
PHYSICAL REVIEW B 85, 165101 (2012)

Kirzhnits gradient expansion in two dimensions
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We derive the semiclassical Kirzhnits expansion of the D-dimensional one-particle density matrix up to the
second order in h̄. We focus on the two-dimensional (2D) case and show that all the gradient corrections both to
the 2D one-particle density and to the kinetic energy vanish. However, the 2D Kirzhnits expansion satisfies the
consistency criterion of Gross and Proetto [J. Chem. Theory Comput. 5, 844 (2009)] for the functional derivatives
of the density and the noninteracting kinetic energy with respect to the Kohn-Sham potential. Finally, we show
that the gradient correction to the exchange energy diverges in agreement with the previous linear-response study.
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I. INTRODUCTION

Gradient expansions provide a natural path to correct
the local-density approximation (LDA) for slowly-varying
densities as already suggested by Hohenberg and Kohn in
their seminal paper on density-functional theory1 (DFT).
The second-order gradient expansion for the kinetic energy
was shown to be very useful, but on the other hand, sys-
tematic gradient expansions for the exchange and particu-
larly for the correlation energies faced problems that were
later corrected—at least from the practical viewpoint—by
generalized-gradient approximations2 (GGAs). Nevertheless,
gradient expansions pose still open questions, especially in
reduced dimensions such as the two-dimensional electron gas3

(2DEG). The interest in the 2DEG arises from a multitude
of applications in, e.g., quantum Hall and semiconductor
physics.

Semiclassical gradient expansions can be regarded as
alternatives to the standard approaches based on Taylor expan-
sions and linear-response formalism. Although semiclassical
methods do not give access to the correlation energy, they can
be used to derive simple density functionals for the Kohn-Sham
(KS) kinetic energy Ts and the exchange energy density
εx (Ref. 4). Here we focus on the semiclassical Kirzhnits
commutator formalism.5 It has been previously used to derive
the lowest-order (second order in h̄) gradient correction terms
to the one-particle density matrix γ (r,r′) and to εx in three
dimensions (3D),6 as well as for Ts in D dimensions.7

Higher-order corrections in 3D have been analyzed in
Ref. 8.

In this paper we use the Kirzhnits method to derive the
lowest-order gradient corrections to the one-particle density
matrix in D dimensions. Then we focus on the 2D case
and show that all the corrections to the one-particle density
n(r) vanish, and, in agreement with Refs. 7 and 9–11, they
vanish also for Ts . Due to the resulting simple expressions
for n(r) and Ts , the consistency criterion of Gross and
Proetto12 that couples the functional derivatives of Ts and
n(r) is satisfied. Finally, we show that the gradient corrections
to εx diverge in the 2D Kirtzhnits expansion, which is in
agreement with the linear-response results of Gumbs and
Geldart.13

II. KIRZHNITS EXPANSION IN D DIMENSIONS

The exchange energy Ex and the KS kinetic energy Ts can
be expressed as4,14

Ex = −1

4

∫
dDr dDr ′ |γ (r,r′)|2

|r − r′| (1)

Ts = − h̄2

2m

∫
dDr

{∇2
r γ (r,r′)

}
r′=r, (2)

where the one-particle density matrix can be written in terms
of the Fermi energy εF as

γ (r,r′) =
∑

j :εj �εF

ϕ∗
j (r)ϕj (r′)

=
∑

j

�(εF − εj )ϕ∗
j (r)ϕj (r′)

= 〈r|�(εF − t̂ − v̂S)|r′〉. (3)

Here �i are the solutions of the single-particle KS equation, t̂ is
the kinetic energy operator, v̂s is the KS potential, and � is the
Heaviside step function. Now we define the local Fermi energy
ÊF (r) ≡ εF − vs(r) and use the plane-wave decomposition as

γ (r,r′) =
∑
α=±

∫
dDk〈r|�(ÊF − t̂)|kα〉〈kα|r′〉, (4)

where |kα〉 (with α as the spin index) are eigenfunctions of
the momentum operator p̂.

