
PHYSICAL REVIEW B 85, 155439 (2012)

Phase diagram for the ν = 0 quantum Hall state in monolayer graphene
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The ν = 0 quantum Hall state in a defect-free graphene sample is studied within the framework of quantum
Hall ferromagnetism. We perform a systematic analysis of the “isospin” anisotropies, which arise from the valley
and sublattice asymmetric short-range electron-electron (e-e) and electron-phonon (e-ph) interactions. The phase
diagram, obtained in the presence of generic isospin anisotropy and the Zeeman effect, consists of four phases
characterized by the following orders: spin-polarized ferromagnetic, canted antiferromagnetic, charge density
wave, and Kekulé distortion. We take into account the Landau level mixing effects and show that they result
in the key renormalizations of parameters. First, the absolute values of the anisotropy energies become greatly
enhanced and can significantly exceed the Zeeman energy. Second, the signs of the anisotropy energies due to
e-e interactions can change upon renormalization. A crucial consequence of the latter is that the short-range
e-e interactions alone could favor any state on the phase diagram, depending on the details of interactions at
the lattice scale. On the other hand, the leading e-ph interactions always favor the Kekulé distortion order. The
possibility of inducing phase transitions by tilting the magnetic field is discussed.

DOI: 10.1103/PhysRevB.85.155439 PACS number(s): 73.43.−f, 71.10.−w

I. INTRODUCTION

Quantum Hall effects in graphene1–3 were observed shortly
after4,5 the discovery of the material and have attracted a lot
of attention ever since (for general reviews on graphene, see
Refs. 6–8). Besides the “anomalous” sequence of the orbital
Landau levels9–11 (LLs), Fig. 1,
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eB⊥
, (1)

characteristic of the Dirac nature of electron spectrum in
graphene, an additional to spin, twofold valley degeneracy
brings in extra richness to physical phenomena [in Eq. (1),
n takes integer values, v is the Dirac velocity, lB is the
magnetic length dependent on the perpendicular component
B⊥ of the magnetic field, and we put h̄ = 1 throughout the
paper]. Among all, the n = 0 LL really stands out: it is located
exactly at the Dirac point ε0 = 0 and, in each valley, K or
K ′, its wave functions reside solely on one of the sublattices,
A or B, Fig. 2. For n = 0 LL, the valley KK ′ “isospin” is,
therefore, equivalent to the sublattice AB “pseudospin” and is
referred to as just the “isospin” below.

As the quality of graphene devices progressed, the strongly
correlated quantum Hall physics clearly emerged12–19 at
integer and fractional filling factors ν. To date, one of the most
intriguing questions concerns the nature of the ν = 0 quantum
Hall state, in which the orbitals of the n = 0 LL, fourfold
degenerate in the KK ′ ⊗ s isospin-spin space in the absence
of the Zeeman effect, are occupied on average by two electrons,
Fig. 1. The interest is largely motivated by the strongly
insulating behavior of the state, initially observed in samples
on SiO2 substrate,13,14 later in suspended samples15,17 and quite
recently in samples on boron nitride substrate.18 The tendency
of the higher quality samples to be more resistive signifies
that the insulating behavior is an intrinsic property of an ideal
defect-free system, rather than it is due to disorder-induced
localization effects. Although the interaction-driven character

of the insulating ν = 0 state is apparent, its precise nature
remains an open challenge in the graphene field.

A lot of theoretical activity has been devoted20–25,27–32,34–38

to the properties of the ν = 0 quantum Hall state in graphene
(see also Refs. 39 and 40 for reviews). Due to the quenched
kinetic energy, in sufficiently clean samples and/or high
enough magnetic fields, electrons in a partially filled LL
present a strongly interacting system. While at arbitrary (e.g.,
fractional) filling factors ν, such systems pose a formidable
theoretical challenge, an appealing property of the integer
fillings is that, in the leading approximation, the family of the
many-body ground states can be found exactly. For all integer
ν in graphene, including ν = 0, this solution is provided by
the general theory of quantum Hall ferromagnetism20,21,41–43

(QHFM) for multicomponent systems in which spin and
valley degrees of freedom are united into one SU(4) “spin.”
(Alternative views on the ν = 0 state based on the idea of
“magnetic catalysis” can be found in Refs. 34–38.)

The idea of constructing the exact solution can be traced
back to the Hund’s rule in atomic physics: specifically for the
ν = 0 state, the energy of the repulsive Coulomb interactions
is minimized by the many-body states, in which the four-
dimensional (4D) KK ′ ⊗ s isospin-spin subspace of each
orbital of the n = 0 LL is occupied by two electrons in
exactly the same way, Fig. 1. Two key provisos that make
this result exact are (i) absence of the single-particle or
many-body perturbations that break the SU(4) symmetry in
the KK ′ ⊗ s space and (ii) absence of the interaction-induced
electron transitions between different LLs (LL “mixing”). For
SU(4)-symmetric Coulomb interactions, the ground state is
degenerate with respect to the choice of occupation of the
isospin-spin space and there is no preference between ordering
of the spin versus isospin degrees of freedom.

This exact result is the cornerstone of the theory of the ν = 0
state. In a real graphene system, neither of the conditions (i) or
(ii) is satisfied precisely, and the result is generally not exact.
However, it is possible to develop the low-energy quantum
field theory for the ν = 0 quantum Hall ferromagnet (QHFM)
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FIG. 1. (Color online) Landau levels (LLs) [Eq. (1)] in monolayer
graphene. Neglecting the Zeeman effect, the orbitals (i.e., eigenstates
of the orbital part of the single-particle Hamiltonian) of each LL are
fourfold degenerate due to two projections of spin and two valleys
(splitting shown for illustration purpose and not implied). At ν = 0
filling factor, each orbital of the n = 0 LL is occupied on average
by two electrons, while LLs with n < 0 (n > 0) are filled (empty).
The many-body states with identical occupation of the KK ′ ⊗ s

isospin-spin subspaces of all orbitals (only one possible occupation
is shown) exactly minimize the energy of the Coulomb interactions,
SU(4) symmetric in the KK ′ ⊗ s space. Such states form the family
of degenerate ground states of the ν = 0 quantum Hall ferromagnet.

in which the deviations from these conditions are consistently
taken into account. As we show here, for Coulomb interactions
of moderate strength e2/v ∼ 1, as is the case in graphene, the
effects of LL mixing can be systematically taken into account
in the large-N approximation. Further, the factors that break
the symmetry in the AB ⊗ s space typically have smaller
energy scales than the Coulomb interactions and can be taken
into account perturbatively. They are, nonetheless, extremely
important, as they lift the rich degeneracy of the ground state
favoring certain orders, the physical properties of which may
differ substantially.

The simplest single-particle mechanism is the Zeeman
effect, which breaks the spin symmetry and naturally favors
the fully spin-polarized ferromagnetic (F) state.21,23,24 Since

FIG. 2. (Color online) Graphene honeycomb lattice and the
structure of the wave functions of the n = 0 LL at the lattice scale. In
each valley, K or K ′, the wave functions reside on only one sublattice,
A (left) or B (right).

spin-orbit interaction is weak in graphene, the Zeeman effect
is practically the only relevant factor that affects the spin
symmetry, while other key perturbations break the isospin
symmetry. An analogous regular “Zeeman” field for the KK ′
isospin is virtually impossible to implement in a controlled
way in real graphene, although a random one can arise from
the short-range disorder.

However, even in an ideal defect-free sample electron-
electron (e-e) and electron-phonon (e-ph) interactions nec-
essarily break the valley and sublattice symmetry at the lattice
scales.22,25,29–31 Having many-body origin, these mechanisms
give rise to the isospin anisotropy rather than the Zeeman-
type fields. Existing studies22,29 of the lattice effects of e-e
interactions on the ν = 0 state in the framework of the QHFM
theory were carried out using the tight-binding extended
Hubbard model, with adjustable interactions at the lattice scale
and Coulomb asymptotic at larger distances. Depending on
the interactions at the lattice scale, the competition between
the F and charge-density-wave (CDW) ground states was
predicted in Ref. 22, while the numerical mean-field analysis
of Ref. 29 predicted either the CDW or the antiferromagnetic
(AF) ground state. Electron-phonon interactions, on the other
hand, were predicted to favor the fully isospin-polarized states
with either the Kekulé distortion30,31 (KD) or CDW32 orders.
We also mention that similar phases were predicted in Ref. 37
within a different framework of “magnetic catalysis.”

