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We investigate the properties of an edge-centered honeycomb lattice, and show that this lattice features
both spin-1/2 and spin-1 Dirac-Weyl fermions at different filling fractions f (f = 1/5,4/5 for spin 1/2 and
f = 1/2 for spin 1). This five-band system is the simplest lattice that can support simultaneously the two
different paradigmatic Dirac-Weyl fermions with half-integer spin and integer spin. We demonstrate that these
pseudorelativistic structures, including a flat band at half-filling, can be deduced from the underlying kagome
sublattice. We further show that the signatures of the two kinds of relativistic fermions can be clearly revealed by
several perturbations, such as a uniform magnetic field, a Haldane-type spin-orbit term, and charge density waves.
We comment on the possibility to probe the similarities and differences between the two kinds of relativistic
fermions, or even to isolate them individually. We present a realistic scheme to realize such a system using cold
atoms.
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I. INTRODUCTION

In the solid state, matter is typically organized into
crystal structures. The mathematical models for describing
different materials are consequently based on lattices where the
electrons are trapped in periodic structures. The understanding
of the equilibrium and transport mechanisms in such systems
also forms our knowledge of many fundamental effects and
indeed technological applications of today. Recently, emergent
phenomena such as quasirelativistic effects in nonrelativistic
settings have proven to be important in this respect. Most
notably, graphene,1 together with topological insulators2 and
cold atoms in optical lattices,3–8 are prominent examples of
this. The emergent quasirelativistic fermions in graphene and
topological insulators are two-spinor massless Dirac fermions,
but it has also been suggested that in more exotic lattices, such
as the T3 lattice9 and the line-centered-square Lieb lattice,10–12

the emergent massless fermions are in fact pseudospin-1
objects which also involve a flat band. Also, Dirac-Weyl
fermions with arbitrarily large spin have been studied based
on fermionic atoms trapped in optical superlattices.13,14

In this paper, we explore a different direction: can we find
a single setup where several different kinds of Dirac-Weyl
fermions can coexist in the same lattice? This is an intriguing
question. Such a “material” should have remarkably versatile
properties as far as density-dependent effects are concerned,
as we will show in this paper. Our initial efforts to solve
this problem are motivated by the study of Lieb lattices,10–12

where additional lattice sites on the edges of the square
lattice give rise to a flat band. From this inspiration, we
expect that when introducing additional lattice sites to the
edges of the standard honeycomb lattice,1 which we refer
to as the edge-centered honeycomb (ECH) lattice in the
following, a flat band should also emerge,15 thus giving both
spin-1/2 and spin-1 Dirac-Weyl fermions. This is indeed
what we have found in this study. We also note that the
next-nearest-neighbor (NNN) hopping in this ECH lattice
produces the well-known kagome lattice,16 thus the ECH
lattice interpolates between several well-researched lattices,

such as honeycomb, Lieb, and kagome lattices. In fact, by
using an intriguing mapping (see the Appendix), we find the
band structure of the ECH lattice is completely determined by
its underlying honeycomb and kagome sublattices, revealing
the deep connection between the ECH, the honeycomb, and the
kagome lattices. Furthermore, we investigate the response of
the system to perturbations such as a uniform magnetic field,
a Haldane-type spin-orbit coupling,17 and a charge density
wave16 (CDW). We demonstrate how these perturbations allow
us to probe the similarities and differences between the two
kinds of relativistic fermions. This five-band model turns out
to be a minimal model that can support simultaneously the two
different paradigmatic Dirac-Weyl fermions at the lowest spin
level where spin-1/2 Dirac points coexist with a single spin-1
Dirac point crossed by a flat band.

II. MODEL AND ENERGY SPECTRUM

We are interested in the properties of a fermionic gas
trapped in an ECH lattice, the unit cell of which contains
five inequivalent sites, which are labeled by τ = 1, . . . ,5, as
illustrated in Fig. 1(a). A physical realization of this system
could be achieved by trapping fermionic atoms using six
lasers, which divide the plane into six sectors of 60◦. The
corresponding configuration of the laser light fields can be
chosen as

E1 = E(0,1)eikx·a1 , E2 = E(
√

3/2,1/2)e−ikx·a2 ,

E3 = E(
√

3/2,−/2)eikx·a3 , E4 = E(0,−1)e−ikx·a1 , (1)

