,an}(f + \I”(J;Xd,()o)v (13)

which is derived from Eq. (2) taking into account Vg, =

JAYW' Here, X, is the Hubbard operator*® that projects

out the doubly occupied state from the adatom to ensure
the limit of infinite Coulomb correlation, where the label
(a,b) defines the parameters associated with the corresponding
atomic transition and W, is Wg, [Eq. (11)] evaluated at the
origin. This Hamiltonian is useful for the calculation of the
adatom GF and, consequently, the system SR-LDOS.

This GF is based on an extension of the Hubbard cumu-
lant expansion also applicable to the Anderson lattice with
impurity-host couplings treated as perturbations.®> The use
of this expansion allows us to express the exact GF in terms
of an unknown effective cumulant. In a previous work, the
Anderson lattice was studied with an approximate effective
cumulant obtained from the atomic limit of the model in a
procedure called the zero band width (ZBW) approximation.
The advantage is that such method includes all the higher-order
cumulants absent in the previous diagrammatic calculations.®

The method presents some similarities to the exact di-
agonalization (ED) for the SIAM. The ED is a brute-force
method to solve the Hamiltonian treated as a discrete bath
by considering the impurity coupled to a finite number of
conduction sites (N,) of the host band. In principle, it is an
exact method as the name implies, but its limitation relies
in the number of conduction sites considered, and the Hilbert
space grows extremely fast when N, is enlarged. The cumulant
approach is not equivalent to the ED; it allows us to derive the
adatom GF from the Anderson lattice model in the atomic
limit.%® This GF is related to the conduction band GF, which
depends on the atomic level that represents the band. Such
a level is the starting point for the ZBW approximation. The
ZBW is a mapping of the system Hamiltonian onto an effective
tight-binding chain with only two sites, one for the adatom
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discrete energy and other for the band atomic level. Then,
employing the Lehmann representation, the atomic GF for the
impurity is calculated as well as the approximated cumulants.
They determine the full GF in such a way that the Friedel sum
rule should be satisfied by the band atomic level. In particular,
this GF does not present a spurious oscillatory behavior in the
Kondo peak as that observed by the standard ED method. In
the ED context, this artifact can be solved by the self-energy
trick.>> We also would like to mention that the atomic approach
could be easily generalized to the multiorbital Anderson model
because once the atomic solution is known, the method follows
the same steps realized in the spin S = 1/2 SIAM.

To obtain the exact GF of an Anderson impurity (adatom),
we can employ the chain approximation,®® but considering
all the possible cumulants in the expansion for the Anderson
lattice. Similarly to the Feynman diagrams, it is possible to
rearrange all those that contribute to the exact adatom GF by
defining an effective cumulant, determined by all the diagrams
that can not be separated by cutting a single edge (“proper” or
“irreducible” diagrams).

As we are interested in the exact GF for the adatom, we use
the standard definition

Gal(z) = —%Q(f)Tr{QFM[dg(f),dl(O)h} (14)

in time coordinate, where 7 is the Planck constant /4 divided
by 27, 6(t) the step function at the instant t, Tr the trace over
the eigenstates of the Hamiltonian in Eq. (2), opm the density
matrix of the FM island, and [. . ., .. .] is the anticommutator
between the adatom operators at different times.

The time Fourier transformation of Eq. (14) thus provides
the adatom GF in energy coordinate, which is then obtained
by replacing the bare cumulant for the effective one calculated
by following the atomic approach with the Hamiltonian in
Eq. (13). As a result, we have

Mgff(w)

dd _
G ()= 1 — M ()| V2 Y7 G (k,w)

as)

as the adatom GF in terms of the effective cumulant M(w)

and the free-electron GF

> 1

G, k,w) = ————, (16)
w— &, TN

where 7 — 07. The atomic version of Eq. (15) is given by (see
Appendix A)

y B M (w)
gm,a(a)) = 1— M?(w)|v|ZQ§BW(w) ’ (17)
which results in
Gul (@)
M (@) = ’ (19

1+ G4 ()| VPGZBW (w)

for the effective cumulant determined from the adatom GF
calculated in Appendix A, both dependent on

1
G2V (w) = . (19)
o — (800 — 1) +in
for an electron state in the ZBW approximation with u to
denote the FM island chemical potential. As we can see,
Eq. (19) replaces all energy contributions of the original Fermi
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sea by two spin-dependent atomic levels, i.e., we perform
the substitution ) ;_ 8kac;£ac,ga - >, 8ogcéacoc, in Eq. (13)
with &;, = €, representing the band atomic level for a given
spin o. As this procedure overestimates the coupling of the
spin-polarized conduction bands of the island with the adatom
due to the concentration of the bands at atomic levels, we have
to moderate this effect,% performing the substitution of V2 by
A? in Egs. (17) and (18), where A = 7 V?py is the Anderson
parameter.