We introduce the abbreviated notations: �(ÊF − t̂) =
f (â + b̂), f = �, â = −t̂ = −p̂2/2, and b̂ = ÊF = k̂2

F /2.
Now we can use the inverse Laplace transform, the Fourier-
Mellin integral, to show that the operator �(ÊF − t̂) acts on
eigenfunctions |k〉

as

f (â + b̂)|a〉 = L−1{F (β)}|a〉

= 1

2πi

∫ c+i∞

c−i∞
dβF (β)eβ(â+b̂)|a〉, (5)

where c = Re(β) > 0 is arbitrary, but chosen such that the
contour path of the integration is in the region of convergence
of F (β). The commutation problem of operators â and b̂ can
be avoided by introducing a new operator K̂(β) (see Refs. 4
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and 8) such that

eβ(â+b̂) = eβb̂K̂(β)eβâ. (6)

Thus, we obtain for Eq. (5) an expression

f (â + b̂)|a〉 = 1

2πi

∫ c+i∞

c−i∞
dβF (β)eβ(a+b̂)K̂(β)|a〉, (7)

where the operator â has now been replaced with eigenvalue
a in the exponential function, so that it commutes with the
operator b̂.

The expression for the operator K̂(β) is obtained by
expanding it in a power series with respect to β,

K̂(β) =
∞∑

n=0

βnÔn. (8)

Differentiating both sides of Eq. (6) with respect to β, and
expanding all exponential functions in a Taylor series, leads to
the recurrence relation4,8

Ô0 = 1, Ô1 = 0, (9)

Ôn+1 = 1

n + 1

⎛
⎝[â,Ôn] +

n∑
j=1

Ĝj Ôn−j

⎞
⎠ (10)

Ĝj = (−1)j

j ! [b̂,[b̂,[...[b̂︸ ︷︷ ︸
j times

,â]...]. (11)

Inserting Eq. (8) in Eq. (5) yields

f (â + b̂)|a〉 =
∞∑

n=0

[
1

2πi

∫ c+i∞

c−i∞
dβF (β)βneβ(a+b̂)

]
Ôn|a〉

=
∞∑

n=0

f (n)(a + b̂)Ôn|a〉, (12)

where f (n) is the nth derivative of the function f . The Kirzhnits
expansion in Eq. (12) leads to the following expression of the
density matrix,

γ (r,r′) =
∑
α=±

∫
dDk �

(
EF − k2

2

)
〈r|kα〉〈kα|r′〉

︸ ︷︷ ︸
γ (0)

+
∞∑

n=2

∑
α=±

∫
dDk δ(n−1)

[
EF − k2

2

]

×〈r|Ôn|kα〉〈kα|r′〉, (13)

where δ(n) is the nth derivative of the delta function. The first
term of Eq. (13), γ (0), corresponds to the zeroth order solution
of the one-particle density matrix, and it can be written as

γ (0)(r,r′) =
∑
α=±

∫
dDk �

(
EF − h̄2k2

2m

)
〈r|kα〉〈kα|r′〉

= 2δσ,σ ′

(2π )D

∫ kF

0
dk kD−1I (ky), (14)

where I (ky) is the (D − 1)-dimensional surface integral given
by

I (ky) ≡
∫

d�D−1e
iky cos θ

= (2π )
D
2 (ky)1− D

2 JD
2 −1(ky), D � 2. (15)

Here θ is the angle between vectors y = r − r′ and k, and
Jn(z) is the Bessel function of the first kind in order n. Thus
we find an expression

γ (0)(r,y) = 2δσ,σ ′

(2π )
D
2

kD
F z−D/2JD

2
(z), (16)

where we use a definition z = z(r,y) = kF (r)|y|. This term
generates the exact exchange energy for the homogeneous
electron gas, which can be used as the LDA in an inhomoge-
neous system.

Higher-order terms of the Kirzhnits expansion γ (n) can
be determined by calculating higher derivatives of the delta
function and multiple commutators of ÊF and t̂ that lead
to multiple derivatives of kF . The intermediate steps in the
calculation of the second-order (∇2) inhomogeneity correction
γ (2)(r,r′) are given in the Appendix. Combining our results
leads to the semiclassical expansion of the density matrix of
the form

γ (r,r′) = γ (0)(r,r′) + γ (2)(r,r′)

= γ (0)(r,z) + C1(r,z)
(∇rk

2
F

) · y
y

+C2(r,z) ∇2
r k2

F + C3(r,z)
(∇rk

2
F

)2

+C4(r,z)

