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Quasiparticle effects in the bulk and surface-state bands of Bi2Se3 and Bi2Te3 topological insulators
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We investigate the bulk band structures and the surface states of Bi2Se3 and Bi2Te3 topological insulators using
first-principles many-body perturbation theory based on the GW approximation. The quasiparticle self-energy
corrections introduce significant changes to the bulk band structures, surprisingly leading to a decrease in the direct
band gaps in the band-inversion regime as opposed to the usual situation without band inversion. Parametrized
“scissors operators” derived from the bulk studies are then used to investigate the electronic structure of slab
models which exhibit topologically protected surface states. The introduction of self-energy corrections results in
significant shifts of the surface-state Dirac point energies relative to the bulk bands and in enlarged gap openings
from the interactions between the surface states across the thin slab, both in agreement with experimental data.
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The recently discovered bulk topological insulators (TIs),
a unique class of semiconducting materials characterized by
the presence of spin-helical surface states resulting from
strong spin-orbit (SO) interactions, have quickly become
a subject of intense research.1 It is believed that TIs are
actually not uncommon among the heavy-element materials.
Owing to their extraordinary electronic properties, such as the
suppression of backscattering and intrinsic spin polarization
of the surface-state charge carriers, TIs are expected to find
applications in the future, including information technology,
spintronics, and quantum computing.

First-principles electronic structure calculations can play
an important role in exploring the properties of known TIs
as well as in guiding the search of previously unknown
materials. The widely used density functional theory (DFT)
within the Kohn-Sham formalism, a workhorse first-principles
method of condensed-matter physics, has proved its value
already in the discovery of “second-generation” bulk TIs,
Bi2Se3 and Bi2Te3.2,3 A large number of TIs has been
predicted using this technique,4 and some of these predic-
tions have been confirmed experimentally.5 However, it is
broadly recognized that the Kohn-Sham eigenvalues of DFT
fail to describe accurately quasiparticle energies and band
gaps,6 the critical properties of TIs. A recent work has
highlighted the limitations of the standard DFT approach
in describing the topological nature of several borderline
compounds.7 Many-body perturbation theory techniques, such
as the GW approximation, greatly improve the accuracy of
predicting these excited-state properties.8,9

In this Rapid Communication, we investigate the self-
energy effects in the quasiparticle bulk band structures and
the surface-state dispersion of the reference TIs, Bi2Se3 and
Bi2Te3, by using the first-principles GW method.9 We find that
the effects of quasiparticle corrections on the band structures
are substantial, and show unique features resulting from the
interplay with SO interactions in the band-inversion regime.
By introducing parametrized energy-dependent “scissors op-
erators” based on the bulk calculations, we have extended our
study to the electronic structure of slab models. Our application

of the proposed technique to slab models which exhibit
topologically protected surface states finds significant shifts of
the Dirac point energies relative to the bulk bands and larger
surface-state gap openings resulting from the interactions
between surface states across the slab. The proposed simple
corrections basically eliminate the DFT eigenvalue problems
and yield agreement with experimental data.

The DFT calculations were performed within the local den-
sity approximation (LDA) employing the QUANTUM ESPRESSO

package.10 We used norm-conserving pseudopotentials11 and
a plane-wave kinetic energy cutoff of 35 Ry for the wave
functions. The quasiparticle energies were evaluated within
the G0W0 approximation to the electron self-energy starting
from LDA results as a mean-field solution using the approach
of Hybertsen and Louie.9 The static dielectric function was
calculated using a plane-wave cutoff of 10 Ry, unoccupied
bands up to 5 Ry above the Fermi level, and extended to
finite frequencies with the generalized plasmon-pole model.
This first-principles GW methodology is implemented in the
BERKELEYGW code.12 Spin-orbit interactions were included
on the final stage after the quasiparticle self-energy corrections
have been applied toH0(k). That is, the SO Hamiltonian matrix
HSO(k) was evaluated employing an approach described in
Ref. 13 in the basis of eigenfunctions of H0(k). That is, in the
full two-component Hamiltonian

H(k) = H0(k) + HSO(k), (1)

H0(k) is a diagonal matrix with matrix elements being either
LDA or GW eigenvalues in the absence of SO interactions,
while HSO(k) introduces off-diagonal matrix elements. The
band structures have been obtained by diagonalizing the full
Hamiltonian H(k). Notably, we find that the results obtained
using this method are in agreement with an explicit approach
in which GW calculations are performed starting from two-
component LDA wave functions after SO interactions were
taken into account (and thus band inversion is present at the �

point).14 We used experimental lattice parameters for both the
bulk crystal as well as (111) slab models of different thickness.
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FIG. 1. (Color online) Quasiparticle self-energy corrections as
a function of LDA energies for bulk (a) Bi2Se3 and (b) Bi2Te3

calculated without taking into account SO interactions. The positions
of VBM and CBM are indicated by the larger solid and open circles,
respectively. The lines correspond to the fitted “scissors operators.”
(c), (d) Same plots after the SO matrix elements were taken into
account. Note the changes in GW corrections calculated for the states
which correspond to VBM and CBM in (a) and (b).