To determine the adatom GF, we use the atomic cumulant
M¥(w) as effective in Eq. (15) and verify that

MG (w)

teo V2 o+Dy+p1
1 — M ()35 In (a)fDqulL)

Gl (w) =

(20)

provides an analytical expression in the flat band approxima-
tion. We mention that M2 (w) is a simplification, but it contains
all the diagrams that should be presented in such a way that
the correspondent GF displays realistic features.

As the final step of the atomic approach implementation,
we have to find adequate values of the atomic levels g, that
well describe the ZBW GFs in Eq. (19) and consequently the
adatom GF. To that end, we use the condition that, in metallic
systems, the most important region for conduction electrons
is placed at the Fermi energy e, and that the coupling to an
Anderson impurity leads to the Friedel’s sum rule®’

sin®[8, (er)]

1
Pd.o(EF) = —;Im{gﬁd(w)} = A, 21

for the adatom spectral density. Here, §,(ep) = wng o, is
the conduction phase shift at the Fermi level, Im represents
the imaginary part, A, = A(1 4+ o P) is the spin-dependent
Anderson parameter, and ny , is the adatom occupation with
spin o. Thus, we find the atomic levels ¢y, calculating
self-consistently Eq. (21) together with

1 +o0
Nae = (Xdoo) = —;/ doIm{GI(w)}nr(). (22)

In Eq. (22), nr(w) is the Fermi-Dirac distribution.

It is important to emphasize here that the choice of the
atomic approach to calculate the adatom GF is only due to
its computational simplicity and ability to obtain the Kondo
peak, but we must take into account that the method presents
some limitations that were extensively discussed in the original
papers.”’° The SR-LDOS formulas obtained in Sec. III are
general; we could employ other more powerful and precise
techniques to calculate the GF of the Anderson impurity, such
as the numerical renormalization group'®!'"® (NRG) without
any modifications in the formalism.

III. SR-LDOS
A. SR-LDOS in the scheme of phase shifts for the FM island

In this section we derive at the temperature range 7 < Tk
the SR-LDOS for the FM island with an adatom following
the procedure found in Ref. 62, which was applied in the
Kondo model with unpolarized bulk electrons. Such a method
allows us to express the SR-LDOS in terms of the phase
shifts due to the adatom scattering and the Fano effect. This
latter is originated in the interference between the electron
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paths formed by the host conduction band and the Anderson
impurity. We emphasize that the STM probe is not present in
this section. Initially, we derive a formalism for finite 7" and
later on we take the limit 7 — 0. It is well known that

1
Pipos(@,R) = —;Im{gg(w,m} (23)

provides the SR-LDOS formula. The GF G, (w, R) is obtained
from the Fourier transform of

Go(T.R) = —%e(r)Tr{QFM[ch,(r),%,(onn (24)

in time coordinate, where gopy and [. . ., ...]. are the density
matrix of the FM island Hamiltonian and the anticommutator
between the operators given by Eq. (11) at different times,
respectively.

In order to be explicit, we have to apply the equation of
motion procedure (EOM) on Eq. (24) to demonstrate that
Go(w, R) is coupled to other GFs as follows:

Go(@,R) = g5 (®,0) + & (0, ) T; (0)3s (0, — R).  (25)

The first term
ik.R

> (26)
k

C‘)_“'J‘k(r""in

g (w,R) =
7 Nemo

describes the bare GF for an uncorrelated electron state at the
site R, laterally displaced from the adatom, and

l—'2 eilz.k
s (w,R) = -
§ Nrm ZFZ—Fe,%Ua)—Ska—i-m

(-
k

27

is the correspondent one dressed by the nonlocal hybridization
[Eq. (4)]. As a scattering center, the adatom defines a scattering
amplitude

A
To(w) = nggd(“’) (28)

proportional to the GF G%(w).

The emergence of Fano interference and Friedel oscillations
in the system SR-LDOS is a result of the interplay between
Egs. (26) and (27). These effects can be elucidated by
regrouping the terms in Eq. (25) in such a way to achieve
the form

P pos(@. R) = pevo + wpg {[AZ(R) — i |
x Im{7; (w)} + 2AJ(R)QFM0R6{7:7(W)}}7

(29)
where Re means real part,
1 PFMo r
s = —Re{g,(w,R)} = Jotkpo R)———
grm, 0 e{go (w0, R)} o olkr )F2+w2w
(30)

represents the Fano parameter due to the adatom-island
hybridization in the wide-band limit and characterized by
spin-polarized Friedel oscillations in the zeroth-order Bessel
function Jy(kr, R). The spin-dependent Fermi wave numbers
kr4 and kp4 are related to each other via

1-P
ke =\ T phee. (31)
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deduced from Egs. (3) and (6). The SR-LDOS also depends
on the function

2
Jolkpe R)————
olkr )2 e

(32)

that encloses spin-polarized Friedel oscillations for charge.
Details of the method employed to derive Eq. (30) appear
in Appendix B. We mention that to compare the SR-LDOS
simulations of Sec. V to the experimental data measured in a
Fe island with a Co adatom,* it is necessary to set the Fano
parameter in Eq. (30) as a spinless ratio and equal to zero.