The variety of the proposed ground states poses a question
whether the above list is exhaustive, i.e., whether, for a given
source of the isospin anisotropy, one can find all possible orders
that could be realized in a general case scenario. Attempting
to answer this question, in this paper, we perform a systematic
analysis of the isospin anisotropies of the ν = 0 QHFM
arising from the short-range e-e and e-ph interactions, without
appealing to any specific lattice model. Starting from the most
general form of e-e interactions allowed by symmetry in the
Dirac Hamiltonian and taking the leading e-ph interactions
into account, we derive the low-energy QHFM theory in the
presence of the isospin anisotropy and obtain a phase diagram
for the ν = 0 state. The diagram obtained by separately
minimizing the energy of the generic isospin anisotropy
(i.e., considered without any assumptions about the nature or
properties of the underlying interactions, whether e-e or e-ph,
repulsive or attractive) consists of four phases: SU(2)-spin-
degenerate F and AF phases and spin-singlet CDW and KD
phases with Z2 and U(1) isospin degeneracies, respectively.
Including the Zeeman effect does not alter the CDW or
KD phases, but removes the degeneracy of the F phase and
transforms the AF phase into a canted antiferromagnetic (CAF)
phase with noncollinear spin polarizations of sublattices.

We also consider the critical renormalizations of the
isospin anisotropy by the long-range Coulomb interactions
and address the question whether one can rule out certain
states from the phase diagram based on the repulsive nature of
the Coulomb interactions and attractive nature of the phonon-
mediated interactions. We arrive at an important conclusion
that the short-range e-e interactions could favor essentially
any state on the generic phase diagram: F, CAF, CDW, or
KD. The reason for this are the peculiar properties of the
renormalizations, which allow for sign changes of the e-e
coupling constants, switching the interactions from repulsive
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to attractive in certain valley-sublattice channels. As a result,
unless a reliable numerical estimate for the bare short-range
e-e coupling constants is provided, one cannot theoretically
rule out any possibility. In contrast, the phonon-mediated
interactions remain attractive under renormalizations and the
leading e-ph interactions always favor the KD order.

Among potential practical applications of the present work,
we also study the transitions that could be induced between the
obtained phases by the tilting magnetic field. Once combined
with a more details analysis of the charge excitations of these
phases, to be presented elsewhere,33 our findings could be used
to identify the particular phase realized in the experimentally
observed13–15,17,18 insulating ν = 0 state.

The rest of the paper is organized as follows. In Sec. II, the
low-energy Hamiltonian, which describes electron dynamics
in the vicinity of the Dirac point, is presented, the basic
properties of Landau levels in graphene are discussed, and the
projected Hamiltonian for the n = 0 Landau level is derived.
In Sec. III, the low-energy quantum field theory for the ν = 0
quantum Hall ferromagnet, which includes the effects of the
isospin anisotropy, is derived. In Sec. IV, the Landau level
mixing effects are considered in the large-N approximation
and the critical renormalizations of the isospin anisotropies are
studied. In Sec. V, the phase diagram of the ν = 0 quantum
Hall ferromagnet in the presence of the isospin anisotropy
and Zeeman effect is obtained. The possibility of inducing
phase transitions by tilting the magnetic field is discussed.
Concluding remarks and connection to the experiment are
presented in Sec. VI.

II. MODEL AND HAMILTONIAN

We start the analysis by writing down the low-energy
Hamiltonian

Ĥ = Ĥ0 + Ĥe-e + Ĥe-ph, (2)

which describes electron dynamics in graphene in the vicinity
of the Dirac point. The terms Ĥ0, Ĥe-e, and Ĥe-ph, de-
scribing noninteracting electrons, e-e and e-ph interactions,
respectively, are discussed in the next three subsections. Our
Hamiltonian and the choice of basis are identical to those of
Refs. 44 and 45 with some differences in notation.

A. Basis and single-particle Hamiltonian

At atomic scales, the single-particle electron Hamiltonian
can be written as

Ĥ0 =
∫

d3�r �̂†
σ (�r)

[
− ∂2

�r
2m

+ U (�r)

]
�̂σ (�r). (3)

Here, �̂σ (�r) is the electron field operator, �r = (x,y,z) is a
continuous three-dimensional (3D) radius vector, and σ = ↑,

↓ is the spin projection (summation over σ is implied).
The self-consistent periodic potential U (�r) of the graphene
honeycomb lattice constrains electrons around the z = 0 plane
and has a C6v point group symmetry within the plane. This

symmetry dictates the following properties of the graphene
band structure. Exactly at the Dirac point, taken to be at
zero energy ε = 0, there are four orthogonal Bloch-wave
solutions uKA(�r), uKB(�r), uK ′A(�r), uK ′B(�r) of the Schrödinger
equation associated with Eq. (3). The indices K and K ′
refer to different valleys in the Brillouin with wave vectors
K = 4π

3a2
0
(a1 − a2) and K′ = −K, respectively (a1,2 are the

primitive translations of the honeycomb lattice, shown in
Fig. 2 and a0 = |a1,2| ≈ 2.46 Å is the lattice constant), and
the indices A and B indicate that the wave functions are
predominantly localized at the positions of the A and B sites.
The solutions corresponding to different valleys are related as
uK ′A(�r) = u∗

KA(�r) and uK ′B(�r) = u∗
KB(�r).

For the excitation energies ε much smaller than the
bandwidth, one may expand the electron field in terms of the
ε = 0 solutions,

�̂σ (�r) = ψ̂KAσ (r)uKA(�r) + ψ̂KBσ (r)uKB(�r)

+ψ̂K ′Aσ (r)uK ′A(�r) + ψ̂K ′Bσ (r)uK ′B(�r). (4)

The Dirac field operators ψλσ (r), λ = KA, KB, K ′A, K ′B, are
functions of a two-dimensional (2D) continuous radius vector
r = (x,y) and vary at scales much larger than the atomic one
a0. To ensure the standard normalization of the fields reflected
in anticommutation relation

{ψλσ (r),ψ†
σ ′λ′(r′)} = δλλ′δσσ ′δ(r − r′),

where δ(r − r′) is a 2D delta function at large scales and {,} is
the anticommutator, the Bloch wave functions uλ(�r) must be
normalized as∫

3uc
d3�r u∗

λ(�r)uλ′(�r) = 3|[a1 × a2]|δλλ′, (5)

where the integration is performed over the tripled unit cell
(3uc), which contains six atoms.

The Dirac fields can be joined in a vector as

ψ̂σ (r) =

⎛
⎜⎜⎝

ψ̂KAσ (r)
ψ̂KBσ (r)
ψ̂K ′Bσ (r)

−ψ̂K ′Aσ (r)

⎞
⎟⎟⎠

KK ′⊗ĀB̄

. (6)

The advantage of this ordering is that it gives the most
symmetric representation of the Dirac Hamiltonian. Since this
way the sublattice indices in the K ′ valley are interchanged,
to avoid confusion, we denote the sublattice space of the basis
(6) as ĀB̄, and the whole 4D space as the direct product
KK ′ ⊗ ĀB̄. With spin included, the low-energy electron
degrees of freedom are described by the eight-component field
operator

ψ̂(r) =
(

ψ̂↑(r)
ψ̂↓(r)

)
s

(7)

in the direct product KK ′ ⊗ ĀB̄ ⊗ s of the valley (KK ′),
sublattice (ĀB̄), and spin (s) spaces.

