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Imaging spin-inelastic Friedel oscillations emerging from magnetic impurities
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We consider inelastic scattering of localized magnetic moments coupled with the electrons on the surface.
We argue that spin-inelastic transitions of the magnetic impurities generate oscillations at a momentum k,
corresponding to the inelastic mode, in the second derivative of the current with respect to voltage d2I/dV 2.
These oscillations are similar in nature to Friedel oscillations. Inelastic Friedel oscillations, which were previously
proposed for a spin-unpolarized setup, are here extended for spin-polarized systems. We propose to use scanning
tunneling microscopy to measure spin-inelastic scattering generated at the impurity spin by imaging the d2I/dV 2

oscillations on the metal surface.
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Measurements of inelastic transitions open up a route to
investigate the excitation spectrum of physical systems. There
has been a growing activity in elucidating inelastic scattering
processes in quantum systems using various experimental
techniques. An incomplete list includes inelastic neutron1,2 and
x-ray3,4 scattering, transport through break junctions,5,6 and
scanning tunneling microscopy (STM) with a spin-polarized
(SP-STM)7,8 or non-spin-polarized tip.9–15

Surface imaging of scattering states can be performed, e.g.,
by using STM to probe the spatial spectral density variations
at a given energy. It is well-known that Friedel oscillations
emerge around defects adsorbed onto a surface caused by
elastic scattering processes.16,17 Less known is the prediction
made by us earlier that points to the existence of inelastic
Friedel oscillations emerging from vibrating impurities.18

These oscillations were recently demonstrated experimentally
for dimers of meta-dichlorobenzene.19 The mechanism for
inelastic Friedel oscillations is essentially the same as for
conventional oscillations and comes from interference of
incoming and outgoing waves that have an energy mismatch
given by energy transferred to/from local vibrational modes.

In this Rapid Communication, we propose a spin-polarized
extension of inelastic Friedel oscillations that arise from
spin-inelastic transitions. We also propose to use STM to
image these oscillations. A local magnetic moment interacting
with surface electrons generates a local spin polarization in
the surface. The spin-inelastic transitions provide another
modification to the electronic and magnetic structures of the
surface states. This local modification experimentally can be
stimulated by adding or removing an energy quantum that
corresponds to the inelastic transition energy. Such an energy
change causes a change in the electronic structure of the type
δN (r,ω) = ∑

αβ Qαβ(r,ω)θ (ω − �βα), for low temperatures.
Here, �βα is the transition energy, whereas Qαβ(r,ω) is a
spatial distribution function which depends on the involved
states |α〉, |β〉.

In order to enhance the signature of spin-inelastic scattering
effects and image spin-inelastic Friedel oscillations, we pro-
pose to use quantum corrals constructed out of magnetic atoms,
or molecules. Placing the STM tip at the center of quantum
corrals will allow us to amplify the signal. As the magnetic

atoms are coupled through exchange interactions, the magnetic
structure of the quantum corral can be engineered to meet
specific requirements. When coupled antiferromagnetically,
one can study qualitative differences in quantum corrals
comprising an even or odd number of atoms. Ferromagnetic
coupling between the atoms, on the other hand, gives rise
to a large collective spin moment that could have its own
signatures. In either case of ferro- or antiferromagnetically
coupled corrals, using STM would allow us to image specific
spatial fingerprints throughout the interior of the corral.

In order to give an example of the effect we are proposing,
consider a collection of general (quantum) spins Sn = S(rn)
located at the positions rn on a metallic substrate surface.
The surface electron density can be modeled by Hsurf =∑

k εkc
†

kσ ckσ , whereas the Kondo interaction between the
surface electron density and the local spin is given as
HK = vuJK

∑
n s(rn) · Sn, where vu is the unit area and

JK is the Kondo exchange parameter, whereas s(rn) =
c†σ (rn)σ σσ ′cσ ′(rn) with spin indices σ,σ ′ = ↑, ↓, cσ (r) =∫

ckσ eik·rdk/(2π )2, and the vector σ of Pauli matrices. It
should be noticed that the Kondo interaction only provides
the isotropic interaction between the local spin moment and
the substrate electrons, whereas the anisotropy is being treated
separately; see the discussion below.