At low-temperature limit, the SR-LDOS is well described
by Eq. (29) at the ground state. In such a region, it is possible
to classify the SR-LDOS in terms of the spin-dependent phase
shift §,(w) for the conduction electrons due to the adatom
scattering center. According to the results on the SIAM,%7 this
characterization is obtained using the relation

PFMo

1
As(R) = n_polm{g"(w’R)} =

1 r2 \?2
208, =1-2 7, j
exp[2i8, ()] o0 3 — ij (Fz " 8130) ()i
X 8(w — ko) (33)

that correlates the phase shift §,(w) to the real and imaginary
parts of the scattering amplitude 7, (w), given by Eq. (28), thus
resulting in the formula

Im{7; (w)}

Re(Z;(w)}’ oY

tan 6, (w) =

For the Fano interference, we define an analogous relation,”!!

introducing the phase shift §,,, as
Re{g, (w,R)}
tan by, = ——————— =
Im{g, (o, R)}
in order to show that
Pipos(@. R) = prua [1 — Jg (ke R)Fo(w)] (36)

becomes the expression for the system SR-LDOS and charac-
terized by

0 dFMo
0=
Im{gv (CU, R)}

(35)

c08%[85 (@) — Sy, ]

Folw)=1-—
(@) c08? 8y

, (37

exclusively expressed in terms of the adatom scattering and
Fano phase shifts. The last formula is the main result of this
section, and it represents the SR-LDOS of a metallic surface
considered as a spin-polarized 2DEG coupled via a nonlocal
hybridization to an adatom in the framework of the SIAM
given by Eq. (2). In Sec. III B, we shall see that the STM spin-
resolved conductance formula assumes identical structures to
Egs. (36) and (37), but with a redefined Fano parameter due to
the probe presence.

B. Differential conductance and the SR-LDOS probed
by the STM

In the low-temperature regime and for a STM probe not
very close to the metallic sample, the spin-resolved and
differential conductance of the STM device is proportional
to an effective SR-LDOS. To derive this effective SR-LDOS,
we have to implement the linear response theory treating the
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tunneling Hamiltonian in Eq. (10) as a perturbation, just to
ensure the weak tunneling regime as verified in experimental
conditions.*’ Taking these assumptions into account, we show
that the spin-current follows the expression

2e

I, = 77‘[1—‘,” / donr(w — ep) — nF(w)]ﬁEDos(w)’ (33)

with T, = 2mw|w|*py as the parameter that hybridizes the
system conduction bands, e the electron charge, ¢ the bias
voltage, and

1 -
Aipos(@,R) = —;Im{ga(w,R)} (39)

as the effective SR-LDOS probed by the STM device. Such
density is calculated using the GF G, (w, R) obtained from the
time Fourier transform of

5 i - -
Go(1,R) = _fle(f)Tr{QFM[q’Ra(f)a\Ij};g(o)]-‘r}’ (40)
written in terms of the operator
Uro = Wro + (1 Ap0) 2 qrds, (41

which describes the couplings between the probe and the island
with the adatom, which depends on the new Fano parameter
defined by

qr = (wApo) " P(tar/w) = qoexp(—kpR),  (42)

due to the interference between these additional conduction
channels. To obtain the differential conductance G, = %IU
for a given spin, we consider Eq. (38) and show that

2¢? 0 .
G, = —nl"w/da) —anF(w—efﬁ) Aipos(@,R)

h
(43)

is the spin-resolved conductance for the STM device.

Note that the spin effects on the system conductance lie
on the free density of states of the island in Eq. (6) and on
the scattering amplitude 7, () in Eq. (28) due to the adatom.
Thus, we need to express Eq. (39) in terms of the adatom GF
G4(w) by employing the EOM procedure. This method leads
to

Go(@,R) = Gy (@, R) +  Apog G2 (@) + (r Apo)'*qr
x GY(w,R) + (r App)' *qrGa¥ (w,R),  (44)

and displays that such GF is linked to Eq. (25) for the site R
of the island and simultaneously to

GY(w,R) = (mApo) Plgems — i A (RIG (@)  (45)

and gff‘p(a), R), where the former expression is obtained from
the time Fourier transformation of

G¥(r) = —,f;eu)Tr{gFM[wR(,(r),d;(om, (46)

which is also equal to g;“ 4(w,R). Thus, replacing Egs. (28),
(44), and

1 - (A" dd
——Im{G7¥ (@R} = (—=) {4-(RIRe{d;" ()}

— grvo Im{ G4 () }} 47
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into Eq. (39), we find that

Apos(@.R) = prvo + og {(AZ(R) — qry)
x Im{7, (0)} + 2A,(R)qroRe{ T, (w)}}
(48)

obeys Eq. (29) for the SR-LDOS in the case of an absent STM
probe, but with an effective Fano parameter

dRrRo = qFMo + 4R, (49)

which takes into account an intrinsic Fano interference (ggm, )
due to the adatom-island coupling represented by the first
term and an extrinsic one (qg) as a result of the STM
probe hybridized with both adatom and the metallic surface,
enclosed by the second part. We pointed out that for 7 < Tk,
the spin-resolved conductance in Eq. (43) becomes directly
proportional to the effective SR-LDOS evaluated at the energy
e¢. To show that, we use the Dirac delta distribution expressed
by the minus derivative of the Fermi function in Eq. (43), which
eliminates the integration over energy and gives

