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Elastic shells with high-contrast material properties as acoustic metamaterial components

Theodore P. Martin,1 Christopher N. Layman,2 Kimberly M. Moore,1 and Gregory J. Orris1

1Acoustics Division, Naval Research Laboratory, Washington, DC 20375, USA
2National Research Council, Washington, DC 20001, USA

(Received 17 January 2012; revised manuscript received 13 March 2012; published 19 April 2012)

We analyze the acoustic multiple-scattering properties of fluid-filled, elastic cylindrical shells with highly
contrasting material properties, and we find for a water background that air-filled shells homogenize into high-bulk
modulus, low-density effective fluids. With the exception of a few local resonances spanning very narrow band
windows, we find that for common elastic materials the shells are indistinguishable from their effective fluid
counterparts for wavelengths larger than the shell’s outer diameter. Furthermore, we find that when the elastic
shell is composed of a material with impedance larger than water, there will be a specific shell thickness for
which the effective fluid properties become impedance-matched. Finally, we demonstrate that the shells can be
used as constituent components in regular lattices to create homogenized acoustic metamaterial devices.
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Research efforts in the field of subwavelength struc-
tured composites, termed metamaterials, have significantly
expanded the scope of optical and acoustic devices. In the
acoustic and elastodynamic domains, unconventional device
applications such as hyperlensing,1 scattering reduction,2–4

and wave rectification5,6 have been recently demonstrated.
Proposals in transformational acoustics (TA) promise many
additional design possibilities, including three-dimensional
scattering reduction,7–9 wave-rotation/conversion,10,12 and
perfect absorption.13 However, these proposals also reflect
the core experimental difficulties encountered in the field;
the constituent property requirements are either highly
anisotropic (i.e., in the form of pentamode materials9) and/or
extreme in their magnitude7,8,14 beyond what is currently
available. The approximation schemes used for coordinate
transformations11,12,14,15 often require constituent materials
with simultaneously high stiffness and low density, a property
that is typically restricted to highly anisotropic materials
such as woods12 or composites.2,16 In addition, TA and other
metamaterial applications (e.g., lensing12,17) attain optimal
performance when these extreme constituent properties are
also transparent with respect to the wave propagation medium,
further restricting the search for viable material solutions.

Here we focus on the development of thin-walled, fluid-
filled elastic shells as metamaterial components. Scattering
from thin elastic shells has been thoroughly investigated using
a variety of techniques for more than a century,18 but it has
not been considered in the context of metamaterials until
recently. Elastic shells have been commonly exploited for
their local resonances,19 which provide functionality to sonic
crystal filters,20–22 resonant transmission enhancement,23 and
negative-valued media.24–26 However, local resonances are
inherently narrow in bandwidth and can be accompanied by
high radiative loss, limiting their use to certain applications.
Using multiple-scattering theory27,28 (MST), we investigate
instead the broadband functionality of elastic shells away from
these resonances at wavelengths larger than the shell diameter,
thus allowing for an effective-medium description.29,30

We concentrate on elastic cylindrical shells with material
properties that contrast highly with those of the fluid core in
order to obtain the extreme constituent properties required
by metamaterial applications. We demonstrate that for a

water background, stiff elastic shells containing a low-density
fluid (air) are analogous to an effective fluid with high
bulk modulus (B) and low density (ρ). Furthermore, the
resultant effective properties can be tuned using the shell
thickness and can achieve transparency at a specific thickness.
It has previously been shown12,17,31 that functionally graded,
anisotropic fluidlike properties can be approximated by a pe-
riodic arrangement of mixed elastic scatterers, which operate
in the homogenization limit. An effective-medium description
of the elastic shells makes them appropriate as components
in these periodic lattices, greatly expanding the accessible
range of material properties with the additional advantage of
transparency.

Our numerical results are obtained using multiple-
scattering theory for radially stratified cylindrical shells.27,28

The total pressure P (r,θ,z) at normal incidence in the vicinity
of a fluid-filled, elastic cylindrical shell of outer diameter d

and thickness h can be written as27,30

P =
∞∑

q=−∞
A0

q

[
Jq(kf r) + [RS ]qH

(1)
q (kf r)

]
eiqθ , (1)

[RS ]q = [Rf e]q + [Tef ]q[Rec]q[S]q, (2)