E5 = E(−
√

3/2,−1/2)eikx·a2 , E6 = E(−
√

3/2,1/2)e−ikx·a3 ,

where a1 = (1,0), a2 = (−1/2,
√

3/2), a3 = (−1/2,−√
3/2)

are the three nearest-neighbor (NN) vectors of the underlying
honeycomb structure [i.e., the red sites in Fig. 1(a)]. In this
case, the intensity profile I (x,y) = |Etot(x,y)|2 from the total
electric field Etot = ∑

i Ei produces a potential landscape as
shown in Fig. 1(c). Alternatively, one can envisage using
spatial light modulators for shaping the intensity of a light
beam such that the desired minima create the ECH lattice
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FIG. 1. (Color online) (a) The ECH lattice is characterized by
five sites per unit cell, denoted by τ = 1, . . . ,5. The three NN
vectors of the underlying honeycomb structure (red sites) are given
by a1 = (1,0), a2 = (−1/2,

√
3/2), a3 = (−1/2,−√

3/2), while the
NN vectors of the ECH lattice by νμ = aμ/2, where μ = 1,2,3.
(b) The energy band structure E(k)/t of the ECH lattice hosts two
different kinds of Dirac-Weyl fermions: spin-1/2 at f = 1/5,4/5 and
spin-1 at f = 1/2. (c) The intensity profile I (x,y) obtained from the
six-laser configuration in Eq. (1) that would create an ECH lattice
for cold atoms. (d) The density of states (DOS) of the band structure
illustrated in (b). The two relativistic regimes (spin-1/2 and spin-1)
are separated by van Hove singularities at E = ±√

2t , indicated by
the vertical dotted lines.

(see, for instance, Whyte and Courtial18 and references
therein). Also, nanostructured lattice potentials for two-
dimensional electron gases19 can be considered for creating
the ECH lattice.

For sufficiently deep lattice sites, we can use the tight-
binding approximation, which results in the noninteracting
Hamiltonian

H0 = t
∑
〈ij〉

c
†
i cj , (2)

where c
†
i (ci) is the creation (annihilation) operator at the lattice

site i and t is the nearest-neighbor hopping amplitude. The ex-
plicit single-particle Schrödinger equation derived from Eq. (2)
is detailed in the Appendix. The energy band structure of this
system can be obtained from the Hamiltonian in momentum
space H = ∑

k �
†
kHk�k, where �k = (c1k,c2k,c3k,c4k,c5k)T .

The nonzero components of the 5 × 5 matrix Hk are given by
(Hk)ττ ′ = exp(ik · vττ ′), where vττ ′ is the vector connecting
two NN sites τ and τ ′, which results in the Hamiltonian

Hk =

⎛
⎜⎜⎜⎜⎝

0 e−ik·a2/2 0 eik·a2/2 0
eik·a2/2 0 eik·a1/2 0 eik·a3/2

0 e−ik·a1/2 0 eik·a1/2 0
e−ik·a2/2 0 e−ik·a1/2 0 e−ik·a3/2

0 e−ik·a3/2 0 eik·a3/2 0

⎞
⎟⎟⎟⎟⎠ .

(3)

Diagonalizing Hk yields the energy bands E(k) depicted in
Fig. 1(b).

Interestingly, the band structure displays two different
regimes. At fillings f = 1/5 and 4/5, two independent Dirac
cones located at K+ = ( 2π

3a
,− 2π

3
√

3a
) and K− = ( 2π

3a
, 2π

3
√

3a
) are

present within the first Brillouin zone, which is the same
as for the standard honeycomb lattice where Dirac-type
dispersion relations effectively describe spin-1/2 relativistic
fermions. At half-filling f = 1/2, a flat band is present at
the tip of a single Dirac cone located at �0 = (0,0). We find
that the wave functions associated with the flat band have
zero amplitude at the green sites (τ = 1,3,5) illustrated in
Fig. 1(a), which is compatible with the localization property
expected from their infinite effective band mass.15 This
peculiar configuration, involving a flat band and a single Dirac
cone, is also present in the Lieb lattice and leads to an effective
Hamiltonian describing spin-1 relativistic fermions.10–12 We
see from Fig. 1(b) that the ECH lattice indeed contains both
spin-1/2 and spin-1 relativistic dispersion relations. These two
singular and distinct regimes could be reached in a cold-atom
realization by simply tuning the atomic filling factor. In order
to further explore the distinction between these two relativistic
regimes, we show the density of states ρ(E) in Fig. 1(d). We
find that around E ≈ ±√

3t , ρ(E) behaves linearly, which is
expected for spin-1/2 relativistic fermions. Around E ≈ 0,
the ρ(E) shows a linear behavior and a sharp peak as a
consequence of the flat band.15 As we will demonstrate in the
following, the van Hove singularities located at E ≈ ±√

2t

constitute natural boundaries separating the spin-1/2 and
spin-1 relativistic regimes. At this point, let us comment on
the interesting fact that the additional (green) lattice sites, i.e.,
τ = 1,3,5, do not destroy the relativistic properties stemming
from the background honeycomb lattice. They rather enrich
the quantum properties of the lattice in a nontrivial manner by
inducing new relativistic regimes at various fillings.