The symmetry properties of the Bloch wave functions uλ(�r)
at the Dirac point are sufficient to derive the many-body low-
energy Hamiltonian in the basis of ψ̂(r). The single-particle
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Hamiltonian, obtained from Eq. (3), has the form

Ĥ0 =
∫

d2r ψ̂†(r)

[
v

∑
α=x,y

T0α

(
p̂α − e

c
Aα

)
− εZSz

]
ψ̂(r),

(8)

where p̂α = −i∇α , ∇ = (∂x,∂y), and v ≈ 108cm/s is the
velocity of the Dirac spectrum. Here and below, for α,β =
0,x,y,z,

Tαβ = τKK ′
α ⊗ τ ĀB̄

β ⊗ 1̂s ,

with the unity (τ0 = 1̂) and Pauli (τx , τy , τz) matrices in the cor-
responding 2D subspaces. In Eq. (8), we introduced the orbital
and spin effects of the magnetic field [not written in Eq. (3)],
described by the vector potential Aα(r), rot A = (0,0,B⊥), and

the Zeeman term with εZ = μBB, B =
√

B2
⊥ + B2

‖ and

Sz = 1̂KK ′
α ⊗ 1ĀB̄

β ⊗ τ s
z .

We assume arbitrary orientation of the total magnetic field
B = (B‖,0,B⊥) relative to the plane z = 0 of graphene sample;
the z direction in the spin space points along B and is not
necessarily perpendicular to the sample.

B. Electron-electron interactions

The most general form of the spin-symmetric e-e interac-
tions in the low-energy Hamiltonian (2) can be written down44

solely based on the symmetry considerations as

Ĥe-e = Ĥe-e,0 + Ĥe-e,1. (9)

Here,

Ĥe-e,0 = 1

2

∫
d2rd2r′ [ψ̂†(r)ψ̂(r)]V0(r − r′)[ψ̂†(r′)ψ̂(r′)]

(10)

describes the long-range Coulomb interactions, V0(r) =
e2/|r|, symmetric in valley-sublattice space KK ′ ⊗ ĀB̄ and

Ĥe-e,1 = 1

2

∫
d2r

∑
α,β

′
gαβ[ψ̂†(r)Tαβψ̂(r)]2 (11)

describes the short-range e-e interactions that break the valley
and/or sublattice symmetry. The summation

∑′
α,β includes all

combinations α,β = 0,x,y,z, of the valley α and sublattice β

channels, except for the symmetric one α = β = 0, which is
given by Eq. (10). In Eqs. (10) and (11), and below, normal
ordering of the operators is understood.

The symmetry of the honeycomb lattice yields the following
relations between the couplings:44

g⊥⊥ ≡ gxx = gxy = gyx = gyy,

g⊥z ≡ gxz = gyz, gz⊥ ≡ gzx = gzy,

g⊥0 ≡ gx0 = gy0, g0⊥ ≡ g0x = g0y.

Thus the asymmetry of the interactions in KK ′ ⊗ ĀB̄ space is
described by eight independent coupling constants: g⊥⊥, g⊥z,
gz⊥, gzz, g⊥0, gz0, g0⊥, and g0z.

Although, of course, the origin of both symmetric [Eq. (10)]
and asymmetric [Eq. (11)] e-e interactions are the actual
Coulomb interactions, for brevity, we will refer to them as
the “Coulomb” and “short-range/asymmetric e-e” interactions,
respectively.

To lowest orders, the expressions for the coupling constants
gαβ can be obtained by considering the Coulomb interactions
in the atomic-scale model,

Ĥe-e = 1

2

∫
d3�rd3�r ′ �̂†

σ (�r)�̂†
σ ′(�r ′)

e2

|�r − �r ′| �̂σ ′(�r ′)�̂σ (�r).

(12)

Substituting the expansion (4) for �σ (�r) into Eq. (12) and
using the slow variation of ψ̂(r) at atomic scales, one obtains
Eqs. (9)–(11) with the first-order expressions44

g
(1)
αβ =

∫
3uc

d3�r
3|[a1 × a2]|

∫
d3�r ′ραβ(�r)

e2

|�r − �r ′|ραβ(�r ′) (13)

for the couplings gαβ . In Eq. (13),

ραβ(�r) = 1
2u†(�r)Tαβu(�r)

are the real densities in a given valley-sublattice channel αβ

and

u(�r) =

⎛
⎜⎜⎜⎝

uKA(�r)

uKB(�r)

uK ′B(�r)

−uK ′A(�r)

⎞
⎟⎟⎟⎠

KK ′⊗ĀB̄

.

From the orthogonality properties (5) of the Bloch wave
functions, it is clear that the integrands in Eq. (13), as functions
of �r − �r ′, decay over several unit cells and the asymmetric
interactions are indeed short ranged. This emphasizes the fact
that breaking of the valley-sublattice symmetry arises from
atomic scales.

Using the relations u∗
K ′A(�r) = uKA(�r) and u∗

K ′B(�r) =
uKB(�r), we see that the densities ρ0α(�r) = ρα0(�r) ≡ 0, α =
x,y,z, vanish identically. Therefore g

(1)
0⊥ = g

(1)
0z = g

(1)
⊥0 =

g
(1)
z0 = 0 and the couplings g0⊥, g0z, g⊥0, gz0, although

not prohibited by symmetry, vanish in the first order. The
nonvanishing expressions g

(2)
αβ for gαβ , with α = 0 or β = 0,

arise in the second order in the Coulomb interactions and
involve virtual transitions to other bands; we do not present
these expressions here.

For future discussion in Secs. IV and V, we note the follow-
ing properties. The first-order microscopic expressions (13)
for the coupling constants have the form of the electrostatic
Coulomb energy for the density distributions ραβ(�r). Since
it is well known46 that the electrostatic energy is positive
definite, i.e., positive for any nonvanishing charge distribution,
we conclude that all nonvanishing first-order expressions (13)
must be positive:

g
(1)
⊥⊥ > 0, g

(1)
⊥z > 0, g

(1)
z⊥ > 0, g(1)

zz > 0. (14)

On the other hand, the second-order expressions have to be
negative:

g
(2)
0⊥ < 0, g

(2)
0z < 0, g

(2)
⊥0 < 0, g

(2)
z0 < 0. (15)
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One can expect the lowest-order expressions g
(1)
αβ [Eq. (13)]

and g
(2)
αβ to provide accurate estimates for the couplings gαβ

in the limit of weak Coulomb interactions, e2/v � 1. For
stronger interactions, e2/v ∼ 1, as in real graphene, this
is not necessarily the case. The reason is that the short-
range interactions renormalize themselves at energies on the
order of bandwidth v/a0. As an illustration of this fact,
the diagrams of the low-energy Dirac theory involving just
the short-range interactions contain ultraviolet divergencies;
schematically, each extra order produces a relative factor
gαβ

∫ 1/a0 dq/v ∼ gαβ/(va0) ∼ e2/v. These renormalizations
change the magnitude and, possibly, the signs of the couplings
gαβ in certain channels.

Thus it is more reasonable to treat the couplings gαβ in
Eq. (11) as the bare inputs of the low-energy theory, without
any assumptions about their signs and relative values, and
consider all possibilities. This is the approach that we choose
in the paper. An order-of-magnitude estimate for the bare
couplings, valid for both weak (e2/v � 1) and moderate
(e2/v ∼ 1) Coulomb interactions, is

gαβ ∼ e2a0. (16)

Anticipating the results of the next sections, the asymmetric
short-range e-e interactions (11), although weaker than the
symmetric Coulomb ones (10), appear to be play a crucial
role in the physics of the ν = 0 QHFM. Possible relations
between and the signs of the couplings gαβ become especially
important, as they determine the properties of the isospin
anisotropy and, as a result, the favored ground state order. The
implications of the potential sign restrictions on gαβ , suggested
by Eqs. (14) and (15), will be discussed in Secs. IV and V.