We make contact with current STM measurements on local
magnetic moments by formulating the tunneling (differential)
conductance in terms of the Tersoff and Hamann approach20

and its generalizations.21,22 The tunneling conductance at low
temperatures is in this approach given by

dI (r,V )

dV
∼ n(εF − eV )N (r,εF ), (1)

where εF is the Fermi level of the system in equilibrium.
This expression, thus, relates the tunneling conductance to
the electronic (N ) structure of the substrate surface, and
correspondingly (n) for the tip. It is, therefore, sufficient to
study the local variations in the spin-polarized surface density
of electronic states.

In our calculated examples below, we assume that the
localized spin moments can be described in terms of the
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Hamiltonian

HS =
∑

n

{
D

(
Sz

n

)2 + E[(S+
n )2 + (S−

n )2]/2
}
, (2)

where the anisotropy fields D and E account for the effective
interaction between the localized spin moments and the surface
electrons. Notice that this Hamiltonian effectively describes
the interactions between the localized spin moment and the
surface electrons which give rise to the anisotropy of the
localized spin. The isotropic interactions are accounted for
by the Kondo interation HK . This model defines 2S + 1
eigenstates |α〉 and eigenenergies Eα , and we introduce the
operators d†

α (dα) which create (destroy) a particle in the
state |α〉. For later use, we also define the spin operators
τ i
αβ = |α〉〈α|Si |β〉〈β|, i = x,y,z.

We employ the model given in Eq. (2) since it has been
successfully used to describe single (and multiple) impurities
located on the metallic surface; see, e.g., Refs. 10–14,23. The
anisotropy fields D and E are related to the properties of
the interactions between the local adsorbant and the substrate
material, and can be fitted to the experiment10,11 but also
determined through first-principles calculations.14

In the absence of impurities, the substrate surface is
assumed to be nonmagnetic; however, in the presence
of the local spins the surface LDOS may become spin
polarized locally around the spins. We account for the
scattering off the magnetic impurities by calculating the
real-space Green’s function (GF) for the surface electrons us-
ing G(r,r′; iω) = ∫

G(k,k′; iω)eik·r−ik′ ·r′
dkdk′/(2π )4, where

G(k,k′; iω) = {Gσσ ′(k,k′; iω)}σσ ′ is the 2 × 2 matrix of the
spinor �(k) = (ck↑ ck↓)T .

First we construct a bare GF G(0) which contains the spin
polarization induced by the localized magnetic moments, using
the model Hsurf + HK . In the spirit of scattering theory,24,25

we obtain a T-matrix (spin space) formulation

G(0)(k,k′) = δ(k − k′)g(k)

+
∑
nm

g(k)e−ik·rnT(rn,rm)g(k′)eik′ ·rm, (3a)

T(rn,rm) = t(rn,rm)Vm, (3b)

where t−1(rn,rm) = δ(rn − rm) − Vng(rn − rm), and g(r −
r′) = ∫

g(k)eik·(r−r′)dk/(2π )2, g(k; iω) = (iω − εk)−1. The
scattering potential V = V0 + σ · �n(iω) comprises the
spin-independent and spin-dependent contributions V0 and
�n(iω) = vuJK〈Sn〉(iω).

The spin-inelastic scattering off the localized spin moments
that influences the surface electron GF is accounted for in
second-order perturbation theory with respect to vuJK . We
define the self-energy26

σσ ′(rn,rm; iω) = − (vuJK )2

β

∑
νss ′

σ σs · χnm(iν) · σ s ′σ ′

×G
(0)
ss ′ (rn,rm; iω − iν) (4)

(β−1 = kBT ), where the spin-spin GF χnm(z) = ∫
(−i)

〈TSn(t)Sm(t ′)〉eiz(t−t ′)dt ′, and obtain the real-space GF

G(r,r′) ≈ G(0)(r,r′)

+
∑
nm

G(0)(r,rn)�(rn,rm)G(0)(rm,r′). (5)

Next, we discuss the effects of the spin-inelastic scattering
on the surface electrons. For the sake of argument we use
the unperturbed surface electron GF, i.e., replace G(0) by g in
Eq. (5), to allow for analytical calculations. For noninteracting
spin impurities, the spin-spin GF can be written

χnm(iω) = δnm

β

∑
αβ,ν

τ αβτ βαGnβ(iω + iν)Gnα(iν), (6)

where Gnα(t,t ′) = (−i)〈Tdnα(t)d†
nα(t ′)〉. Here, we have writ-

ten the spin in terms of the eigenstates of Eq. (2) such that the
spin GF Gnα(iω) = (iω − Enα)−1. We find that the retarded
form of the self-energy in Eq. (5) can be written (using
quadratic dispersion εk = h̄2k2/2m)