III. SPIN-1/2 AND SPIN-1 RELATIVISTIC REGIMES

To demonstrate the above assertion that the low-energy
excitations around fillings f = 1/5,4/5 and f = 1/2 are
indeed Dirac-Weyl fermions of different kinds, we obtain
the low-energy effective Hamiltonians describing these excita-
tions around the band-touching points, i.e., K± at E = ±√

3t

and �0 at E = 0. To do so, we linearize H (k) near K± or �0,
and subsequently project onto the subspace associated with
the two (for f = 1/5 and 4/5) or three (for f = 1/2) touching
bands. This leads to

h1/2
p = ν1/2(pxσ1 + pyσ2) at f = 1/5,4/5, (4)

h1
p = ν1(pxS1 + pyS2) at f = 1/2, (5)

where p = k − K±(�0) and ν1/2 = √
3t/4, ν1 = √

3t/2 are
the Fermi velocities of the spin-1/2 and spin-1 relativistic
fermions. We note here that ν1 = 2ν1/2 is perfectly com-
patible with their spin-1 and spin-1/2 nature. While around
f = 1/5,4/5, the σ1,2 are the usual Pauli matrices acting
on the two-dimensional subspace associated with the two
touching bands, the effective Dirac-Weyl Hamiltonian around
f = 1/2 features the 3 × 3 matrices S1,2, which fulfill the
angular-momentum commutation relation [Si,Sj ] = iεijkSk .
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FIG. 2. (Color online) Energy spectrum for the (a) kagome and
(c) honeycomb lattices. Panels (b) and (d) show the mapping, Eqs. (6)
and (7), leading to the ECH lattice band structure.

Such an effective Hamiltonian has been shown to describe
spin-1 massless Dirac-Weyl fermions, as recently discussed in
Refs. 10–12. The spin-1/2 and spin-1 Dirac-Weyl fermions
therefore do indeed coexist in the ECH lattice at different
fillings.

IV. “HONEYCOMB-KAGOME” DECOUPLING

The ECH lattice has a bipartite structure which allows for
an effective decoupling between the red (τ = 2,4) and green
(τ = 1,3,5) sites illustrated in Fig. 1(a). Note that while the red
sites form the background honeycomb lattice, the green sites
constitute a kagome lattice. It turns out that the band structure
depicted in Fig. 1(b) can be deduced from the energy spectra
describing these two sublattices.20 Indeed, as demonstrated in
the Appendix, one finds that the five energy bands associated
to the ECH lattice are directly obtained from the relations

(E/t)(k) = ±√
εK (k) + 2, (6)

(E/t)(k) = ±√
εH (k) + 3, (7)

where εH (k) and εK (k) are the energy bands related to the
decoupled honeycomb and kagome lattices, and where we
assume that E �= 0. The band structure εK (k) is illustrated
in Fig. 2(a), which shows Dirac points at εK = 1 and a
flat band at εK = −2. Note that the dispersion relation is
quadratic in the vicinity of the flat band. The band structure
of the ECH lattice can then be entirely understood from the
spectrum εK (k). From the relation (6), one obtains a flat band
at E/t = −2 + 2 = 0 and Dirac points at E/t = ±√

1 + 2.
Furthermore, the quadratic dispersion of the kagome lattice
around εK ≈ −2 leads to the conical intersection at E/t = 0
[see Fig. 2(b)]. Therefore, both the spin-1 and spin-1/2 Dirac
structures stem from the background kagome lattice, formed
by the green sites in Fig. 1(a). However, it is worth emphasizing
that the kagome lattice alone does not display a spin-1 Dirac
structure, which highlights the richness of the bipartite ECH
lattice with respect to its underlying honeycomb and kagome
lattices. Furthermore, we note that the spectrum associated to
the honeycomb lattice εH (k) does not contribute to the band
structure E(k) in a significant manner. If we indeed omit the flat

band at εK = −2, we find that ±√
εK (k) + 2 = ±√

εH (k) + 3
[see Figs. 2(c) and 2(d)].

The “honeycomb-kagome” decoupling described by
Eqs. (6) and (7) also explains the location of the van Hove
singularities in Fig. 1(d). The honeycomb lattice presents van
Hove singularities21 at εH = ±1, which lead to the four peaks
at E/t = ±√+1 + 3 and E/t = ±√−1 + 3 in Fig. 1(d). The
linear behavior of the DOS around E/t ≈ ±√

3 and E/t ≈ 0
is also easily deduced from the conical intersections stemming
from the kagome lattice, as discussed above.