C. Electron-phonon interactions

Besides the short-range e-e interactions (11), another source
of the isospin anisotropy in the ν = 0 QHFM comes from e-ph
interactions. Electrons in graphene couple most efficiently to
the following in-plane optical phonons: two E2 modes with the
phonon wave vector at the � point and A1,B1 modes with wave
vector at K,K ′ point (following the classification of Ref. 45),
shown in Fig. 3. The corresponding e-ph interactions can be

FIG. 3. (Color online) In-plane optical phonon modes with
the strongest e-ph coupling. (left) Linear combination of the two
degenerate E2 modes ûx,y(r) with the phonon wave vector at � point.
(right) Linear combination of degenerate A1, B1 modes ûa,b(r) with
the wave vector at K,K ′ points.

described by the Hamiltonian

Ĥe-ph =
∫

d2r ψ̂†(r)
{
FE2 [Tzy ûx(r) − Tzx ûy(r)]

+FA1 [Txzûa(r) + Tyzûb(r)]
}
ψ̂(r). (17)

The two degenerate E2 modes have the frequency ωE2 ≈
0.196 eV. The A1 and B1 modes are also related by symmetry
and have the same frequency ωA1 ≈ 0.170 eV and same
coupling constant FA1 = FB1 . The lattice deformation due
to A1, B1 modes is that of the Kekulé distortion. The
twofold degeneracy of the modes allows for arbitrary in-plane
displacement of a given atom in Fig. 3, (left) and (right), while
the displacements of the remaining atoms in a tripled unit cell
are related by the corresponding symmetry.

The phonon dynamics is described by the correlation
functions of the displacement operators ûμ(r):

−〈Tτ ûμ(τ,r)ûμ(0,0)〉 = s0

2Mωμ

δ(r)
∫ ∞

−∞

dω

2π
e−iωτDμ(ω),

Dμ(ω) = − 2ωμ

ω2 + ω2
μ

, (18)

in the Matsubara representation. Here, M is the mass of the
carbon atom and s0 =

√
3

4 a2
0 is the area per carbon atom. We

will perform calculations at zero temperature only, in which
case ω is a continuous frequency.

The order-of-magnitude estimate

Fμ ∼ e2/a2
0 (19)

for the coupling constants follows from the dimensional
analysis of Eq. (17) and the electrostatic origin of e-ph
interactions.

D. Landau levels in graphene

In this section, we briefly present the single-particle basis
of the problem and emphasize the key properties of the n =
0 LL.

Solving the Dirac equation associated with Eq. (8) in the
gauge A(r) = (0,B⊥x,0), in the ĀB̄ sublattice space of each
valley K and K ′, one obtains9–11 the wave functions

〈r|np〉 = 1√
2

(
φ|n|(x − xp)

sgn nφ|n|−1(x − xp)

)
ĀB̄

eipy√
Ly

(20)

for all integer n �= 0 and

〈r|0p〉 =
(

φ0(x − xp)
0

)
ĀB̄

eipy√
Ly

, (21)

with the orbital energies εn given by Eq. (1). Here, φ|n|(x)
are the harmonic oscillator wave functions, xp = pl2

B is the
“guiding center,” and Ly is the size of the sample in the y

direction, introduced to discretize the momentum quantum
number p.

The complete set of the single-particle eigenstates in the
KK ′ ⊗ ĀB̄ ⊗ s space is given by

|npμσ 〉 = |μ〉KK ′ ⊗ |np〉ĀB̄ ⊗ |σ 〉s , (22)
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with μ = K,K ′, σ = ↑, ↓, and

|K〉 =
(

1
0

)
KK ′

, |K ′〉 =
(

0
1

)
KK ′

,

|↑〉 =
(

1
0

)
s

, | ↓〉 =
(

0
1

)
s

.

The field operator (7) can be expanded in the basis (22) as

ψ̂(r) =
∞∑

n=−∞
ψ̂n(r), ψ̂n(r) =

∑
pμσ

〈r|npμσ 〉ĉnpμσ , (23)

where ĉnpμσ are the annihilation operators.
The n = 0 LL with ε0 = 0 is located exactly at the Dirac

point and possesses arguably the most peculiar properties: in
each valley, K or K ′, its wave functions (22) reside solely
on one (actual) sublattice, A or B, respectively [see Fig. 2,
Eq. (21), and recall the accepted ordering (7)]. Therefore, for
each spin projection σ , the part

ψ̂0σ (r) =
∑
pμ

〈rσ |0pμσ 〉ĉ0pμσ =

⎛
⎜⎜⎝

ψ̂0KAσ (r)
0

ψ̂0K ′Bσ (r)
0

⎞
⎟⎟⎠

KK ′⊗ĀB̄

(24)

of the field operator (23) pertaining to n = 0 LL has only two
nonvanishing components, ψ̂0KAσ (r) and ψ̂0K ′Bσ (r), whereas

ψ̂0KBσ (r) = ψ̂0K ′Aσ (r) ≡ 0. (25)

Thus, for n = 0 LL, the valley (KK ′) and sublattice (AB)
degrees of freedom are essentially equivalent, K ↔ A, K ′ ↔
B. Further on, when discussing n = 0 LL below, we refer
to this 2D degree of freedom (ψ̂0KAσ ,ψ̂0K ′Bσ ) as just the
“KK ′ valley isospin.” Accordingly, we join the nonvanishing
components of the n = 0 LL operator (24) in a 4D vector:

ψ̃0(r) =

⎛
⎜⎜⎝

ψ̂0KA↑(r)
ψ̂0KA↓(r)
ψ̂0K ′B↑(r)
ψ̂0K ′B↓(r)

⎞
⎟⎟⎠

KK ′⊗s

(26)

in the isospin-spin space KK ′ ⊗ s.

E. Projected Hamiltonian for n = 0 LL

When addressing the many-body aspects of the ν = 0 state,
as a starting point, one may neglect the contributions from
n �= 0 LLs and restrict oneself to the dynamics within n = 0
LL, described in terms of the field (26). From the form (24) of
ψ̂0(r), we obtain

ψ̂
†
0Tαβψ̂0 =

{
ψ̃

†
0Tαψ̃0, β = 0,z,

0, β = x,y,
(27)

for α = 0,x,y,z, where

Tα = τKK ′
α ⊗ 1s , α = 0,x,y,z. (28)

are the KK ′-isospin matrices. That is, electrons in the n = 0
LL couple directly only to the source fields with Tα0 and Tαz

vertex structure in KK ′ ⊗ ĀB̄ space. This is a consequence of
the properties of the n = 0 LL wave functions.

Substituting ψ̂(r) in the form (23) into Eqs. (10), (11),
and (17) and retaining only the n = 0 LL component (24),

we obtain the bare projected Hamiltonian in terms of the
field (26),

Ĥ (0) = Ĥ
(0)
0 + Ĥ

(0)
e-e,0 + Ĥ

(0)
e-e,1 + Ĥ

(0)
e-ph, (29)

Ĥ
(0)
0 = −εZ

∫
d2r ψ̃

†
0(r)Szψ̃0(r), Sz = 1̂AB ⊗ τ s

z , (30)

Ĥ
(0)
e-e,0 = 1

2

∫
d2rd2r′ [ψ̃†

0(r)ψ̃0(r)]V0(r − r′)[ψ̃†
0(r′)ψ̃0(r′)],

(31)

Ĥ
(0)
e-e,1 = 1

2

∫
d2r

∑
α=x,y,z

gα[ψ̃†
0(r)Tαψ̃0(r)]2, (32)

with gα = gα0 + gαz, and

Ĥ
(0)
e-ph =

∫
d2r FA2ψ̃

†
0(r)[Txua(r) + Tyub(r)]ψ̃0(r). (33)

In the single-particle Hamiltonian Ĥ
(0)
0 , since the kinetic

energy ε0 = 0, only the Zeeman term is present. In Ĥ
(0)
e-e,1

and Ĥ
(0)
e-ph, due to the property (27), only the short-range e-e

interactions with gα0 and gαz, α = x,y,z, couplings and e-ph
interactions with FA1 and FB1 couplings remain. The coupling
g0z, although also does not vanish, produces a symmetric
term ∝g0z[ψ̃

†
0(r)ψ̃0(r)]2, which may be neglected compared

to the Coulomb part (31). We also mention that the trigonal
warping effect ∝Txz,Tyz does not couple to n = 0 states at the
perturbative level.