2¢? ~
G, = THFW/OEDOS(ed))‘ (50)
This result means that the effective SR-LDOS is a fairly
representative function for the spin-resolved conductance of
the system, which favors us to apply the zero-temperature
formalism of phase shifts discussed in Sec. III A by introducing
qRo

tan §,,, = AR (51

as the total Fano phase shift. By combining it with Eq. (34) for
the scattering amplitude 7, (w), it is possible to derive

Aipos(@.R) = ppmo[1 — Jg(kpe R)F (0, R)]  (52)
and

c08%[8, (®) — 84, ]

fg w,R)=1-—
@.R) c0s? 8,

(33)

as expressions that represent the effective SR-LDOS probed
by the STM. The latter contains two sources for Fano effect:
the first concerns the Fano interference between the traveling
electrons through the host conduction band that can “visit” the
adatom site and go back to it, and those that do not perform
such a “visit.” Additionally, the second process is composed
by the couplings of the probe with the island and the adatom.
It also has the scattering of the traveling electrons due to the
side-coupled adatom, which in certain conditions leads to the
Kondo effect. We also remark that the phase shift §, (w) given
by Eq. (34) is obtained in this work employing the atomic
approach.

From Eq. (52), we are able to determine the following
occupation number:

+00
N pos = / dw pipos(w,R = O)np(w). 54)

o]

As we shall see, this formula will guide us to better understand
the results of Sec. IV.
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IV. RESULTS

Here, we present the results obtained via the formulation
developed in the previous section. We employ a set of
parameters that define the Kondo regime: E; = —10.0A and
V = 12.0A,where A = 0.01 Dy (Dy = 1.0). We will basically
compare two regimes of gy value. The large gy limit we call
peak limit due to the formation of a Kondo peak in the LDOS.
The other regime, corresponding to small and intermediate
values of gy, we call dip limit since the LDOS presents a dip
around the Fermi level.

It is necessary to mention that the SR-LDOS formula
derived in the previous section is valid for zero temperature.
On the other hand, the numerical procedure of the atomic
approach is well established for T <« Tk but still finite 7.
So, we consider a very low temperature 7 = 0.001 A to allow
the combination of both procedures. To investigate the spatial
behaviors of the Fano factor and the LDOS, we define a
dimensionless parameter kry R = kr R to represent the STM
probe-adatom lateral distance in Fig. 1.

A. Intrinsic Fano parameter

Here, we look with some more detail at the spatial depen-
dence of the intrinsic Fano factor gpv,. Figure 2(a) shows
grme against kg R for P = 0.3, @ = 0.02Dg, and I"' = 0.1w.
Interestingly, this Fano factor reveals spin-polarized Friedel
oscillations. These oscillations exhibit enhanced amplitudes
for the spin-up channel and a phase shifted pattern in relation
to the spin-down component due to the spin-dependent Fermi
wave number [Eq. (31)]. This phase shift yields irregular
oscillations in the total Fano parameter grv = grvt + grmy
[Figs. 2(a) and 2(b)].

InFig.2(b), we can also observe by changing from I' = 10w
to 40w that the spin-polarized Fano parameters approach to
zero, exhibiting flattened oscillations as a function of kg R.
For large enough I', we have gpv, & 0. Since the present
atomic approach is valid only for constant Vi, which is
obtained for large I" (local coupling), we will restrict our
analysis to negligible gry, values. In particular, for a perfect
local coupling configuration, settled by the condition gy, = 0
in Eq. (30), we can conclude according to Eq. (49) that the
Fano parameter ¢, induced by the STM probe is the only one
that rules the Fano interference in the system. In Secs. IVB
and IV C, we discuss the possible interference limits for g,
in the local coupling regime, where the atomic approach is
applicable.

B. SR-LDOS in the peak limit (¢, = 100)

Figures 3(a)-3(c) show the SR-LDOS and total LDOS
for increasing polarization degree of the host. In the unpo-
larized case P = 0 (not shown), we have the well-known
twofold-degenerate Kondo peak as in the SET.> However,
for increasing P, this degeneracy is broken and the Kondo
peak splits into two peaks. While the corresponding spin-up
peak presents a slight shift for increasing P, the spin-down
one remains pinned around the host Fermi level. Additionally,
the widths of these peaks show opposite behaviors. While
the up-peak broadens, the down-peak shrinks as P enlarges.
In the insets we present with more detail the SR-LDOS around
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FIG. 2. (Color online) (a) Spin-polarized Fano factors ggy, for
I' =0.1and (b) the sum grM = 4FM+t + grm| forl' = 100, I = 200,
and I’ =40.0 in units of @ as a function of the dimensionless
parameter k R.

the Fermi level, where we can see more clearly the spin
splitting of the Kondo resonance.