Finally, we note that the ECH lattice has a bipartite nature,
with NK = 3 and NH = 2 sites per unit cell, where NK,H ,
respectively, denotes the number of green (i.e., τ = 1,3,5) and
red (i.e., τ = 2,4) sites. Under such conditions, and since the
tunneling only occurs between red and green sites, one can
apply the theorem of Ref. 15, which stipulates that a flat band
necessarily exists in the energy spectrum and that its weight is
given by NK/5 − NH/5 = 1/5 in the normalized DOS.

V. PERTURBATIONS

We proceed by investigating the effects of various pertur-
bations on the ECH lattice and the two different Dirac-Weyl
fermions, highlighting their similar and different natures. We
will in particular consider the effects of external magnetic
fields, spin-orbit coupling, and charge density waves. Such
perturbations will not only provide interesting insights into the
physical properties of the ECH lattice, but they will also offer
the possibility to distinguish between the different relativistic
species in an experiment.

A. Synthetic magnetic fields

When the ECH lattice is subject to a uniform magnetic flux
� per plaquette, the energy bulk gaps form a fractal structure
in the E-� plane, which consists of two Hofstadter-Rammal
butterflies separated by a flat band.22 The butterfly spectra of
the honeycomb, kagome, and T3 lattices have been reported in
Refs. 20, 23, and 24. When the Fermi energy is exactly located
inside such gaps, the Hall conductivity of the system is quan-
tized. A typical sequence of Hall plateaus is shown in Fig. 3 for
a reasonably small magnetic flux per plaquette � ≈ 0.05. The
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FIG. 3. (Color online) Hall conductivity σH(EF) as a function of
the Fermi energy for � ≈ 0.05. Vertical dotted lines indicate the
location of van Hove singularities at E/t = ±√

2 [cf. Fig. 1(d)].

155451-3
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Hall plateaus clearly evolve differently within the different
regimes. Around f = 1/5,4/5, i.e., EF = ±√

3t , the Hall
plateaus feature the anomalous double-step sequence σ

1/2
H =

±2(N + 1/2)e2/h, where N is an integer. In the vicinity of this
spin-1/2 regime, each Dirac fermion contributes to the Hall
conductivity according to σDirac = (e2/h)/2, i.e., the system
exhibits the so-called half-integer anomalous quantum Hall
effect.25,26 This is also the case for spin-1/2 Dirac fermions
in graphene.27 Around half-filling, i.e., EF = 0, one observes
the characteristic sequence σ 1

H = ±NDNe2/h describing the
quantum Hall plateaus for integer-spin Dirac-Weyl fermions,13

where ND is the number of Dirac points crossing the flat
band. For integer-spin Dirac-Weyl fermions, the absence of the
half-integer anomaly leads to a zero Hall conductivity plateau.
In Fig. 3, we see the characteristic zero Hall conductivity
plateau for integer-spin Dirac-Weyl fermions and ND = 1,
which is in agreement with the fact that a single Dirac cone is
present in this spin-1 regime.

Interestingly, a sharp change of behavior occurs at EF =
±√

2t located at the van Hove singularities present in the
DOS [see Fig. 1(d)], which constitute the boundaries between
the σ

1/2
H and σ 1

H sequences. We point out that in the standard
honeycomb lattice, the van Hove singularities constitute
boundaries between relativistic and nonrelativistic regimes,26

which is very different from the result presented here. The Hall
conductivity sequence obtained from an ECH lattice subject
to a uniform magnetic flux therefore combines the two Hall
sequences σ

1/2
H and σ 1

H of spin-1/2 and spin-1 Dirac-Weyl
fermions, respectively. Obtaining the Hall sequence σH(EF),
such as presented in Fig. 3, would provide a clear signature for
the coexistence of spin-1/2 and spin-1 Dirac-Weyl fermions
in the ECH lattice.

In a cold-atom framework, such a study would require the
presence of a uniform synthetic magnetic field within the
optical ECH lattice. This difficult, but realistic, task would
require to engineer Peierls phases exp(iφj ) that accompany
the hopping of the atoms along the links j , in such a way
that the total product of the phases along a plaquette yields∏

� φj = �, where � is the magnetic flux per plaquette.
Such phases could be induced by means of Raman-assisted
tunneling (see Ref. 28 for a review of synthetic gauge fields
for cold atoms), as recently demonstrated experimentally in
Ref. 29. Signatures related to the Hall sequences could then be
obtained from density measurements, as discussed in Refs. 30
and 31.