III. ν = 0 QUANTUM HALL FERROMAGNET
IN GRAPHENE

A. Basic concept and exact result

At integer filling factors ν, interacting multicomponent
quantum Hall systems are described by the general theory of
the quantum Hall ferromagnetism.20,21,41–43 Its central point
is that, as long as electron dynamics may be effectively
restricted to the partially filled LL (sufficient conditions for
this will be discussed in Sec. IV) and the interactions are
symmetric in the “spin” space of discrete degrees of freedom,
the family of the many-body bulk ground states can be found
exactly as follows. In order to minimize the energy of the
Coulomb repulsion, one makes the orbital part of the wave
function totally antisymmetric, thus putting electrons, for a
given density, as far apart from each other as possible. Since
one has on average an integer number of electrons per orbital,
such wave function can be realized if electrons occupy the
discrete states of all orbitals in exactly the same fashion.

Specifically for the ν = 0 state in graphene, which hosts
two electrons per fourfold degenerate orbital of the n = 0 LL
(Fig. 1), the many-body wave function can be written as

� =
[∏

p

( ∑
λσ,λ′σ ′

′
�∗

λσ,λ′σ ′ c
†
0pλσ c

†
0pλ′σ ′

)]
|0〉. (34)

Here, |0〉 is the “vacuum” state with completely empty
n � 0 LLs and completely filled n < 0 LLs. Each factor
in the product

∏
p creates a pair of electrons in the state

� = {�λσ,λ′σ ′ } (λ,λ′ = A,B and σ,σ ′ = ↑, ↓) at orbital p

of the n = 0 LL, see Eq. (22), and we identify K ↔ A and
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K ′ ↔ B; the antisymmetric two-particle spinor � describes
the occupation of the 4D KK ′ ⊗ s isospin-spin space of each
orbital by two electrons. The sum

∑′
λσ,λ′σ ′ in Eq. (34) goes over

the upper-right off-diagonal elements of � and we normalize
the spinor according to the number of particles per orbital,∑

λσ,λ′σ ′
|�λσ,λ′σ ′ |2 = 2. (35)

For the purpose of illustrating the said exact property,
in this section, we simply neglect the other n �= 0 LLs. To
make this justified, one may temporarily assume here that the
Coulomb interactions are weak, e2/v � 1, and in Sec. IV, we
demonstrate how the LL mixing effects can systematically be
taken into account for stronger interactions e2/v ∼ 1 within
the large-N approximation.

Acting with the Coulomb interaction Hamiltonian (31),
symmetric in KK ′ ⊗ s space, on the state (34), we obtain
that � is an eigenstate,

Ĥ
(0)
e-e,0� = E0�,

if and only if � satisfies the constraint

�K↑,K ′↓�K↓,K ′↑ + �K↑,K↓�K ′↑,K ′↓ = �K↑,K ′↑�K↓,K ′↓.

(36)

The energy of the state equals

E0 = 1

2

∑
k,k′

[
4V d

0 (k,k′) − 2V e
0 (k,k′)

]
, (37)

where

V d(k,k′) = 1

Ly

∫
dqx

2π
e[− q2

x
2 +iqx (k−k′)]l2

B V0(qx,qy = 0),

V e(k,k′) = 1

Ly

∫
dqx

2π
e[− q2

x +(k−k′ )2
2 ]l2

B V0(qx,k − k′)

are the “direct” (Hartree) and “exchange” (Fock) matrix
elements, respectively, and V0(q) = 2πe2/|q|, q = (qx,qy), is
the Fourier transform of the Coulomb potential. The energy
E0 can easily be calculated explicitly.

Equation (36) is a necessary and sufficient condition for the
two-particle spinor � to be a Slater-determinant state,

� = χa ◦ χb − χb ◦ χa, (38)

described by two orthogonal single-particle spinors χa,b in
KK ′ ⊗ s space; the symbol ◦ denotes the direct product of
KK ′ ⊗ s spaces of two electrons. We see that not every
antisymmetric spinor � delivers a many-body eigenstate of the
interaction Hamiltonian Ĥ

(0)
e-e,0; for example, the spin-singlet

isospin-triplet state with zero isospin projection is not an
eigenstate. However, any state (34) with � in the form of
a Slater determinant (38) is an eigenstate with the energy E0

and the ground state47 is, therefore, degenerate.
Let us count the number of degrees of freedom parameter-

izing the ground state �. An arbitrary antisymmetric spinor �

has (six complex) = (twelve real) degrees of freedom. Fixing
its norm and inconsequential overall phase factor leaves ten
real parameters, and the complex constraint (36) reduces this
to the final eight real parameters.

Each Slater-determinant state � is uniquely specified by
the 2D subspace of the KK ′ ⊗ s space, occupied by two
electrons and generated by the vectors χa,b. This establishes
a one-to-one correspondence between the states (38) and the
elements of the Grassmannian manifold Gr(2,4), known as the
Plücker embedding in mathematical literature;48 the constraint
(36) is called the Plücker relation. The parametrization of the
occupied subspaces, generated by χa,b, and therefore of the
Grassmannian Gr(2,4), is efficiently realized by the matrix

Pλσ,λ′σ ′ = 〈�|ĉ†0pλ′σ ′ ĉ0pλσ |�〉. (39)

Using Eqs. (34) and (38), this gives

P = χaχ
†
a + χbχ

†
b (40)

in the matrix form in the KK ′ ⊗ s space. The single-particle
density matrix P satisfies the properties of a hermitian
projection operator

P † = P, P 2 = P, (41)

and also, for the doubly filled ν = 0 state,

trP = 2. (42)

The matrix P [Eq. (39)] plays the role of the order
parameter of the broken-symmetry state (34); the observables
and coupling of the state (34) to various perturbations can be
expressed through it. The matrix P is related to the matrix Q

(R in Ref. 41), commonly used21,41 in the QHFM theory, as
P = 1

2 (1̂ + Q).
Speaking of symmetries, since � [Eq. (34)] is a ground

state for any Slater-determinant state (38), any SU(4) trans-
formation in the single-particle KK ′ ⊗ s space keeps the
energy E0 invariant. However, any SU(2) × SU(2) × U(1)
transformation, corresponding to independent rotations within
the subspace of the occupied states, generated by χa and
χb, and its orthogonal complement, the subspace of empty
states, not only does not change the energy E0, but also
leaves the state � intact. Therefore the symmetry of the
ν = 0 QHFM state � is described21,41 by the factor group
SU(4)/[SU(2) × SU(2) × U(1)] = U(4)/[U(2) × U(2)]. This
group also determines the transformation properties of the
order parameter P . The dimensionality of the space of matrices
P as an U(4)/[U(2) × U(2)] manifold is 42 − 22 − 22 = 8,
which agrees with the number of the physical degrees of
freedom of the Slater-determinant states � [Eq. (38)].

B. Energy functional of the ν = 0 QHFM

The exact result of the previous section lays down the basis
of the QHFM theory. In the presence of the isospin-asymmetric
interactions (32) and (33), the state (34) will generally no
longer be an exact ground state. Besides, it is desirable to know
not only the ground state of the system, but also the excitations.
Provided the energy scales (per orbital) of these perturbations
and excitations are small compared to the energy min ( e2

lB
, v
NlB

)
of the screened Coulomb interactions (see Sec. IV A below),
the local deviations of the actual many-body eigenstate from
the QHFM state (34) are also minor. This makes possible
to develop a systematic low-energy quantum field theory that
describes the dynamics of the system. Such theory has the form
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of a U(4)/[U(2) × U(2)] sigma model for the order parameter
P (t,r), which acquires time and coordinate dependence.