Thus, it is valid to mention that our spin splitting resembles
the work of Qi et al’® for a spin current injected in a
nonmagnetic conductor with a Kondo adatom. In this work, it is
possible to note a tendency of a pinning for one spin component
of the Kondo peak. Kondo peak splitting was also observed in
a QD system hybridized to ferromagnetic reservoirs®’ and in
the presence of spin flip.*’

In the experimental point of view, the spin splitting of the
Kondo resonance has already been observed in systems of
QDs coupled to ferromagnetic reservoirs* and in a carbon
nanotube QD interacting with a magnetic particle.’® Observe
that for P = 0.2 and 0.5, it is not possible to resolve the spin
splitting of the Kondo peak in the total LDOS. Experimentally,
nonresolved Kondo peak splitting can also occur.*’ Although
the STM experiments are in general restricted to energies
around the host Fermi level, here we show the SR-LDOS for
a wider energy window in order to see the polarization effects
on the adatom level E,, as displayed in Fig. 3.

The analysis of the non-Zeeman splitting in the full LDOS
for different STM probe positions is presented in Fig. 4 for
P =0.5. We see that the LDOS profile becomes flatter for
large enough values of the dimensionless parameter k¢ R, thus
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FIG. 3. (Color online) Spin-resolved local density of states (SR-
LDOS) at R = 0, in arbitrary units (arb. units), as a function of the
energy o for increasing P value: (a) P = 0.2, (b) P = 0.5, and (c)
P = 0.8. In the insets, we show the SR-LDOS around the host Fermi
level, where we can see the Kondo peak splitting with the pinning of
the spin-down component. We also observe that as P increases, the
spin-down resonance shrinks.

revealing a crossover from the peak limit at R =0 to the
background value represented by the host free density of states
(Eq. (8)].

We end this section presenting Fig. 5, where the dependence
of the spin splitting of the Kondo peak A E as a function of the
host polarization P can be observed. Note that A E displays a
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FIG. 4. (Color online) Local density of states (LDOS), in arbitrary
units (arb. units), as a function of the energy w for different kr R
values. In the inset, we present the LDOS in detail.

nonlinear behavior as P increases. This nonlinearity was also
found by Qi et al..’

C. SR-LDOS in the dip limit (g9 < 1)

In contrast to the gop = 100 case previously analyzed in
the peak limit, here we discuss the go < 1 regime. This
corresponds to a direct STM probe and host surface tunneling
being dominant. In this situation, the system reduces to an
adatom side coupled to the FM island as represented in Fig. 1,
which is equivalent to the T-shaped QD device.” For small
Fano factors (go = 0.01), the LDOS exhibits antiresonances
(dips) instead of resonances, as we can see in Fig. 6(a).
This happens in such a way that the antiresonance in the up
SR-LDOS channel disappears for high enough polarization
as seen in the inset of Fig. 6(a). On the other hand, the
dip of the down component shrinks as P increases. The
width of this antiresonance lowers two orders of magnitude
when we change the polarization from P = 0.2 to 0.8. So,
we can conclude that the polarization induces a continuous
second-order insulator-metal transition in the system. As the
polarization grows from P =0 to 0.8, the up SR-LDOS

0.003 — —
st B =10.0A ]
vl V=12.0A ]

. T=0.001A ,

% 0.0015 — -

0.001 —

0.0005 —

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

FIG. 5. (Color online) Kondo peak splitting AE in units of Dy,
as a function of the host polarization P.
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FIG. 6. (Color online) Spin-resolved local density of states (SR-
LDOS) at R =0, in arbitrary units (arb. units), as a function of
the energy w. In the full curve, we show the local density of states
(LDOS). In the insets, we present the SR-LDOS and the LDOS in
the vicinity of the Fermi energy w ~ ¢ = 0. For P = 0.2, there is
a Fano-Kondo structure in the LDOS profile, but for P = 0.8 an
enhanced Kondo peak appears in the spin-down channel.

component becomes continuously flat, generating a finite
SR-LDOS in the vicinity of the Fermi energy w ~ ¢ = 0.
At the same time, the down SR-LDOS component shrinks,
closing the total LDOS gap, as indicated in the inset of Fig. 6(a)
for P =0.8.

The last cases in the dip limit we investigate correspond to
go =1, P =0.2,and P = 0.8 as presented in Fig. 6(b). For
the low polarization P = 0.2, the Fano interference is robust,
presenting the coexistence of a structure composed by dips and
peaks (Fano line shape). However, for the large polarization
P = 0.8, the Kondo peak in the adatom GF prevails in the
spin-down channel and suppresses the destructive interference.
This feature appears in the insets of Fig. 6(b).