�r (ω) ≈ γ 2

2πN0

∑
αβ

σ · τ αβτ βα · σ

{
iπf (−Eα)f (Eβ)

+ [f (Eβ) − f (Eα)]

[
ln

|ω − Eα + Eβ |
W

+ iπf (ω − Eα + Eβ)

]}
, (7)

where 2W ∼ 1 eV is the bandwidth, whereas γ = vuJKN0,
with the bare surface DOS N0 = m/h̄2, and f (x) is the Fermi
function. Noting that gr (r) ≈ −iN0J0(k|r|)/2, where J0(x)
is the zeroth-order Bessel function of the first kind, whereas
k ≡ |k| = √

2N0ω, we find that the substrate LDOS N (r,ω) =
N0(r,ω) + δN (r,ω), defined by N (r,ω) = −tr ImG(r,r)/π ,
where N0(r,ω) = N0 whereas

δN (r,ω)

N0
= γ 2

π
J 2

0 (k|r − r0|)
∑
αβ

ταβ · τ βα{f (−Eα)f (Eβ)

+ [f (Eβ) − f (Eα)]f (ω − Eα + Eβ)}. (8)

It is clear from this expression that the amplitude of
the inelastic signal scales with the square of the Kondo
coupling JK .

Feeding the energy ω = Eα − Eβ into the system by
means of, e.g., the bias voltage, stimulates the inelastic spin
transition |α〉〈β|, and the onset of the inelastic scattering
generates an abrupt change in the surface LDOS. The
expression in Eq. (8), moreover, shows that the onset of
the spin-inelastic scattering generates spatial variations in
the charge density emerging from the localized magnetic
moment, referred to as spin-inelastic Friedel oscillations, in
analogy to previously introduced inelastic Freidel oscillations
emerging from vibrational defects.18,19 The charge density
variations are modulated by the momentum k. Generally,
inelastic scattering is not a Fermi surface effect but rather
pinned to the momentum k, for which reason one should expect
a varying wavelength of the Friedel oscillations emerging
from the impurity depending on the energy of the specific
inelastic transition. The LDOS connects with current inelastic
electron tunneling spectroscopy (IETS) measurements by
noting that the signal d2I (r,V )/dV 2 ∝ ∂N (r,ω)/∂ω. For
low temperatures, the derivative −df (ω − Eα + Eβ)/dω →
δ(ω − Eα + Eβ), which indicates the possibility to image
inelastic Friedel oscillations in a narrow range of energies
around the inelastic transfer energy Eα − Eβ .
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FIG. 1. (Color online) (a) DOS (dI/dV ) map of a single spin
S = 1 impurity adsorbed onto a metallic surface around which
concentric Friedel oscillations emerge, calculated using the GF
defined in Eqs. (3) and (5). (b) IETS (d2I/dV 2) spectrum, with
(solid) and without (dashed) spin-inelastic scattering, recorded at a
distance 1.8 nm from the impurity [star in panel (a)]. The inset shows
the IETS spectrum at the defect, where the two plots correspond to
the broadened (bold) and nonbroadened (faint) spin states. (c) IETS
maps of the different system energies, marked by bullets in panel (b).
Here, D = −10 meV, E ∼ |D|/5, T ∼ 4 K.

In Fig. 1(a), we plot the local DOS of the surface
electrons interacting with a localized S = 1 spin moment
adsorbed onto the surface, pertinent for, e.g., Co/Pt(111),14

around which elastic Friedel oscillations emerge in the surface
DOS. For the calculations we have used the full electronic
GFs prescription as defined in Eqs. (3) and (5). Positioning
the STM tip at the point marked by a star in panel (a),
we plot in Fig. 1(b) the IETS [∂ωN (rtip,ω)] spectrum for
the perturbed (solid) and unperturbed (dashed) surface. Here,
we have added a phenomenological Lorentzian broadening
(∼7.5 meV) of the spin states in order to capture the behavior
of the IETS spectrum observed in Ref. 14. The broadening has
been estimated by fitting the shape of the IETS spectrum at the
defect position to experiments;23 see inset of Fig. 1(b) (bold).
The faint plot in the inset of Fig. 1 shows the IETS spectrum for
the spin in the atomic limit. The setup, thus, demonstrates the
possibility to remotely record the inelastic signatures emerging
from the scattering center, due to its propagation over the
surface via the spin-inelastic Friedel oscillations.