The rigorous derivation41,42 of the sigma model involves
a procedure of projecting onto the QHFM state with a
given order parameter P (t,r). Proceeding along the standard
steps,41,42 we arrive at the following Lagrangian of the ν = 0
QHFM:

L[P (t,r)] = K[P (t,r)] − E[P (t,r)]. (43)

Here, K[P (t,r)] is the kinetic term containing the time
derivative of P (t,r); it is most simply expressed in terms of
the single-particle spinors χa,b(t,r) [Eq. (40)] as

K[P (t,r)] = i
∫

d2r

2πl2
B

(χ †
a∂tχa + χ

†
b∂tχb).

The energetics of the ν = 0 QHFM is described by the
energy functional

E[P (t,r)] =
∫

d2r

2πl2
B

[E◦(P ) + E�(P ) + EZ(P )]. (44)

Here,

E◦(P ) = ρs tr[∇P∇P ] (45)

is the gradient term characterized by the stiffness ρs and

EZ(P ) = −εZ tr[SzP ] (46)

is the Zeeman term characterized by the energy εZ = μBB.
Most importantly,

E�(P ) = 1

2

∑
α=x,y,z

uαtα(P ), (47)

tα(P ) = tr[TαP ] tr[TαP ] − tr[TαPTαP ], (48)

is the isospin anisotropy energy arising from the short-range
e-e [Eq. (9)] and e-ph [Eq. (17)] interactions, asymmetric in
the valley-sublattice space. The KK ′-isospin matrices Tα were
introduced in Eq. (28). As we will see below, due to symmetries
of the e-e and e-ph coupling constants, the anisotropy energies
uα for α = x,y isospin channels are equal,

u⊥ ≡ ux = uy.

Thus the isospin anisotropy is fully characterized by two
energies, u⊥ and uz.

The expressions (47) and (48) for the isospin anisotropy
energy of the ν = 0 QHFM constitute one of the key results
of the present work. This is a generic form of the anisotropy,
arising from spin-symmetric two-particle electron interactions
(including phonon-mediated interactions) with arbitrary struc-
ture in the valley-sublattice space.

In Sec. V, we minimize the energy functional (44) to
obtain a phase diagram of the ν = 0 QHFM in the presence
of the isospin anisotropy and Zeeman effect in the space of
parameters (u⊥,uz,εZ). In the rest of this and in the whole
next section, we discuss the expressions for the stiffness ρs

and anisotropy energies u⊥,z in terms of the microscopic
parameters of the Dirac Hamiltonian. Their bare values ρ(0)

s

and u
(0)
⊥,z, obtained in the lowest order in interactions, can be

determined from the projected Hamiltonian, Eqs. (29)–(33).
The gradient term E◦(P ) arises from the Fock free-energy

diagram in Fig. 4(a), in which one needs to take the spatial

(a) 0 0 (b)

0

0

(c) 0 0

FIG. 4. Diagrammatic representation of the terms in the energy
functional (44) of the ν = 0 QHFM, defining the bare (lowest order in
interactions) values of parameters. (a) Diagram for the gradient term
E◦(P ) [Eq. (45)], determining the bare stiffness ρ(0)

s [Eq. (49)]; the
wavy line stands for the Coulomb interaction [Eq. (31)]. (b) and (c)
Diagrams for the isospin anisotropy term E�(P ) [Eqs. (47) and (48)],
determining the bare anisotropy energies u

(0)
⊥,z [Eqs. (50)–(52)]. The

dashed line represents either the short-range e-e [Eq. (32)] or e-ph
[Eq. (33)] interactions. The Hartree (b) and Fock (c) contributions
produce the first and second terms in Eq. (48), respectively.

inhomogeneity of order parameter P (t,r) into account. This
yields the standard expression21,41,42

ρ(0)
s

2πl2
B

= 1

16
√

2π

e2

lB
(49)

for the bare stiffness.
The isospin anisotropy term E�(P ) can be represented by

the free-energy diagrams in Figs. 4(b) and 4(c); the first and
second terms in Eq. (48) arise from the Hartree (b) and Fock
(c) diagrams, respectively. The diagrams for the short-range
e-e [Eq. (32)] and e-ph [Eqs. (18) and (33)] interactions have
the same form and the dashed line in the figures stands for
either the short-range e-e or e-ph interactions. This way, for
the bare anisotropy energies in terms of the valley-sublattice
asymmetric couplings, we obtain

u(0)
α = u(e-e,0)

α + u(e-ph,0)
α , α = ⊥,z, (50)

where

u(e-e,0)
α = 1

2πl2
B

(gα0 + gαz), α = ⊥,z, (51)

and

u
(e-ph,0)
⊥ = − f⊥z

2πl2
B

, u(e-ph,0)
z = 0 (52)

are the anisotropy energies due to short-range e-e and e-ph
interactions, respectively.

In Eq. (52),

f⊥z = F 2
A1

s0

Mω2
A1

(53)

is the coupling constant of the phonon-mediated interactions
between the electrons. Note that the combination Mω2

A1
is

the curvature of the interaction potential between the carbon
atoms, which has electrostatic origin; therefore, it does not
depend on the carbon mass M and scales as Mω2

A1
∼ e2/a3

0 .
Together with Eq. (19), this leads to the order-of-magnitude
estimate

f⊥z ∼ e2a0. (54)
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Comparing with Eq. (16), we see, that the bare anisotropies
(51) and (52) due to short-range e-e and e-ph interactions
are actually parametrically the same and can differ only
numerically.

The bare expressions (49)–(52) determine the parameters
of the ν = 0 QHFM, provided one may neglect the effects of
the interaction-induced electron transitions between different
LLs, also known as “Landau level mixing.” As we find in the
next section, this is not the case and, in fact, the parameters
are drastically affected by the LL mixing effects.

IV. RENORMALIZATIONS OF PARAMETERS
OF THE ν = 0 QHFM BY THE LANDAU

LEVEL MIXING EFFECTS

The weakness of the Coulomb interactions is generally a
sufficient condition for the applicability of the QHFM theory.
For graphene, this is formulated as e2/v � 1, in which case,
since the typical Coulomb energy e2/lB per orbital is much
smaller than the LL spacing ε1 = √

2v/lB , one could expect
LL mixing effects to be inefficient and operate within the n = 0
LL only. However, interactions are not weak in graphene: for
suspended samples, e2/v ≈ 2.2 (taking v = 108cm/s), which
may be regarded as moderate strength. Besides, Coulomb
interactions are known to be marginal49 in graphene: they
produce large logarithmic contributions in the diagrammatic
series regardless of the their strength, even if weak. These
logarithms come from the wide range of energies |ε| � v/a0

up to the bandwidth and involve many LLs. Therefore taking
the nonzero LLs into account is essential and the question
arises whether the QHFM theory still holds for a realistic
model of graphene, with e2/v ∼ 1.

In this respect, the large-N expansion in the number of
“flavors” has gained popularity44,50–52 for graphene. This
approach allows one to single out the leading in N diagrams,
in each order in the bare Coulomb interactions, and per-
form partial summation of diagrams, formally analogous to
the random-phase-approximation (RPA) series. The physical
justification of the method is that large N makes screening
of the interactions especially efficient. This reduces the
coupling constant from its bare value e2/v ∼ 1 to that of the
screened interactions 1/N � 1, resulting in the effectively
weak-coupling theory.

In this section, we will use the large-N approach to
systematically take into account the effects of LL mixing.
In reality, N = 4 in graphene due to two valleys and two
projections of spin. Although this value is not particularly
large, one can still expect the large-N approach to adequately
describe the correlated physics in graphene for moderate
Coulomb coupling e2/v ∼ 1.

The effects produced by LL mixing can be identified
already in the second order in the interactions (10), (11), and
(17). Figure 5 shows the free-energy diagrams for the energy
functional (44), second order in the Coulomb interactions
(10), while Figs. 6 and 7 shows the diagrams, first order in
the Coulomb and in either short-range e-e (11) or e-ph (17)
interactions. As a starting point, one includes the contributions
from all LLs in these diagrams, using the full field operators
(23). One then separates the contributions from n = 0 and

→ (a0) n n′0 0

→ (a1)

n′

n

0 0 (a2) 0 0

n′n

→ (a3) 0 0

n

n′

(a4) 0 n

0

0

FIG. 5. Diagrams for the energy functional (44), second order in
the Coulomb interactions (wavy lines). Diagram (a0) represents the
first-order large-N correction to the Coulomb propagator. Diagrams
(a1)–(a4) diverge logarithmically, but cancel each other within the
logarithmic accuracy.

n �= 0 LLs in the electron Green’s functions (solid lines), at
which point the following observations can be made.