[S]q = ([I ] − [Ref ]q[Rec]q)−1[Tf e]q, (3)

where kf and A0
q are the incident wave number and wave

coefficients of order q in the background fluid, respectively.
Bracketed terms designate identity [I ], transmission [T ], and
reflection [R] matrix elements governing waves incident on
the shell’s radially symmetric boundaries. Wave coefficients
[RS ]q give the total reflection from the shell, while [S]q are
convergent sums over an infinite number of multiple reflections
between the boundaries of the shell.27 Equations (2) and (3)
use a convention where the first index designates the region
where the wave originates, and the second index designates
the region of scattering interaction.27 For the elastic shell there
are three regions: the fluid background f , the elastic shell
e, and the fluid core c. For example, [Rec]q describes the
reflection of a wave within the elastic shell after interacting
with the core’s boundary. In the general case of elastic media,
the MST elements [RS ]q are a set of 2 × 2 matrices describing
coupling between the longitudinal (l) and transverse (t) modes.
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A fluid background medium only supports l modes, and [RS ]q
is therefore a scalar set. However, inside the elastic shell the t

modes cannot be ignored and the reflection matrices such as
[Rec]q take the form28

{
B(l)

q

B(t)
q

}
=

[R(ll)
ec R(lt)

ec

R(t l)
ec R(t t)

ec

]
q

{
A(l)

q

A(t)
q

}
, (4)

where A(l,t)
q and B(l,t)

q represent incident and reflected scatter-
ing coefficients, respectively. Likewise, the transmission terms
are 2 × 1 matrices that couple the elastic shell modes into the
fluid.

To obtain the effective fluid properties of the elastic shells,
the multiple-scattering result is compared to the two lowest-
order transfer-matrix elements Tq of a uniform fluid cylinder
with outer diameter d in the long-wave limit,29,30

lim
k→0

T0 ≈ T k→0
0 ≡ iπd2

16

[
1

Beff
− 1

]
k2
f � lim

k→0
[RS ]0, (5)

lim
k→0

T1 ≈ T k→0
1 ≡ iπd2

16

[
ρeff − 1

ρeff + 1

]
k2
f � lim

k→0
[RS ]1, (6)
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FIG. 1. (Color) Scattering matrix elements [RS ]0,1 for air-filled
Al and SiC shells with thickness h/d = 1/40, and T0,1 of their
equivalent effective fluids, shown as a function of kf d/2π . Left panels
show [RS ]0,1 and T0,1 on a linear scale, right panels on a log scale.
Both the real (blue, orange) and imaginary (black, red) parts of the
matrix elements are shown. Dashed lines plot the imaginary part of
T k→0

0,1 . In effective-medium theory, (a)–(d) monopole elements with
q = 0 derive Beff, while (e)–(h) dipole elements with q = 1 derive
ρeff. Panel (b) plots | Re [RS ]0| and | Re T0| due to a sign difference
with respect to the imaginary parts.

where Beff and ρeff are the bulk modulus and density of
the effective fluid, and the over-line denotes normalization
to water. Figure 1 shows the matrix elements [RS ]0,1 for
air-filled elastic shells and their effective fluid counterparts T0,1

calculated over two decades in dimensionless wave number
kf d/2π . The calculations are carried out for two common
elastic materials, aluminum and silicon carbide, and in both
cases a thin shell thickness to outer diameter ratio h/d = 1/40
is used to explore the possibility of a high-B, low-ρ effective
medium.

Figures 1(a)–1(d) and 1(e)–1(h) show, respectively, the
MST elements [RS ]0 and [RS ]1. The shells’ effective fluid
properties derived from Eqs. (5) and (6) are used to cal-
culate the exact T -matrix elements T0,1 of the equivalent
effective fluids; their lowest-order approximations T k→0

0,1 are
also shown as dashed lines. As kf d → 0, we observe the
expected effective-medium behavior for the MST elements:
Im [RS ]q � Re [RS ]q and [RS ]q → T k→0

q . However, as kf

increases above the long-wave limit, we observe that for
both Al and SiC the real and imaginary parts of [RS ]q
closely track those of the effective fluid elements Tq up to
kf d ≈ 2π . Thus the effective fluid properties are a good
approximation to the elastic shells even up to wavelengths on
the order of the shell diameter. Most significantly, the effective
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FIG. 2. (Color) (a) A comparison of the far-field form factors
F (kf ) for an air-filled Al shell with h/d = 1/40 and its equivalent
effective fluid as a function of kf d/2π . (b)–(f) Spatial maps of the
near-field acoustic intensity demonstrate that the Al shell (b,d,f)
is well approximated by its effective fluid (c,e) at two different
wavelengths. Modes up to |q| = 20 are included.
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properties obtained in Fig. 1 are high-B/low-ρ, resulting in
[Beff,ρeff] = [0.932,0.264] for Al and [5.60,0.316] for SiC.