[(∇rk
2
F

) · y
y

]2

+C5(r,z) ∇r

[(∇rk
2
F

) · y
y

]
· y
y

, (17)

where Ci are given by

C1(r,z) = 2δσ,σ ′kF

(2π )D
∂v(r,z)

∂z

= −δσ,σ ′kD−3
F z2

2(2π z)D/2
JD

2 −1(z);

C2(r,z) = δσ,σ ′

(2π )D

(
v(r,z) + 4

3

k2
F

z

∂g

∂z

)

= δσ,σ ′kD−4
F z

12(2π z)D/2

{
(D − 2)JD

2 −1(z) − z JD
2

(z)
}
;

C3(r,z) = δσ,σ ′

(2π )D

(
2

3
g(r,z) + k2

F

z

∂h(r,z)

∂z

)

= δσ,σ ′kD−6
F

48(2π z)D/2
{(4 − D)z2JD

2
(z)

− [(4 − D)(D − 2)z + z3]JD
2 −1(z)};

C4(r,z) = k2
F δσ,σ ′

(2π )D

(
∂2h(r,z)

∂z2
− 1

z

∂h(r,z)

∂z

)
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= δσ,σ ′ kD−6
F z3

16(2π z)D/2

{
(D − 2)JD

2 −1(z) − z JD
2

(z)
}
;

C5(r,z) = 4δσ,σ ′k2
F

3(2π )D

(
∂2g(r,z)

∂z2
− 1

z

∂g(r,z)

∂z

)

= δσ,σ ′kD−4
F z3

6(2π z)D/2
JD

2 −1(z).

The D-dimensional one-particle density n(r) = γ (r,r)
becomes

n(r) = αDkD
F

{
1 + D(D − 2)

24k4
F

∇2k2
F

− D(D − 2)(4 − D)

96k6
F

(∇̄k2
F

)2
}
, (18)

where αD = [D 2D−2πD/2�(D/2)]−1. Using the density scal-
ing relations,15 we can invert the expression to find the local
Fermi momentum as

kF (r) = α
−1/D

D n1/D + D − 2

24D
α

1/D

D

(∇ n)2

n2+1/D

+ 2 − D

12D
α

1/D

D

∇2n

n1+1/D
. (19)

Both of the previous equations are consistent with earlier
results.7,10,11 Now it is straightforward to proceed with the
calculation of the one-particle density matrix and the exchange
energy density in 2D.

III. TWO-DIMENSIONAL CASE

A. One-particle density matrix and the kinetic energy

In the 2D case Eq. (15) simplifies to

I (ky) = 2πJ0(ky). (20)

This leads to the following expression for the 2D one-particle
density matrix:

γ (r,r′) = γ (0) + γ (2)(r,r′)

= δσ,σ ′

π

{
k2
F

J1(z)

z
− 1

4
zJ0(z)

1

kF

(∇rk
2
F

) · y
y

− 1

24
zJ1(z)

∇2
r k2

F

k2
F

+ 1

12
z2J0(z)

1

k2
F

∇r

((∇rk
2
F

) · y
y

)
· y
y

+ 1

96
z2J2(z)

(∇rk
2
F

)2

k4
F

− 1

32
z3J1(z)

1

k4
F

((∇rk
2
F

) · y
y

)2}
, (21)

This expression is the central result of this paper, and in the
following it is used for further analysis.

We first notice that the one-particle density has a simple
form

n(r) = 1

2π
k2
F (r), (22)

i.e., all the gradient corrections vanish in agreement with
Refs. 7, 9–11, and 16. Thus, the situation is very different from
the 3D case with a nonzero gradient expression.6 Secondly, we
calculate the KS kinetic energy density by inserting Eqs. (21)
and (22) into Eq. (2) and find17

ts = − h̄2

2m

{∇2
r γS(r,r′)

}
r′=r

= h̄2π

2m
n2(r) − 1

12m
∇2n(r), (23)

so that the kinetic energy becomes

Ts =
∫

dr ts(r) = h̄2π

2m

∫
drn2(r). (24)

Thus we find that the gradient correction (von Weizsäcker
term) to Ts is zero, in agreement with previous Kirzhnits
expansion for the D-dimensional kinetic energy,7 as well
as with results obtained using alternative methods.9–11,16,18