We start our discussion by considering the GW quasiparti-
cle energy corrections �EQP(n,k) = EGW (n,k) − ELDA(n,k)
for bulk Bi2Se3 and Bi2Te3. Figures 1(a) and 1(b) show
�EQP(n,k) evaluated on a 6 × 6 × 6 k-point grid as a
function of LDA energy with no SO interactions taken into
account. For convenience, we set the energies corresponding
to the valence-band maximum (VBM) as a reference [i.e.,
�EQP(VBM) = ELDA(VBM) = 0 for the case with no SO
interactions included]. When SO interactions are neglected
both materials are direct band-gap semiconductors with VBM
and conduction-band minimum (CBM) located at the � point
[dotted lines in Figs. 2(a) and 2(b)]. The inclusion of GW

self-energy corrections increases the LDA direct gaps at �

point (which are 0.151 and 0.188 eV for Bi2Se3 and Bi2Te3,
respectively) by 0.212 and 0.277 eV, respectively. After SO
interactions have been introduced in both LDA and GW

calculations, the values of �EQP(n,k) barely change except
for those which correspond to VBM and CBM in Figs. 1(a) and
1(b). These states, shown as large circles in Fig. 1, change their
order in energy. The calculations performed using fully two-
component implementation of GW (Ref. 14) quantitatively
reproduce the overall quasiparticle shifts (≈0.2 eV for Bi2Se3)
and the peculiar change of the order in energy of VBM and
CBM.

The observed seemingly counterintuitive behavior is a
direct consequence of band inversion due to SO interactions. It
can be illustrated using the k · p Hamiltonian for Bi2Se3-type
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FIG. 2. (Color online) Band structures of bulk (a) Bi2Se3 and
(b) Bi2Te3 calculated using the following theories: LDA with no
SO (dotted lines), LDA with SO effects taken into account (dashed
lines), and GW with SO interactions (solid lines). (c), (d) Degree of
band inversion for the valence band [Eq. (3)] of Bi2Se3 and Bi2Te3,
respectively, calculated along the same k path as in (a) and (b).
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Hk·p(k) =

⎛
⎜⎜⎜⎝

M(k) Azkz 0 Axyk−
Azkz −M(k) Axyk− 0

0 Axyk+ M(k) −Azkz

Axyk+ 0 −Azkz −M(k)

⎞
⎟⎟⎟⎠ + ε0(k),

(2)

with k± = kx ± iky and k = |k|. Without loss of generality
we assume M(k) = −�g/2 − k2/2m∗ with a single m∗
parametrizing both the valence and conduction bands, ε0(k) =
0, and Axy = Az = A. As the parameter �g decreases, a band
inversion takes place around k = 0 for �g < 0 and the band
gap closes in the absence of off-diagonal matrix elements
(dotted lines in Fig. 3). However, these off-diagonal SO matrix
elements ensure nonzero band gap even in the band-inversion
regime. For a small magnitude �g < 0 the bands remain
parabolic and the gap is −�g. A further decrease of �g

leads to the “camelback”-shaped bands and the band gap is

Δg

Δg decreases

Δso

Δg Δ0 > g < 0

E

k

FIG. 3. (Color online) Evolution of the band structure (solid
lines) calculated for the model Hamiltonian given by Eq. (2) upon
the decrease of parameter �g (see text). Dotted lines represent
the solution calculated in the absence of off-diagonal (SO) matrix
elements.
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�SO � 2Ak. The “camelback” feature is clearly seen for the
valence bands in the LDA band structures of both Bi2Se3 and
Bi2Te3 [dashed lines in Figs. 2(a) and 2(b)]. The physical effect
incorporated in the quasiparticle self-energy correction is the
increase of �g which is typically underestimated in DFT. Upon
an increase of the value �g in the �g < 0 regime, the energy
of the valence band at k = 0 increases while the energy of the
conduction band at k = 0 decreases. This behavior has been
observed in other band-inversion semiconductors,15 and is the
opposite to the “normal” situation where no band inversion
takes place. In other words, the quasiparticle self-energy
corrections to the inverted bands reduce the direct Kohn-Sham
DFT gap at �. This is exactly what is observed in Figs. 1(c)
and 1(d) (large symbols) and in Figs. 2(a) and 2(b) at �.

The band structures of bulk Bi2Se3 and Bi2Te3 including
both SO interactions and the GW quasiparticle self-energy cor-
rections [solid lines in Figs. 2(a) and 2(b)] have been calculated
using the Wannier interpolations technique.16,17 Interestingly,
the LDA band gap of bulk Bi2Se3 (0.29 eV) barely changes
after the inclusion of GW corrections (0.30 eV). However,
its character changes from indirect to direct in agreement
with recent experiments.18 The surprising accuracy of LDA in
predicting the magnitude of minimum band gap is fortuitous.
In Bi2Te3, the LDA and GW indirect band gaps are 0.09
and 0.17 eV,19 with the latter being in good agreement with
experiment.20 One noticeable effect of the GW corrections on
band dispersion is a considerable diminution of the dip in the
valence bands at the � point. This behavior is also consistent
with the discussed two-band model [Eq. (2); Fig. 3].