Figure 2 compares the near-field and far-field scattering
of the Al shell from Fig. 1 to its equivalent effective fluid
cylinder, calculated based on an incident plane wave in
water. Figure 2(a) shows the far-field form factor,15 F (kf ) =
(4/kf )

∑
q |[RS ]q |2, which quantifies the scattering in all

directions. The F (kf ) of the effective fluid (calculated using
Tq) is indistinguishable from that of the Al shell for kf d � 2π ,
with the exception of a few resonances at higher wave
number. These shell resonances30 are also observed at the
same wave numbers in Fig. 1, but we emphasize that all
are very narrow in bandwidth. Intensity maps in Figs. 2(c)
and 2(d) show the near-field scattering at kf d = π/5 and
demonstrate almost identical behavior for the effective fluid
and the Al shell. A finite element solution using COMSOL

MULTIPHYSICS for the Al shell in Fig. 2(b) also conforms to the
intensity map of the MST result. When scattering elements are
brought together to form regular lattices, the homogenization
condition is typically met for wavelengths λf � 4a, where
a is the lattice constant. In Figs. 2(e) and 2(f), there is little
discernible difference between the near-field intensities of the
Al shell and effective fluid at λf = 2d, indicating that elastic
shells are viable candidates as components in homogenized
metamaterials.
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FIG. 3. (Color) (a) The effective bulk moduli Beff and
(b) densities ρeff of seven elastic shell materials (air cores) show
a broad range of accessible properties as a function of shell thickness
h/d . (c) The data from panels (a,b) are displayed in a [Beff,ρeff]
parameter space. Effective properties are normalized to water. Dia-
monds plot the [Beff,ρeff] where each material is impedance-matched.

Figures 3(a) and 3(b) show Beff and ρeff as a function of
h/d for a number of common elastic materials with high sound
speed relative to water; the core is filled with air in each
case. For the shells we use material properties commonly
found in the literature. Figure 3(c) shows the same data
plotted in a [Beff,ρeff] parameter space. The elastic shells’
effective properties span a wide region of the parameter space
where the sound speed is greater than water (ceff > 1), leading
to extreme material properties not found in bulk materials.
For a given ρeff, ceramic shells offer a larger Beff than
metal shells. Once the shell material is chosen, however, the
effective properties track lines roughly parallel with ceff = 1
as a function of h/d. As h/d → 1/2, the trends for each
material in Fig. 3 converge to a solid cylinder effective
modulus, Bs = (λs + μs), in agreement with previous results
for solid elastic cylinders;31 λs and μs are the solid’s Lamé
constants.

Transparency is essential to many metamaterial
applications,7–10,12–15,17 and the incorporation of components
that are themselves impedance-matched (Zeff = 1) should
make transparency easier to achieve. Diamond symbols in
Fig. 3 mark the h/d at which the effective properties become
impedance-matched to water. All the solids explored in Fig. 3
attain Zeff = 1, and for solids with impedance larger than
water a matched condition will be found for some h/d. As one
might expect, the condition Zeff = 1 is obtained at lower ρeff
as the elastic moduli of the shells increase. We emphasize that
matched impedance is contingent only on the ratio h/d and is
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FIG. 4. (Color) (a) Effective sound speed ceff and (b) impedance
Zeff for a square lattice of air-filled SiC shells with thickness
h/d = 1/50, as a function of the outer radii R1 and R2 of its
two-atom basis. h/d is kept constant in the two basis sites, but
R1 and R2 vary independently thus changing the filling fraction.
Near-field acoustic intensity maps demonstrate that (d) a circular-
shaped lattice with [R1,R2] = [0.25a,0.7a] (lattice constant a) is
well approximated by (c) its equivalent effective fluid with properties
[ceff,Zeff] = [3.10,0.998] derived from panels (a,b). Modes up to
|q| = 12 are included.
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independent of the outer diameter of the shell. Although the
effective properties of the metal shells in Fig. 3(c) converge
as h/d → 0, leading to very similar effective properties at
Zeff = 1, the impedance-matched ratio h/d is different for
each metal. For example, h/d ≈ 1/20 for Al as opposed to
1/56 for stainless steel.

Figure 4 demonstrates that the elastic shells can be com-
bined into a homogenized lattice31,32 to create effective media
with Zeff = 1. Figures 4(a) and 4(b) shows the achievable
range of ceff and Zeff for a square lattice of air-filled SiC
shells with impedance-matched ratio h/d = 1/50, calculated
in the limit kf d → 0.31 The axes are the outer radii R1 and
R2 of shells in a mixed lattice with a “two-atom” basis.31

The calculation is constrained by the fact that adjacent
cylinders cannot overlap. ceff increases with the cylinder
filling fraction, reaching a maximum of ceff ≈ 3. Crucially,
because the constituent SiC shells are themselves impedance-
matched, we obtain Zeff ≈ 1 over the entire parameter space in
Fig. 4(b).