The spatial characteristics are expected to vary significantly
with the energy, which indeed can be seen in Fig. 1(c), where
we plot IETS maps for a few energies corresponding to the
energies in Fig. 1(b). As is indicated in the IETS spectrum,
no essential spatial structure is found for energies far off the
inelastic transition energies. In fact, since the IETS spectrum
is vanishingly small for energies off the inelastic transition
energies, the spatial IETS maps are expected to be nearly
equal to the corresponding bare maps. By a comparison
between the IETS maps for the different energies, it is clear
that the localized moment generates a spatial response, i.e.,
spin-inelastic Friedel oscillations, for probe energies close to
the inelastic transition energies.

The magnetic structure M(r,ω) emerging from the local
spin moment is in this simplified example reduced to a
simple spatially varying spin polarization M(r,ω) = Mz(r,ω)ẑ
of the surface electrons, which can be calculated from
Mz(r,ω) = ∑

σ σ z
σσNσ (r,ω). For weak coupling between the
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FIG. 2. (Color online) (a), (d) dI/dV map of a 20-atom circular
and elliptical quantum corral (atomic positions marked by pentagons),
respectively, for independent S = 3/2 spins antiferromagnetically
coupled, (b) dI/dV calculated at the center of circular corrals
for radii R = 39.75 + {0.2,1.2,2.2} Å, and (c) corresponding IETS
(d2I/dV 2) spectrum. Inset shows the IETS for a single S = 3/2
defect. (e) and (f) dI/dV and d2I/dV 2, respectively, of the corral
in (d) calculated at (x,y) = (−c,0) with (bold) and without (faint)
an adatom at (x,y) = (c,0). Ellipse in (d) given by R2 = (x/a)2 +
(y/b)2, with R = 24.25 Å, and a/b = 1.5. Here, D = −3.25 meV,
E = 0, and T = 4 K.

localized spin and the electron medium assumed here, the spin
polarization is negligible.

We now consider quantum corrals comprised of magnetic
atoms and implement the theoretical framework introduced
above. In particular, we focus on circular geometry and
consider the resulting electronic structure for independent spin
moments. In Figs. 2(a) and 2(d) we plot the Fermi level
spectral density of circular and elliptical quantum corrals com-
prising 20 independent S = 3/2 atoms antiferromagnetically
coupled. The structure in the spectral density is caused by
the confinement imposed by the corral. The corresponding
dI/dV calculated at the center of circular corrals with different
radii, using a level broadening of ∼5 meV,14,23 is shown in
Fig. 2(b). Due to the voltage-dependent corral dI/dV , we
expect d2I (rc,V )/dV 2 to be nonzero also for voltages far off
the spin-inelastic modes, which is shown in Fig. 2(c).

For the elliptic corral, in Fig. 2(e) we show the dI/dV

at the focal point −c, see labels in Fig. 2(d), for cases with
(bold) and without (faint) a spin defect at the focus c. It is
clear that the electronic structure changes slightly due to the
additional defect. More important is that the dI/dV becomes
distorted near zero bias voltage due to the spin-inelastic
scattering, and those distortions are more clearly seen in
Fig. 2(f), where the corresponding IETS spectra are plotted.
Despite the energy variations of the surface electron density,
which accordingly are also picked up in the IETS signal,
the spin-inelastic contribution provides a significant distortion
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of the signal. Our calculations performed for the quantum
corrals, hence, provide clear demonstrations that the inelastic
scattering should be remotely detectable also within systems
with more complicated electronic structures.

The slow energy dependence of the underlying DOS implies
that its energy derivative is small, which leads to that the
spatial signatures in the IETS maps are correspondingly small
for energies sufficiently far off the inelastic transition energy.
Close to the inelastic transition energies, on the other hand, we
expect to be able to detect the spatial variations in the spectral
density, analogous to the maps shown in Fig. 1(c).

We have demonstrated theoretically that it should be
possible to image the response to spin-inelastic transitions
using STM for IETS measurements. Scattering off the lo-
cal spin (or magnetic) moment modifies the DOS locally

around the impurity, and for specific energies corresponding
to the inelastic transition energies, additional modification
of the local DOS is expected. The inelastic signatures can
be identified as sharp peak/dip features near the inelastic
transition energies. Performing IETS measurements will reveal
a spatially modulated spectral density near the inelastic
modes. While measurements on single magnetic impurities
should be sufficient in order to resolve the inelastic Friedel
oscillations, we suggest that the corresponding signatures can
be substantially enhanced by engineered quantum structures,
e.g., quantum corrals.
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