The diagrams maintain the structure of the lowest-order
diagrams in Fig. 4 with only n = 0 LL present, but contain
the blocks involving n �= 0 LLs that represent corrections to
either (i) the Coulomb propagator, diagram in Fig. 5(a0); (ii)
two-particle vertex functions, diagrams in Figs. 5[(a1), (a3)],
6[(b1)–(b3)], and 7[(c1)–(c3)]; (iii) or the self-energy of the
n = 0 LL Green’s function, diagrams in Figs. 5(a4), 6(b4),
and 7(c4). Without the magnetic field, the blocks (ii) and
(iii) diverge logarithmically,44 since Coulomb interactions are
marginal; this remains true in the magnetic field.

This pattern persists in higher orders, which allows one to
formulate the general recipe for taking the LL mixing effects
into account within the large-N approach. One first performs
a partial summation of the RPA-type series of blocks (i). This
produces the “dressed” propagator of the screened Coulomb

→ (b1)

0

n

n′

0

(b2)

0

n

n′

0

→ (b3)

0

0

n n′
(b4)

n

0

0 0

FIG. 6. Diagrams for the energy functional (44), first order in
the Coulomb interactions (wavy line) and in either the short-range
e-e or e-ph interactions (dashed line). Diagrams (b1)–(b4) diverge
logarithmically and represent the lowest-order correction to the
Hartree contribution [Fig. 4(b)] to the anisotropy energy.
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→ (c1)

n′

n

0 0 (c2) 0 0

n′n

→ (c3) 0 0

n

n′

(c4) 0 n

0

0

FIG. 7. Same as in Fig. 6, but with respect to the Fock contribution
[Fig. 4(c)].

interactions. One then performs the summation of the blocks
(ii) and (iii). The leading logarithmic-divergent diagrams can
efficiently be summed up using the renormalization group
(RG) procedure. One notices that, when combined together,
the blocks (ii) and (iii) describe the critical renormalizations of
the short-range e-e and e-ph interactions44,45 by the screened
Coulomb interactions. At the same time, the Coulomb interac-
tions themselves are not renormalized,44 e.g., the diagrams
(a1)–(a4) in Fig. 5 cancel each other within logarithmic
accuracy.

With these steps performed, we find that, within the large-N
approach, the ν = 0 QHFM theory [Eq. (43)–(48)] does hold
as a controlled approximation for graphene with moderate
strength Coulomb interactions e2/v ∼ 1, but LL mixing effects
result in crucial renormalizations of its parameters ρs and
u⊥,z. These renormalizations are considered in the remaining
sections.

We emphasize that the separation of the contributions
from n = 0 and n �= 0 LLs in the diagrams, with subsequent
classification of their blocks according to the type (i), (ii), or
(iii), is justified only in the weak-coupling large-N limit of the
screened Coulomb interactions, when the real occupancy of
the n �= 0 LLs is close to full or zero, i.e., 〈c†npμσ cnpμσ 〉 ≈ 1
or 0, for n < 0 or n > 0, respectively. For example, for the
general form of the second-order free-energy diagrams, with
all LLs involved (leftmost diagrams in Figs. 5–7), one cannot
meaningfully attribute each diagram to just one of the (i), (ii),
or (iii) classes. At the same time, virtual electron transitions
between different LLs are quite efficient and result in the strong
screening of the Coulomb interactions.

A. Stiffness for screened Coulomb interactions

The first consequence of the LL mixing effects is that
the stiffness ρs becomes suppressed due to screening, as
compared to its bare value (49). The stiffness is obtained
from the Fock diagram in Fig. 4(a), in which the bare
Coulomb potential V0(q) = 2πe2/q should be substituted by
the “dressed” propagator

V (ω,q) = V0(q)

1 + V0(q)�(ω,q)
(55)

of the screened interaction [the second term of this series
is shown in Fig. 5(a0)]. The stiffness is given by the

standard21,41,42 expression

ρs = l4
B

16π

∫ ∞

0
dq q3e− q2 l2

B
2 V (ω = 0,q) (56)

in terms of an arbitrary potential. In Eq. (55), �(ω,q) is
the polarization operator of graphene in the presence of the
magnetic field. Since in Eq. (56) the frequency is constrained
to ω = 0 (the typical energy scales of the QHMF theory are
�v/lB) and the relevant momenta are q ∼ 1/lB , one has to
use the exact expression for the polarization operator.25,53 At
filling factor ν = 0, zero temperature, and neglecting the minor
corrections from the Zeeman effect, the polarization operator
reads

�(0,q) = N

2πl2
B

∑
n > 0
n′ � 0

2

εn + |εn′ | |K̄nn′(q)|2. (57)

Here, K̄nn′(q) [q = (qx,qy), q = |q|] are the graphene mag-
netic form factors; they are expressed in terms of the
conventional form factors

Knn′ (q)=
∫ +∞

−∞
dx eiqxxφn

(
x − qy

2
l2
B

)
φn′

(
x+qy

2
l2
B

)
(58)

for the quadratic spectrum as

K̄nn′ (q) = 1
2 [K|n|,|n′|(q) + sgn n sgn n′K|n|−1,|n′ |−1(q)],

if both n �= 0 and n′ �= 0, and K̄n0(q) = K|n|,0(q).
The polarization operator �(0,q) depends only on the com-

bination qlB . For qlB � 1, �(0,q) → Nq/(16v) approaches
its expression in the absence of the magnetic field. At arbitrary
qlB , �(0,q) can be calculated only numerically.

Since the Coulomb potential V0(q) has no scale and �(0,q)
depends solely on qlB , the stiffness (56) scales as

ρs

2πl2
B

= v

NlB
R(e2N/v), (59)

where the dimensionless function R(e2N/v) of the coupling
strength e2N/v is defined by Eqs. (55)–(57). In the limit
e2N/v � 1 of negligible screening, V (0,q) ≈ V0(q), one
obtains

R(e2N/v � 1) ≈ 1

8

√
π

2

e2N

v
,

recovering the expression (49) for the bare stiffness. The
function R(e2N/v) grows with increasing e2N/v and saturates
to the maximum value R(∞) ∼ 1 in the limit e2N/v � 1 of
complete screening, when V (0,q) ≈ 1/�(0,q).

We see that, upon taking the screening effects of LL
mixing into account, the stiffness (59) retains its square-root
scaling ρs(B⊥)/(2πl2

B) ∝ √
B⊥ with the magnetic field, but the

numerical prefactor of the dependence becomes suppressed.
The main practical implication of this concerns the activation
transport through the bulk of the sample, since the gaps of
the charge excitations are determined by the typical energy
of symmetric interactions, e.g., the energy of the unit charge
Skyrmions equals ESk = 2ρs/ l2

B .
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B. Renormalization of the anisotropy energies

The second and a more physically significant effect arising
from nonzero LLs is the renormalization of the isospin
anisotropy energies u⊥,z [Eq. (47)] by the Coulomb interac-
tions. The bare energies u

(0)
⊥,z [Eqs. (50)–(52)] are determined

by the diagrams (b) and (c) in Fig. 4, while the diagrams in
Figs. 6 and 7 represent the lowest-order corrections to them.
Since the latter diverge logarithmically, one is forced to sum
up the whole series of logarithmic-divergent diagrams. Within
the logarithmic accuracy, this can be achieved by means of
the RG procedure. It proves more efficient to consider the
renormalizations of the bare couplings gαβ and f⊥z, rather
than u

(0)
⊥,z directly, and then express the anisotropy energies

u⊥,z in terms of the renormalized couplings.
In the RG procedure for monolayer graphene,44,49,50 one

starts with the Hamiltonian (2) of massless weakly interacting
Dirac fermions. Integrating out the high-energy fermionic
modes in the frequency-momentum space yields the RG
equations for the involved couplings. One finds44,49,50 that the
Coulomb interactions are marginally irrelevant and, conse-
quently, weakly interacting electrons in monolayer graphene
flow to a fixed point of noninteracting massless Dirac fermions.