However, the gradient term exists for ts . We also point out
that very recently the gradient corrections for Ts have been
considered at finite temperature.19

In their recent work, Proetto and Gross12 have derived a
rigorous condition to test the consistency of approximations
made for the density and the KS kinetic energy. The condition
is given by

δTs[vs]

δvs(r)
= −

∫
dr′vs(r′)

δn[vs](r′)
δvs(r)

, (25)

where vs is the KS potential. We note that the condition follows
from the Euler equation minimizing the KS energy, i.e.,

δTs

δn(r′)
= −vs(r′) + μ, (26)

where μ is the chemical potential. Multiplying both sides
with δn(r′)/δvs(r) and integrating over r′ directly yields
Eq. (25). The condition means that δTs[n]/δn(r′) = εF − vs

must be also valid. Using Eqs. (22) and (23), and kF =√
2m(εF − vs)/h̄2, we find

δT TF[n]

δn(r′)
= h̄2

m
π n = h̄2

2m
k2
F = εF − vs. (27)

Thus, Eq. (25) is fulfilled for the 2D (and also 3D) results of
the semiclassical Kirzhnits expansion.

B. Exchange energy

Knowledge of the gradient corrections to the one-particle
density matrix in Eq. (21) immediately motivates us to search
for an expression for the exchange energy defined in Eq. (1).
We obtain the second-order expansion of the exchange energy
density in h̄ in terms of the gradients of kF :

ex(r) = −1

4

∫
d2r′ |γ (r,r′)|2

|r − r′|
= − 1

2π
k4
F

∫ ∞

0
dyA1(z)
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− 1

24π
∇2k2

F

∫ ∞

0
dyA2(z)

− 1

192π

(∇̄k2
F

)2

k2
F

∫ ∞

0
dyA3(z), (28)

where

A1(z) = J1(z)2/z2,

A2(z) = zJ0(z)J1(z) − J1(z)2,

A3(z) = 3z2J0(z)2 − 2zJ0(z)J1(z) + (4 − 3z2)J1(z)2

with z = kF y. Using Green’s first theorem in the integration
and then the substitution y → z/kF (see Ref. 6 for details),
the expression simplifies to

ex(r) = − 2

3π2
k3
F

− 1

192π

(∇k2
F )2

k3
F

∫ ∞

0
dz H (z), (29)

where

H (z) ≡ 6z J0(z)J1(z) − z2J0(z)2 + (z2 − 4)J1(z)2. (30)

Using a regularization of divergent Coulomb integrals leads to

lim
α→0

∫ ∞

0
dze−αzH (z) = ∞, (31)

which is verified by using Mathematica. In other words, the
exchange energy density with the standard regularization is
divergent in the 2D Kirzhnits expansion. Our result agrees with
the finding of Gumbs and Geldart,13 who used perturbation
theory and linear-response formalism to derive the second-
order gradient terms for both the kinetic and exchange energies
in D dimensions. They arrived at the same result by using the
Wigner-Kirkwood expansion.20 Hence, as confirmed in this
work from the semiclassical point of view, the divergence of
the systematic gradient expansion for the exchange energy
seems to be an inevitable mathematical fact. However, to the
best of our knowledge, the underlying physical reason that
makes the 2D situation especially divergent, in contrast with
the 1D and 3D cases, remains unknown. We hope that the
present analysis encourages further examinations from that
viewpoint.

The divergence of the exchange energy in 2D can be
considered unfortunate in view of functional developments in
2D, although first GGAs in 2D have already been obtained,21

and several other 2D functionals have been derived, for
example, in the framework of meta GGAs.22 A natural next
step, as already discussed in Ref. 13, would be considering
expansions in quasi-2DEG by introducing a finite width of
the system. This would resemble the experimental situation
in low-dimensional nanostructures such as in semiconductor
quantum dots.