B. Spin-orbit coupling

An intrinsic spin-orbit (SO) coupling term

HSO = iλSO

∑
〈〈ij〉〉αβ

(
d1

ij × d2
ij

) · σαβc
†
iαcjβ (8)

has been introduced in Ref. 17 to predict the quantum spin
Hall effect in a model described by a standard honeycomb
lattice. Here, λSO is the SO coupling strength, d1

ij and d2
ij are

two vectors connecting the NNN sites i and j , and σ is the
vector of Pauli matrices acting on the spin. This term opens
a bulk gap in the energy spectrum εH (k) that is associated
to a nontrivial Z2 index and hosts topologically protected

helical edge states (i.e., counterpropagating edge states with
opposite spin).17 This NNN SO term has been generalized
to other lattices exhibiting spin-1/2 relativistic fermions,16,33

and systematically leads to nontrivial Z2 phases. In lattices
featuring effective spin-1 fermions, such as the Lieb or T3

lattices, the situation is more subtle. The NNN SO term leads
to a trivial phase for the T3 lattice, but a nontrivial phase for the
Lieb lattice.9,10,34 Therefore, the effect of the SO term on the
ECH lattice, in which spin-1 and spin-1/2 excitations coexist,
is a priori a nontrivial problem. Let us comment on the fact that
the NNN hopping defined on the ECH lattice leads to a kagome
structure. However, the path-dependent phases associated to
the hopping in Eq. (8) generate a radically different spectrum,
featuring nontrivial bulk gaps (cf. below). Finally, we mention
that the SO term (8) could, in principle, be engineered in optical
lattices (cf. Refs. 8 and 35–37).

First, we show how the SO term affects the low-energy
theory describing the two kinds of Dirac-Weyl fermions. In
this limit, the effective Hamiltonians are

h
1/2
k = ν1/2(kxσ1 + kyσ2) −

√
3

2
αλSOσ3, (9)

h1
k = ν1(kxS1 + kyS2) − 2

√
3αλSOS3, (10)

where α = ± is the spin index. We note that Eq. (9) holds for all
the spin-1/2 Dirac species, namely, for all K± at f = 1/5,4/5.
Therefore, the SO term generates the same mass term for all
the spin-1/2 relativistic excitations, and thus opens bulk gaps
at the four independent spin-1/2 Dirac points. Two bulk gaps
also appear in the vicinity of the spin-1 Dirac point (i.e., f =
1/2) with the flat band being preserved by the SO term. Our
result indicates that the bulk gaps associated with the spin-1
Dirac-Weyl fermion are much bigger than the gap associated
with the spin 1/2 Dirac-Weyl fermions (cf. also Fig. 4).

We now compute the four Z2 indices νN , with N = 1,2,3,4
associated with the four bulk gaps opened by HSO. Since the
ECH lattice possesses inversion symmetry, the Z2 topological
invariant νN associated with the N th bulk gap can be easily

0 2 3 4
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6.1

4.2

8.0

8.0

6.1

4.2

E

k

FIG. 4. The energy spectrum E = E(k) for an ECH lattice
subject to the Haldane-type SO coupling (8) with periodic boundary
conditions along one spatial direction shows the presence of helical
edge states in the vicinity of both the spin-1/2 and the spin-1 regimes.
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TABLE I. Parity-eigenvalue pattern at the four T -invariant
momenta �i for the four different occupied bands. All the bulk gaps
are associated with a nontrivial Z2 index ν = 1.

P3 �0 �1 �2 �3
∏

i ν

Band 4 +1 −1 +1 −1 1 ν4 = 1
Band 3 −1 +1 −1 +1 1 ν3 = 1
Band 2 +1 −1 +1 −1 1 ν2 = 1
Band 1 +1 +1 −1 +1 − 1 ν1 = 1

evaluated through the formula38,39

3∏
i=0

N∏
m=1

ξ2m(�i) = (−1)νN . (11)

In this expression, ξ2m(�i) = ±1 is the parity eigenvalue
associated with the 2mth occupied energy band, which is
evaluated at one of the four T -invariant momenta k = �i .
The latter can be expressed as �i = q̂1ni/2 + q̂2mi/2 with
ni = {0,1} and mi = {0,1}, where q̂1 = 2π/3(1,

√
3) and q̂2 =

2π/3(1, − √
3). Choosing the site τ = 3 inside the unit cell as

the center of inversion, the parity operator acts as

P3[ψ1(r),ψ2(r),ψ3(r),ψ4(r),ψ5(r)]

= [ψ1(−r + a1 − a2),ψ4(−r + a1),ψ3(−r),

ψ2(−r − a1),ψ5(−r + a3 − a1)], (12)

where ψτ (r) is the single-particle wave function defined at
site τ . The eigenstates of H0+SO(k = �i), as well as the
parity eigenvalues of the occupied bands, are determined
numerically, yielding the results presented in Table I. We find
that the expression (11) gives (−1)ν = −1 for each bulk gap,
indicating that the Z2 phases generated by the SO term are
all nontrivial. Therefore, the spin-1 regime of the ECH lattice
behaves similarly to the Lieb lattice.9,10,34