Figures 4(c) and 4(d) compare the near-field acoustic
intensity of a square lattice of SiC shells (h/d = 1/50) to
the fluid cylinder that it approximates in the homogenization
limit.32 The square lattice has component radii [R1,R2] =
[0.25a,0.7a] resulting in [ceff,ρeff] = [3.10,0.322] and Zeff =
0.998. The acoustic intensity of the lattice is calculated using
full MST,31,32 and Eqs. (1)–(4) are used to calculate the
stress within each SiC shell. The incident wavelength is λf =
10a, and the fluid cylinder is assigned the lattice’s effective
properties. The intensity map of the fluid cylinder is indistin-
guishable from that of the SiC shell lattice, demonstrating the
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FIG. 5. (Color) (a) Effective sound speed ceff and (b) impedance
Zeff for a square lattice of air-filled Al shells with thickness h/d =
1/20, as a function of the outer radii R1 and R2 of its two-atom
basis. (c) The total pressure amplitude of a plane wave impinging
on a concave graded index lens, composed of impedance-matched
Al shells, shows a diverging wavefront leaving the lens. Dashed
lines indicate the virtual focal length. Modes up to |q| = 15 are
included.

equivalence of the effective media. The matched impedance
results in a very low backscattered intensity. We emphasize
that the acoustic properties of the SiC lattice are competitive
with extraordinarily stiff composite materials reported in the
literature.16 For comparison with the metallic microlattices
recently reported in Ref. 16, the SiC shell lattice has renor-
malized effective properties [Beff/Bs,ρeff/ρs] = [0.018,0.10],
where Bs and ρs are, respectively, the solid cylinder modulus
and density of SiC. These properties would appear just above
the trend for open-cell polymer foams on the far right side of
Fig. 4 in Ref. 16.

Figures 5(a) and 5(b) show the achievable range of ceff and
Zeff for a square lattice of impedance-matched, air-filled Al
shells with h/d = 1/20. As was the case for SiC, the lattice is
impedance-matched over the entire range of filling fractions.
We utilize the parameter space in Figs. 5(a) and 5(b) to design
a fully transparent gradient index lens in water.17,31 For the
case of Al shells, we are restricted to a concave lens because
ceff � 1 at all filling fractions. The lens is designed using a
concave graded index neff(y) = n0

√
1 + α2y2 by tuning the

Al shell radii in stratified layers as a function of y.17 We
choose for our lens n0 = 0.7 and α = 0.133/a, which results
in a lens width wl = 15a and thickness tl = 6a, where a is the
lattice constant. Figure 5(c) shows the pressure amplitude of a
plane wave impinging on the lens from the left with λf ≈ 5a,
calculated using MST both within and between the Al shells.
It is evident that backscattering from the lens is almost
zero, while the transmission becomes a diverging wavefront.
The dashed lines map the expected positions of the wave-
front based on a virtual focal length f ≈ 1/n0α sin (αtl) ≈
15a,17 which clearly correlates well with the simulated
wave.

To summarize, we have demonstrated that fluid-filled elas-
tic shells can be utilized in aqueous environments as homoge-
nized, low-dispersion scattering components for metamaterial
applications, particularly those involving TA such as scattering
reduction7,8,14,15 and lensing11,12 where tunable high-c, low-ρ
material properties are sorely needed. Furthermore, it was
shown that both isotropic and impedance-matching properties
can be simultaneously obtained over a large bandwidth
operating from a long-wavelength region down to the static
limit. If required, changing the spatial distribution of different
scatterers can attain a tunable material anisotropy. Lastly, a
gradient index lens was conceptualized from the presented
methods and was numerical shown to be highly transparent.
Realization of such a lens will be greatly facilitated by
the fact the shells are relatively simple to manufacture.
While metamaterials are especially important to aqueous
diagnostic applications because electromagnetic absorption is
significant in fluids, we emphasize that our results extend
to other acoustoelastic regimes. We believe the proposed
method will provide a more straightforward approach to the
design and realization of elastic wave metamaterials and TA
devices in general, of which to date there are a only a few
experimental cases. A similar procedure for three-dimensional
structures can be similarly obtained, which will be explored
elsewhere.

This work was supported by the US Office of Naval
Research.
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