In order to gain further understanding of the effects of GW

corrections we define the degree of band inversion for the
valence band,

ηVB(k) =
∑

i=VB;j∈unocc.

a∗
ij (k)aij (k), (3)

where the eigenfunctions ψi(k) = ∑
j aij (k)φj (k) of Hamil-

tonian H(k) = H0(k) + HSO(k) are expressed in terms of
φj (k), the eigenfunctions of H0(k) which does not include
SO interactions. The results for both LDA and GW methods
are plotted in Figs. 2(c) and 2(d). For both Bi2Se3 and Bi2Te3

band inversion takes place only in a limited region of the
Brillouin zone around the � point where ηVB achieves almost
100%. The introduction of GW shifts somewhat reduces the
extension of this region of band inversion, but at the � point
it is still complete. A very similar picture was obtained for the
degree of band inversion of the conduction band (not shown).

The crux of our study is, of course, to investigate the effects
of GW quasiparticle self-energy corrections on the topological
surface states. Addressing this problem in a straightforward
way would require performing GW calculations for two-
dimensional slab models. At present, it is computationally too
demanding to perform converged GW calculations on systems
of this size. To overcome this difficulty, we parametrize the
quasiparticle corrections �EQP in terms of energy-dependent
“scissors operators” �ẼQP = aE2

LDA + bELDA + c using the
results of our GW calculations for bulk materials with no SO
interactions included. Valence and conduction bands are fitted
separately. Additionally, we require our “scissors operators”
to reproduce exactly the quasiparticle shifts of the VBM
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FIG. 4. (Color online) Band structures calculated for 5QL slabs
of (a) Bi2Se3 and (b) Bi2Te3 using LDA and GW (SO interactions
included in both cases). (c), (d) Band gaps at the � point as a function
of slab thickness for Bi2Se3 and Bi2Te3, respectively. Experimental
results are reproduced from Ref. 24. The zero of energy is set at
ELDA(VBM) with no SO.

and CBM, the critical components in our consideration. The
fitted functions are shown in Figs. 1(a) an 1(b), and the
corresponding parameters are given in Ref. 21.

Figures 4(a) and 4(b) show the band structures in the
vicinity of the � point computed for (111) slabs of five-
quintuple-layers (5QL) thickness using plain LDA and after
applying the proposed generalized “scissors operator” tech-
nique. For the latter, we apply the “scissors operators” to
the LDA Hamiltonian without SO interactions in the Bloch-
state basis to obtain the quasiparticle Hamiltonian. The SO
coupling terms are then added to it and the Hamiltonian is
diagonalized to obtain the final quasiparticle energies. Both
methods give rise to topologically protected surface states
appearing as characteristic “Dirac cone” features at the �

point but with a gap E�
g owing to the hybridization of the

surfaces states at the opposite surfaces of thin slabs.22,23 The
inclusion of quasiparticle corrections results in the following
two important changes. First, the magnitudes of E�

g are
enlarged, especially in Bi2Se3 [Figs. 4(c) and 4(d)]. While
LDA predicts essentially zero values of E�

g for slabs thicker
than 3QL, the dependence turns into a slow 1/width decay
after the “scissors operator” was applied [Fig. 4(c)]. This
behavior is actually consistent with the gaps measured in
thin films of Bi2Se3 on SiC substrate.24 The experimental
magnitudes are somewhat smaller, which can be attributed
to enhanced screening due to the presence of the substrate
which is neglected in our calculations. The changes of band
gaps are less systematic in the case of Bi2Te3. For a slab
thickness larger than 4QL, the magnitudes of E�

g are larger
in the calculations including the quasiparticle corrections.
Second, the positions of Dirac points relative to the bulk bands
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change significantly. For both materials, the quasiparticle
corrections “lift” the Dirac point from the bulk valence band.
By extrapolating the results of our calculations on Bi2Se3 to
the infinite slab thickness, we find that the incorporation of
quasiparticle corrections via the “scissors operator” technique
changes the position of Dirac point from 0.04 eV below the
bulk valence band23 to 0.07 eV above it. The latter value is in
better agreement with experimental results of Analytis et al.:
0.205 eV below the bulk conduction band or 0.095 eV above
the bulk valence band assuming a band gap of 0.30 eV.25

For Bi2Te3, the quasiparticle corrections change the Dirac
point energy from −0.20 to −0.10 eV relative to the bulk
VBM. The experimentally observed value is −0.13 eV.20 On
the contrary, we find that some properties are not affected by
the quasiparticle corrections. For instance, the degree of spin
polarization of surface states investigated in Ref. 23 change
very little.

In conclusion, while the Kohn-Sham DFT band structures
are able to provide a qualitative description of the topolog-
ically nontrivial electronic structure of Bi2Se3 and Bi2Te3,

a quantitative agreement with a number of experimentally
measured properties is achieved only after including the GW

quasiparticle self-energy corrections. We further propose an
energy-dependent “scissors operator” technique which allows
the introduction of parametrized quasiparticle corrections into
standard DFT calculations before SO interactions are included,
thus greatly enhancing their predictive power in describing
systems based on the discussed topological insulators.
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