To further confirm these results, we diagonalize the ECH
lattice in the presence of the SO term and consider periodic
boundary conditions along one spatial direction. In this
cylindrical geometry, the energy spectrum features helical edge
states within the four bulk gaps predicted by the nontrivial
Z2 index16,17,33 (see Fig. 4). We note that the dispersion
relations E(k) associated with the edge states at half-filling
are similar to those obtained from the Lieb lattice,10,34 further
illustrating the similarity between the spin-1 regimes of the
ECH and Lieb lattices. In the vicinity of the spin-1/2 regime,
i.e., f = 1/5,4/5, the dispersion relation of the edge states is
similar to those obtained in the kagome lattice.16 These results
show that the SO term acts in a nontrivial way, both for the
spin-1 and spin-1/2 regimes, indicating that the ECH lattice
presents striking similarities with both the kagome and the Lieb
lattices. However, the presence of a SO term does not allow
us to distinguish between the spin-1 and spin-1/2 regimes,
as they would both give rise to the same quantum spin Hall
effect. Finally, we mention that edge-state structures, such as
depicted in Fig. 4, could be probed in atomic systems through
Bragg spectroscopy.40–42

C. Charge density waves (CDW)

In the honeycomb lattice, a staggered potential is known to
open a trivial bulk gap at half-filling.17 Such a perturbation acts

as local chemical potentials μA = −μB , which take opposite
values at the sites A and B constituting the unit cell of
the honeycomb. Such a perturbation has been generalized
for lattices featuring N > 2 sites per unit cell, such as the
kagome16 and the decorated honeycomb lattice.33 This charge-
density-wave term is expressed as H CDW

k = diag(μ1, . . . μN ),
which reduces to the honeycomb staggered potential for
N = 2 and μ1 = −μ2. For lattices with N > 2 exhibiting
spin-1/2 Dirac fermions, it was shown that this CDW takes
the form of an axial gauge field in the effective low-energy
Hamiltonian,16,33 namely, a gauge potential A which has
opposite sign at two independent Dirac points.

Here, we are interested in the fate of the spin-1/2 and
spin-1 Dirac points when a charge-density-wave term H CDW

k =
t diag(μ1, . . . ,μ5) is added in the ECH lattice, where the
local chemical potentials μτ can be individually tuned. In the
vicinity of the four spin-1/2 Dirac points K±, we find that the
low-energy terms corresponding to the CDW take the form

h(p)1/2
CDW = −(

Al
xσ1 + Al

yσ2 − Al
zσ3

) + A0I, f = 1
5 ,

(13)

h(p)1/2
CDW = (

Al
xσ1 + Al

yσ2 + Al
zσ3

) + A0I, f = 4
5 , (14)

where Al
x = (μ1 − μ5)l/4

√
3, Al

y = (μ1 − 2μ3 + μ5)l/12,
Al

z = (μ2 − μ4)l/4, A0 = (2μ1 + 3μ2 + 2μ3 + 3μ4 +
2μ5)/12, and l = ± refers to the two Dirac points K±.
Therefore, when μ2 = μ4, i.e., Al

z = 0, and similar to the
results reported for the kagome lattice, we find that the CDW
acts as an axial gauge field. In other words, the low-energy
Hamiltonians

h(p)1/2 =
∑

ν

v1/2
(
kν − A l

ν

)
σν, (15)

where A l
ν = Al

ν/v1/2 and A +
ν = −A −

ν , can be expressed in
terms of a gauge potential A, which has opposite sign at two
independent Dirac points. In this case, the effect of the gauge
potential A ±

ν on the spin-1/2 Dirac-Weyl fermions is to move
the positions of their Dirac points inside the Brillouin zone.
At a given filling, the displacement of the two Dirac points
is opposite since the gauge field is axial. Furthermore, these
displacements are in opposite directions at fillings f = 1/5
and 4/5 [cf. Eq. (14)]. In other words, if two Dirac cones come
closer at f = 1/5 as the CDW is increased, the two cones at
f = 4/5 will separate. When the CDW is sufficiently strong,
the two approaching Dirac points at f = 1/5 will annihilate
each other,3,31,32 while the two Dirac points at f = 4/5 will
survive. This process allows the destruction of a pair of spin-
1/2 species at a given filling while preserving the others.