The simulations presented resemble experimental results
found in ferromagnetic contacts as in the Calvo et al. work*’
[see their Fig. 1(c)] and adatoms systems discussed by Néel
et al’* [see their Fig. 1(b)]. In the former experiment,
depending on the electrodes composition coupled to the
contact, the energy profile of the conductance displays patterns
without resolved spin splitting. This behavior is related to the
cases of small and intermediate values of the Fano parameter,
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FIG. 7. (Color online) Analysis of the system phase shift structure
evaluated at the host Fermi level. Plots of cos?[8,(sr) — 84r, ] and
cos?§,,, as a function of the dimensionless parameter kpR for
both spin components. In the inset, we show the resonance and
antiresonance features at kp R >~ 15.0.

which were obtained with Fe and Co contacts, respectively.
For the second experiment, spin-polarized STM probes made
by Fe or W were employed on a Co adatom deposited on a
Cu(111) surface. In particular, in this case no resolved spin
splitting was verified, which corresponds to the limit of small
Fano factor. These setups can be reproduced in our simulations
considering intermediate polarizations.

D. Phase shifts and occupation numbers

In Sec. III B, we show that the SR-LDOS can be expressed
in terms of the phase shifts (@) and §,,, . Here, we explore
the quantities cos®§,,, and cos®[§,(w) — 8,,,] in order to
gain further insight about the spin splitting and Kondo peak
pinning found in the SR-LDOS. In Fig. 7, we present these
two functions against kr R for both spin components, where
the numerical parameters are indicated in the plots. The main
distinction between the up and down curves can be observed in
the range 0 < kr R < 5.0 where cos?[8,(eF) — 8, 1~ 1 for
spin down, while it stays below 1 for spin up. In particular, for
krR — 0, we find cos(8,,, ) — 0, which means that §,,, —
/2. Consequently, cos?[§,(sF) — Sqro] — sin?[8,(er)]. On
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FIG. 8. (Color online) Occupation number n{,s of Eq. (54) as
a function of the Fano parameter g, and with different values for the
spin polarization P of the host. In the inset, we present n, , against
P.

the other hand, according to Friedel sum rule [Eq. (21)],
we have 8, (er) = mny . This implies that ny | — 0.5 while
ng 4 stays below 0.5. The fact that ny | remains close to 0.5
results in the pinning of the spin-down component of the
Kondo resonance. For increasing kr R, the curves obtained
from Eq. (51) display a series of peaks and dips due to the
interplay between the exponential decay in Eq. (12) and the
Friedel oscillations.

To complement the analysis on the emergence of the Kondo
peak pinning, we present Fig. 8. In such a figure, we plot the
occupation number n{;, of Eq. (54) as a function of the
Fano factor g for differing spin polarizations P. This gives
also the same tendency of ng 4 and ng | since both nj,g
and ny , should preserve some proportionality. In the large go

limit, nI{DOS approaches to 0.45, while nEDOS moves to lower
values as P increases. This corroborates the pinning of the
spin-down Kondo resonance. Note that the Friedel sum rule
given by Eq. (21) ensures the pinning of the Kondo peak in
the down channel and the displacement of the up peak via
the inequality ng 4 < ng ~ 0.5. In the inset of Fig. 8, the
plots of ny 4 and ny |, against P confirm this inequality. Such
occupations indicate that there is a net magnetic moment at
the adatom partially screened by the conduction electrons,
where the lack of spin-down conduction electrons is not able
to blind the spin-up component of the impurity, thus avoiding
a formation of a defined Kondo peak in that channel. On
the other hand, the excess of spin-up conduction electrons
yields to a Kondo peak in the down component of the adatom
DOS. We can conclude that there is no abrupt breakdown of
the Kondo effect, but a crossover from the ordinary Kondo
effect to a situation where the Kondo effect is gradually
suppressed.

V. ANALYSIS OF SOME EXPERIMENTAL RESULTS

In this section, we successfully apply the present developed
formulation to reproduce recent experimental findings on a
single Kondo adatom coupled to a magnetic cluster. To our
best knowledge, the first experimental work that explores
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Kondo adatom on a ferromagnetic host was recently done
by Kawahara et al.,*> which used an unpolarized STM probe
on top of a Fe island with a Co adatom. They observed that,
depending on the adsorption site of the Co atom, a spin splitting
of a Fano-Kondo dip is induced by the spin polarization of the
island, and can be explained by a double Fano antiresonance
in a single-particle picture.

As pointed out in Ref. 49, there are two competing
mechanisms that can result or not in the Kondo effect. The
first one is the antiferromagnetic exchange interaction between
the Co adatom and the itinerant sp island electrons. The
second one is the exchange interaction due to the direct d — d
ferromagnetic interaction of the Co adatom and the Fe atoms
of the magnetic substrate. Our formulation only can be applied
to this system if the antiferromagnetic interaction dominates
over the direct ferromagnetic correlation. These competing
processes appear in Ref. 49 as an assumption, but further
experimental and theoretical investigations are necessary to
better understand the dominant mechanism.