IV. SUMMARY

In summary, we have derived the second-order gradient
corrections to the one-particle density matrix in the semiclas-
sical Kirzhnits expansion in D dimensions. In two dimensions
the corrections vanish in the diagonal of the density matrix,
i.e., in the one-particle density. Similar vanishing occurs in the

noninteracting kinetic energy and leads to the fulfillment of
the consistency criterion of Ref. 12. Finally, we have shown
that the exchange energy of the two-dimensional Kirzhnits
expansion diverges in agreement with the linear-response
theory. We hope that the present work motivates further
attempts in the systematic derivation of gradient corrections in
the quasi-two-dimensional electron gas.
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APPENDIX: INTERMEDIATE STEPS IN THE
CALCULATION OF THE SECOND-ORDER GRADIENT

CORRECTION TO THE D-DIMENSIONAL DENSITY
MATRIX

The second-order gradient correction to the density matrix
corresponds to the sum with n = 2,3,4 in the second term of
Eq. (13). We may thus write γ (2)(r,r′) = B2 + B3 + B4, where

B2(r,y) = δσ,σ ′

(2π )D
[∇2

r k2
F v(r,z) + 2

(∇rk
2
F

) · ∇yv(r,z)
]

= δσ,σ ′

(2π )D

[
∇2

r k2
F v(r,z) + 2kF

∂v

∂z

(∇rk
2
F

) · y
y

]

= −kD−4
F

4(2π )
D
2 z

D−2
2

{
2kF zJD

2 −1(z)
(∇rk

2
F

) · y
y

+ [
zJD

2
(z) − (D − 2)JD

2 −1(z)
]∇2

r k2
F

}
, (A1)

B3(r,y) = 2δσ,σ ′

3(2π )D

{
2∇2

r k2
F

k2
F

z

∂g

∂z
+ (∇rk

2
F

)2
g(r,z)

+ 2k2
F ∇r

[(∇rk
2
F

) · y
y

]
· y
y

(
∂2g

∂z2
− 1

z

∂g

∂z

)}

= −kD−6
F

12(2π )
D
2 z

D−2
2

{[
2(D − 2)k2

F JD
2 −1(z)

− 2k2
F zJD

2
(z)

]∇2
r k2

F

− 2k2
F z2JD

2 −1(z)∇r

[(∇rk
2
F

) · y
y

]
· y
y

+ [((4 − D)(D − 2) + z2)JD
2 −1(z)

− (4 − D)zJD
2

(z)
](∇rk

2
F

)2
}
, (A2)

B4(r,y) = δσ,σ ′

(2π )D

{(∇rk
2
F

)2 k2
F

z

∂h

∂z

+ k2
F

[(∇rk
2
F

) · y
y

]2 (
∂2h

∂z2
− 1

z

∂h

∂z

)}

= kD−6
F

16(2π )
D
2 z

D−2
2

{[
(D − 2)z2JD

2 −1(z)

165101-4
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− z3JD
2

(z)
] [(∇rk

2
F

) · y
y

]2

+
[

((4 − D)(D − 2) + z2)JD
2 −1(z)

− (4 − D)zJD
2

(z)

](∇rk
2
F

)2
}
, (A3)

with expressions

v(r,z) =
∫

dDk δ′
[
EF − 1

2
k2

]
eik·y

= kD−4
F

4
[(d − 2)I (z) + zI ′(z)]

= (2π )
D
2 kD−4

F

4z
D−2

2

{
(D − 2)JD

2 −1(z) − zJD
2

(z)
}
, (A4)

g(r,z) =
∫

dDk δ′′
[
EF − 1

2
k2

]
eik·y

= kD−6
F

8
{[D2 − 6D + 8]I (z) + (2D − 5)zI ′(z)

+ z2I ′′(z)}

= (2π )
D
2 kD−6

F

8z
D−2

2

{(4 − D)zJD
2

(z)

− [(4 − D)(D − 2) + z2]JD
2 −1(z)}, (A5)

h(r,z) =
∫

dDk δ′′′
[
EF − 1

2
k2

]
eik·y

= kD−8
F

16
{[D3 − 12D2 + 44D − 48]I (z)

+ 3(D2 − 7D + 11)zI ′(z) + 3(D − 3)z2I ′′(z)

+ z3I (3)(z)}

= (2π )
D
2 kD−8

F

16z
D−2

2

{
(4 − D)[(6 − D)(D − 2)

+ 2z2]JD
2 −1(z)

− z[(6 − D)(4 − D) − z2]JD
2

(z)
}
. (A6)
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