In contrast, by expanding the Hamiltonian around the spin-1
Dirac point at �0, we find that the low-energy form of the CDW
perturbation is more involved than for the spin-1/2 regime, and
that it can not be simply interpreted as a gauge field. Indeed,
the low-energy limit of the CDW term can not be written
as a superposition of the three angular-momentum matrices
Sx,y,z, which do not form a complete basis for 3 × 3 matrices.
This interesting result indicates that the spin-1/2 and spin-1
regimes of the ECH lattice should react differently to the CDW,
thus providing a mechanism for distinguishing them in an
experiment.
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FIG. 5. (Color online) Energy bands E = E(kx,ky) for different
configurations of the CDW: (a) μ2 = −μ4 = 1 and μ1,3,5 = 0: the
spin-1/2 regimes are gapped while the spin-1 regime is preserved.
(b) μ2 = μ4 = 1 and μ1,3,5 = 0.5: the spin-1 regime is gapped
while the spin-1/2 regimes and the flat band are preserved. (c)
μ2 = μ4 = 0.5, μ1 = 0.25, μ3 = −0.6, and μ5 = 0.1: the spin-1
regime is gapped, the flat band is perturbed, and the robust Dirac
points at f = 1/5 move closer (cf. dotted circles). (d) The same
CDW configuration as in (c) but multiplied by a factor 1.4 (i.e.,
μ2 = μ4 = 0.7, μ1 = 0.35, μ3 = −0.84, and μ5 = 0.14): the Dirac
points at f = 1/5 annihilate each other (cf. dotted circles), and only
the spin-1/2 Dirac points at f = 4/5 survive.

The possibility to destroy and preserve the spin-1/2 and
spin-1 fermions individually, using the CDW perturbation, is
appealing. Here, we report a selection of relevant configura-
tions that achieve this goal.

(i) μ2 = −μ4 and μ1 = μ3 = μ5. In this case, the CDW
acts as a staggered potential for the background honeycomb
lattice. It destroys all the spin-1/2 Dirac points at K± and
f = 1/5,4/5 by opening trivial bulk gaps.17 By setting μ1 =
μ3 = μ5, the CDW do not perturb the localized states defined
at the green sites (τ = 1,3,5) of Fig. 1(a). The flat band is
therefore preserved. In addition, we find that when μ2 = −μ4,
the spin-1 Dirac point at �0 only survives for μ1,3,5 = 0. This
situation is illustrated in Fig. 5(a).

(ii) μ2 = μ4 and μ1 = μ3 = μ5. In this case, Al
x = Al

y =
Al

z = 0 and Al
0 �= 0, thus the spin-1/2 Dirac points are

simply shifted in energy. Since μ1 = μ3 = μ5, the flat band
is preserved, but the spin-1 Dirac point at �0 is generally
destroyed. This situation is illustrated in Fig. 5(b).

(iii) μ2 = μ4 and arbitrary μ1,3,5. In this case, the CDW
acts as a nontrivial axial gauge field and the spin-1/2 Dirac
points move inside the Brillouin zone in opposite directions.
Therefore, for small CDW, the spin-1/2 fermions are all
preserved [cf. Fig. 5(c)]. For larger CDW, two fermions
generally annihilate each other at f = 1/5 or 4/5 (the
displacements being in opposite direction at these fillings), in
which case only one spin-1/2 regime survives [cf. Fig. 5(d)].
In addition, for arbitrary μ1,3,5, the flat band and the spin-1
Dirac fermion are generally destroyed.

Therefore, by selecting the appropriate configuration of the
CDW perturbation, one is able to engineer a system, the band
structure of which displays zero, one, or two spin-1/2 Dirac
regimes, a flat band or not, a spin-1 Dirac regime or not.

VI. CONCLUSIONS

We have investigated the ECH lattice which features both
spin-1/2 and spin-1 Dirac-Weyl fermions at different filling
fractions. By using an intriguing mapping, we have shown that
the underlying kagome and honeycomb structures of the ECH
lattice play a crucial role in determining the band structure
of the ECH lattice. We have also explored several types of
perturbations on the lattice that offer a powerful control over
this rich system. It is certainly tempting to extend this scenario
to include collisional interactions between the spins. This will
not only allow for exotic new phases43,44 and applications
of models such as the Kitaev anyonic model,45 but will also
hopefully shed light on open questions at the forefront of
condensed-matter physics.
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APPENDIX: SINGLE-PARTICLE SCHRÖDINGER
EQUATION AND THE “HONEYCOMB-KAGOME”

MAPPING

The single-particle Schrödinger equation describing nonin-
teracting particles on the ECH lattice can be directly derived
from the second-quantized Hamiltonian (2). Denoting the
wave function at lattice site τ = 1, . . . ,5 by ψτ (x), with spatial
coordinate x, one finds the set of coupled equations