There are some related experimental results, supported
by first-principles calculations of Calvo et al.,*’ in related
systems. They found the existence of a Kondo peak in
ferromagnetic atomic contacts hybridized with electrodes
(both built by Fe, Ni, and Co), differently from those
found in the bulk limit. In nanoscale, the electrons at the
surfaces of these junctions experience interactions where
the antiferromagnetic coupling overcomes the ferromagnetic
correlations. In such setups, the nanocontacts play the role of
the Co adatom used in the work of Kawahara er al.. Thus,
our model in its present form does not support the opposite
case characterized by strong ferromagnetic correlations, which
are usually modeled by a Heisenberg-type interaction. For an
enhanced antiferromagnetic coupling between the sp electrons
and the adatom, the picture of a spin-polarized electrons gas
as discussed by Calvo et al.*’ can be employed to describe
a ferromagnetic metallic sample with a Kondo impurity.
Additionally, we would like to remark that Kondo adatoms
and some QD systems indeed have a spin S > 1/2, which
can be detectable by a magnetic anisotropy signature.>>3> In
these cases, a multiorbital Anderson Hamiltonian could offer
a more detailed modeling?>>! and improve the accuracy of this
work.

However, we changed the localized adatom level E; in
all the relevant parameter ranges of the SIAM in order to
better reproduce the line shape of the work of Kawahara et al.
The optimized values are E; = —3.0A and go = 0.01, which
characterize the intermediate valence regime of the system.

It is clear from Fig. 9 that the resolved LDOS double-dip
structure is originated from the splitting of the up- and down-
spin components. To show the evolution of the double structure
at w >~ ep =0 from the Kondo peak to the intermediate
valence regime, we present in the inset (I) of Fig. 9 the
splitting of the Fano-Kondo dip for E; = —10A, whereas
in the inset (II) we present the correspondent case in the
same energy range, but for the intermediate valence situation,
with E; = —3A. In this last regime, the spin-down channel is
also pinned at w >~ ¢r = 0, and the spin up is displaced from
it. Note that, for this set of parameters, the Fano-Kondo dip
splitting is resolved in the LDOS. The inset (I) displays more
precisely the spin-polarized antiresonances analogous to those
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FIG. 9. (Color online) Spin-resolved local density of states (SR-
LDOS) at R = 0, in arbitrary units (arb. units), as a function of the
energy w. In the full curve, we represent the total density of states
(LDOS). (a) In the inset (I), we present the splitting of the Fano-Kondo
dip in the Kondo peak region for £, = —10A, whereas in the inset
(II) we perform the same analysis for the intermediate valence case,
using E; = —3A. In the inset (III), we present the suppression of the
double Fano-Kondo dip structure as a function of kr R.

observed in Fig. 1(b) of Ref. 49. In Fig. 9(b), we present the
SR-LDOS as a function of the energy w for different lateral
STM-probe distances. As krR increases, the Fano-Kondo
dips disappear gradually, and for krR =~ 10.0, we recover
the uncorrelated conduction band [see the inset (IIT)]. Similar
behavior is observed in Fig. 3 of Ref. 49.

VI. CONCLUSIONS

We studied the spin-resolved local density of states (SR-
LDOS) of a system composed of a Kondo adatom on a
spin-polarized two-dimensional electron gas in the presence
of an unpolarized STM probe. We derived the SR-LDOS
expression in both the presence and absence of the STM
probe. Our expression to the SR-LDOS in terms of phase
shifts is general and independent of the method employed to
calculate the local adatom GF. To determine this GF, we used
the atomic approach in the limit of infinite U. The coupling
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parameter between adatom and host is assumed constant (local
coupling).

We were able to study the SR-LDOS in all the interference
regimes, varying the Fano factor g,. The main effect of the
polarization was the tendency of one spin peak (go = 100) or
dip (go = 0.01, go = 1) in the SR-LDOS to remain pinned
around the host Fermi level as the polarization P increases.
In contrast, the other spin peak or dip is shifted and loses
amplitude as P increases. This contrasts to the usual behavior
in the presence of a magnetic field, where the Kondo resonance
is symmetrically spin split and destroyed as the magnetic field
increases, while here it is enhanced in one channel (down) and
destroyed in the other (up).

Our simulations are in close agreement with recent experi-
mental results on adatom coupled to a ferromagnetic island.*’
The present system is a potential candidate to promote the
Kondo peak splitting without application of huge magnetic
fields necessary for adatom systems characterized by a large
Tk . In particular, for the Fano factor ¢, = 0.01, we observed
a continuous second-order insulator-metal transition driven
by the polarization as presented in Fig. 6(a). Finally, our

model was able to describe qualitatively several experimental
results,3443:47:49.50
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APPENDIX A: THE ATOMIC GF FOR
THE KONDO ADATOM

In this Appendix, we present expressions employed in the
spin-dependent GF for the Kondo adatom considering the
SIAM in the atomic version given by Eq. (13) of Sec. II B.
To obtain the atomic GF, we use Zubarev’s notation®

Gulp(@) = "3 (P 78
i’
|<J/| Xd,aa |.]) |2
X

—_—, Al
a)—(Ej—Ejr) ( )

where 8 = 1/kgT with kg as the Boltzmann constant, T is the
system temperature, and €2 is the thermodynamical potential.
The eigenvalues E; and eigenvectors |j) correspond to the
complete solution of the STAM Hamiltonian. The final result
is the following:

8
Mo
o) = a2

— Uio
where the poles and the residues are
1o = E3y — E1g = Egy — Eso = E7o — E46 = (8ake — 85),
e = Esq — E1g = Eg; — E3y = E7g — Ezg = 3(€4k0 + 8),
Uzs = Eizg — E100 = §(€ako — 8,,),
Use = E1ze — Eog = 3(earo +8,),

Use = E90 - E2(7 =&ko — %(8:7 - 80)7
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Uo = ElOa - EZU =& + %(8[7 + 80)7

Ut = E9U - E40' =&ko — %(8:7 + 80)7

1
Uge = ElO(T - E40 =&k + 5(3:7 - 86) (A3)
and
i 3 3
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2 2
i 3 3
Myy = Slzg‘ 1+67§ﬂ(3dko+80) + _efiﬂ(sdko*lso) + _e*ﬁsdko ,
2 2
1 / 1
M3y = ng [efzﬂ(€d+38ka+5(,) + 6*55(€d+281{g)]’
1 / 1
Myy = s%g [e*iﬂ(édJrSsk,rﬁu) + e*zﬂ(€d+2£ka)]’ "
1 i | /
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1 1 1 /
Moy = Esfasga [e_iﬂ(gdko_ao) + e_fﬂ(ezl+35k0+5ﬂ)]’
1 1 1 /
My = EC%U C%J [6*55(8111«71‘80) + e*fﬂ(ézﬂr%w*ﬁg)]’
2 2 y
css Blegio +30) Bleg+3ekg +5)
16”2 - -
mye = 22 [em T e T,
respectively, which are defined in terms of
€a = Eq—€p, € = €0 — EF,
s15 = sin b5, Clg =COSGs, S26 = sin A,, (AS)

Cry = COS Ay,
8o

€4 + Eko = Edkos
[(exe — €a)* + 4V, 8 =[(e1o — €a)* +8V?]"/2,

with ¢ being the Fermi energy and

2V 2V2V

tanggy = —————, tanA, = ———M—.
7 ege —€a+ 8y 7 et —€a+ 8,

(A6)

APPENDIX B: FANO FACTOR FOR THE FM HOST

In order to determine the Fano factor given by Eq. (30)
in Sec. Il A due to the adatom-host coupling, we extend
the procedure proposed for unpolarized bulk electrons® to
conduction states of a FM surface. To that end, we perform the
calculation assuming the wide-band limit conditions w < D,
and I' <« D, in the advanced GF
1

2

Nemo <
3

FZ eik.R

G,(w,R) = , (BD

M +el —ép—in

with n — 0%, which allows us, in combination with Eq. (32),
to establish the following equalities:
Re{G, (0, R)} = Re{g,(w,R)} (B2)
and
Im{G,(0,R)} = —Im{g, (w,R)} = 1poA;(R).  (B3)

Considering

1 2
Jo(kR) = E/ explik R cos 6, ]1d 6 (B4)
0
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as the angular representation for the zeroth-order Bessel
function in Eq. (32), and according to Egs. (30) and (B2),
the Fano factor becomes
1 ~
dFMo = _Re{Ga(va)}~ (BS)
7T Po

We can calculate this parameter rewriting the previous equa-
tion as

qrMe = LGo(w,R) —iAs(R), (B6)
700
noting that the amplitude A,(R) is already known from
Eq. (32).
Thus, the quantity %még(a),R) must be found to provide
the relationship for the Fano parameter, which can be done
using the decomposition

2
1. 1 PEMo o =
—Go@.R) = "™ 3" Gy, R)

(B7)
TPo 2 po S

written in terms of the integral

~ - F2
o=t [l )}
o ko
1

X ——, (B3)
W — &g — 1IN
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which depends on the Hankel functions Hél)(z) = Jo(2) +
iYo(z) and Héz)(z) = Jo(z) — iYo(z). We conclude that the task
here reduces to evaluate the integrals G (w, R) and G(w, R).

The first integral is calculated by choosing a counterclock-
wise contour over a semicircle in the upper half of the complex
plane that considers the simple pole &;, = +iI". Following the
residue theorem, we have

Giw.R) = Hy" | kpo (1415~ )R

a

. B9
w—il" (BY)
For the evaluation of the second integral, we used a clockwise

contour over a semicircle in the lower half plane with poles
placed at &4, = w — in and &, = —iI", which leads to

D, MN4+w w4+il

r
x HY [km, (1 -~ iD—> R]

As the complex-conjugate property H(gl)(z*) = [Héz)(z)]* is
valid we are able to derive Eq. (30) from Eq. (B6) considering
Egs. (B7), (B9), and (B10) in the wide-band limit characterized
by the conditions w <« D, and I' < D, .

. r? r
Go(w.R) = 2i H [kpa <1 + 1>R] +

(B10)
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