(E/t)ψ1(x) = ψ4(x + a2/2) + ψ2(x − a2/2),

(E/t)ψ2(x − a2/2) = ψ1(x) + ψ3(x − a2/2 + a1/2) + ψ5(x − a2/2 + a3/2),

(E/t)ψ3(x − a2/2 + a1/2) = ψ4(x − a2/2 + a1) + ψ2(x − a2/2), (A1)

(E/t)ψ4(x − a2/2 + a1) = ψ1(x − a2 + a1) + ψ3(x − a2/2 + a1/2) + ψ5(x − a2/2 − a3/2 + a1),

(E/t)ψ5(x − a2/2 − a3/2 + a1) = ψ2(x − a2/2 + a1 − a3) + ψ4(x − a2/2 + a1),

where a1 = (1,0), a2 = (−1/2,
√

3/2), a3 = (−1/2, − √
3/2) (see main text). For E �= 0, one can decouple (A1) into two subsets

of equations describing the red (i.e., τ = 2,4) and green sites (i.e., τ = 1,3,5) independently. We find

[(E/t)2 − 2]ψ1(x) = ψ3(x + a2/2 − a1/2) + ψ3(x − a2/2 + a1/2) + ψ5(x + a2/2 − a3/2) + ψ5(x − a2/2 + a3/2), (A2)
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[(E/t)2 − 2]ψ3(x − a2/2 + a1/2) = ψ1(x) + ψ1(x + a1 − a2) + ψ5(x − a2/2 + a3/2) + ψ5(x − a2/2 − a3/2 + a1),

[(E/t)2 − 2]ψ5(x − a2/2 − a3/2 + a1) = ψ1(x + a1 − a2) + ψ1(x + a1 − a3) + ψ3(x − a2/2 + a1/2)

+ψ3(x − a2/2 + 3a1/2 − a3), (A3)

and

[(E/t)2 − 3]ψ2(x − a2/2) = ψ4(x + a2/2) + ψ4(x − a2/2 + a1) + ψ4(x − a2/2 + a3), (A4)

[(E/t)2 − 3]ψ4(x − a2/2 + a1) = ψ2(x − a2/2) + ψ2(x − 3a2/2 + a1) + ψ2(x − a2/2 + a1 − a3).

Writing ψτ (x) = exp(ik · x)φτ , one finds the two separate eigensystems

εK (k)

⎛
⎝φ1

φ3

φ5

⎞
⎠ = 2

⎛
⎝ 0 cos k · (a2 − a1)/2 cos k · (a2 − a3)/2

cos k · (a2 − a1)/2 0 cos k · (a3 − a1)/2
cos k · (a2 − a3)/2 cos k · (a3 − a1)/2 0

⎞
⎠

⎛
⎝φ1

φ3

φ5

⎞
⎠ = HK (k)

⎛
⎝φ1

φ3

φ5

⎞
⎠ (A5)

and

εH (k)

(
φ2

φ4

)
=

(
0

∑
ν eik·aν∑

ν e−ik·aν 0

) (
φ2

φ4

)
= HH (k)

(
φ2

φ4

)
, (A6)

where we introduced the dimensionless quantities

εK (k) = [E(k)/t]2 − 2, εH (k) = [E(k)/t]2 − 3. (A7)

The two decoupled systems, described by the Hamiltonians HH (k) and HK (k), correspond to the honeycomb and kagome lattices
formed by the red (i.e., τ = 2,4) and green (i.e., τ = 1,3,5) sites, respectively. The energy bands of the two subsystems are
given by

εK (k) = (1 ±
√

4Ak − 3), εK (k) = −2, (A8)

εH = ±
∣∣∣∣∣

3∑
ν=1

eik·aν

∣∣∣∣∣ , (A9)

where Ak = cos2[k · (a2 − a3)/2] + cos2[k · (a3 − a1)/2] + cos2[k · (a1 − a2)/2]. We note that
√

4Ak − 3 = |∑3
ν=1 eik·aν |, thus

we find that ±√
εK (k) + 2 = ±√

εH (k) + 3 (for E �= 0). The latter result shows that the band structure describing the ECH
lattice, E(k) �= 0, can be equally obtained from the kagome spectrum εK (k) through the relations (A7) and (A8), or from the
honeycomb spectrum εH (k) through the relations (A7)–(A9). Besides, we note that the flat band at E = 0 can also be deduced
from the kagome subsystem through (A7) and (A8), although we stress that this mapping is only strictly valid for E �= 0. The
band structures εK,H (k) are illustrated in Figs. 2(a) and 2(c). The five energy bands associated to the ECH lattice, obtained
through the relations E/t = ±√

εK + 2 and E/t = ±√
εH + 3, are depicted in Figs. 2(b) and 2(d).
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