The RG analysis of the renormalizations of the short-range
e-e and e-ph interactions by the Coulomb interactions was
carried out in Refs. 44 and 45. Here, we recover the essential
results and concentrate on the properties of key relevance to
the ν = 0 QHFM theory. Our notation differs from that of
Refs. 44 and 45.

1. Preparatory remarks

Several comments are in order before we proceed.
(1) In the perturbation theory diagrams, such as in Figs. 6

and 7, the large logarithms arise from the divergent sums over
LLs εn (if one first integrates over the frequency ω), which
have to be cut by the bandwidth at high energies, |εn| � v/a0.
Since such sums involve many LLs, the discreteness of the
spectrum due to the magnetic field may be neglected: one may
use the expressions for the Green’s functions and polarization
operators in the absence of the magnetic field, substituting
the sums over LLs by the integrals over momenta q. At the
lower limit, these integrals have to be cut by the inverse
magnetic length q ∼ 1/lB , once the influence of the magnetic
field becomes important. Hence, the arising logarithms are∫ 1/a0

1/lB
dq/q ∼ ln(lB/a0).

Therefore the magnetic field does not affect the very
structure of the RG equations of Refs. 44 and 45 yet defines a
natural scale, at which the RG flow stops. In the RG approach,
the coupling constants gαβ(l) and f⊥z(l) acquire a dependence
on the running length scale l. The RG flow starts at the atomic
scale l = a, where the couplings are equal to their bare values
[Eqs. (11), (17), and (53)],

gαβ(a) = gαβ, f⊥z(a) = f⊥z,

and stops at the magnetic length l = lB . The magnetic length
lB defines the scale, at which the renormalized anisotropy
energies u⊥,z are to be determined. We define the atomic scale
as a ∼ a0, absorbing the ambiguity of the cutoffs in it.

(2) Besides the renormalizations arising from the interac-
tions in the process of “integrating out” higher energy degrees
of freedom (“mode elimination” part, in the terminology of
Ref. 54), the full RG scheme also includes the renormalizations
due to rescaling of frequencies, momenta, and quantum fields
(scaling, or “tree-level,” renormalization). While the former
represent actual physical processes, described explicitly by
the diagrams (such as in Figs. 5–7), the latter are intro-
duced in order to restore the original phase space and thus
make comparison of the theories with different bandwidths
meaningful. An important question arises, whether the latter,
tree-level, renormalizations also have to be taken into account
when determining the renormalized anisotropy energies u⊥,z.
Our understanding is the answer is negative, as they do
not correspond to any physical processes. The following
arguments can be given.

(2.1) Suppose the logarithmic contributions due to the
Coulomb interactions were absent or negligible: for the sake
of argument, one may certainly consider a model with well
behaved finite-range symmetric interactions (e.g., Gaussian
potential), or the Coulomb interactions so weak or the number
of flavors N so large that min(e2/v,1/N) ln(lB/a0) � 1.
Then, all higher-order contributions to the anisotropy energy
would be small compared to the first-order contribution,
which is given by the diagrams (b) and (c) in Fig. 4 (the
ultraviolet-divergent contributions, mentioned in Sec. II B,
from the short-range e-e interactions may also be assumed
small, gαβ/(va0) � 1). The renormalized anisotropy energies
u⊥,z would then be determined just by the bare expressions
(50)–(52),

u⊥,z → u
(0)
⊥,z. (60)

At the same time, the full RG procedure would consist just
of the tree-level (TL) renormalization and the short-range
e-e and e-ph couplings would renormalize as gTL

αβ (l) = gαβ
a
l

and f TL
⊥z (l) = f⊥z

a
l
, since their scaling dimension is −1 [see

comment (3) below regarding e-ph coupling]. Therefore,
taking the scaling renormalization into account, i.e., using the
expression (51) for the renormalized energies u⊥,z in terms of
the couplings gTL

αβ (lB) and f TL
⊥z (lB), one would have to multiply

the bare energies u
(0)
⊥,z by the factor a/lB ,

u⊥,z
?−→ a

lB
u

(0)
⊥,z.

This would, in apparent disagreement with Eq. (60), both
drastically decrease the magnitude of the anisotropy energies
and alter their dependence on the magnetic field.

(2.2) Alternatively, such question and the extra factor a/lB
in u⊥,z never arise, if one starts with the “poor man’s”
formulation of the problem, as to sum up the complicated
parquet series of log-divergent diagrams (Figs. 6 and 7 and
all higher orders). One can then invoke the RG procedure, or
rather, just its “mode elimination” part, as the latter is known
to be an elegant way of accomplishing this task.

We, therefore, conclude that the renormalized anisotropy
energies u⊥,z must be expressed through the couplings ḡαβ(lB)
and f̄⊥z(lB), in which only the renormalizations arising from
the “mode elimination” part of the RG procedure are taken
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into account:

uα = u(e-e)
α + u(e-ph)

α , α = ⊥,z, (61)

u(e-e)
α = 1

2πl2
B

[ḡα0(lB) + ḡαz(lB)], α = ⊥,z, (62)

u
(e-ph)
⊥ = − f̄⊥z(lB)

2πl2
B

, u(e-ph)
z = 0. (63)

The couplings ḡαβ(l) and f̄⊥z(l) differ from the couplings
gαβ(l) and f⊥z(l) of the full RG scheme by the tree-level
renormalization,

gαβ(l) = ḡαβ(l)
a

l
, f⊥z(l) = f̄⊥z(l)

a

l
.

(3) Finally, we comment on the peculiarities of e-ph
interactions in graphene. Since the phonon dynamics is
characterized by the phonon frequencies ωμ [μ = E2,A1,
Eq. (18)], the properties of e-ph interactions depend on the
energy scale ε at which considered. At ε � ωμ, the phonon-
mediated electron interactions are effectively instantaneous
and, being also short-ranged, are quite analogous to the
short-range e-e interactions; in particular, they are irrelevant in
the RG sense with the scaling dimension −1. At energies ε �
ωμ, retardation is strong and phonon-mediated interactions
become marginal:45 they produce logarithmic divergencies,
which have to be cut by ωμ at the lower limit, yielding
the logarithms ln[v/(a0ωμ)]. As a result, in principle, e-ph
interactions renormalize both themselves and the short-range
e-e interactions. In practice, however, for the typical values
of parameters in graphene, these renormalizations turn out
to be numerically smaller that those due to the Coulomb
interactions, as can be inferred from the analysis of Ref. 45.
Therefore here, we neglect the renormalizations due to e-ph
interactions. On the one hand, since e-ph interactions couple
different valley channels, including these renormalizations
would significantly complicate the RG equations. On the
other hand, this should not alter the main conclusions of
the RG analysis, which imply that essentially any algebraic
possibility (i.e., including signs) for the isospin anisotropy
energies (u⊥,uz) could be realized in graphene.

2. RG analysis

We can now proceed with the RG analysis.44,45 The
one-loop renormalizations of the short-range e-e and e-ph
couplings by the screened Coulomb interactions are actually
described by the diagrams in Figs. 6 and 7, upon “dressing”
the bare Coulomb lines. The corresponding RG equations for
the coupling constants ḡαβ(l) read44

dḡα0(l)

dξ
= 0 for α = x,y,z, (64)

and
dḡα⊥(l)

dξ
= 2F [w(l)][ḡα⊥(l) − ḡαz(l)], (65)

dḡαz(l)

dξ
= 4F [w(l)][ḡαz(l) − ḡα⊥(l)], (66)

for α = 0,x,y,z. Here, ξ = ln l/a.
One observes that the couplings

ḡα0(l) = gα0, α = x,y,z, (67)

0 1 2 3 4 5 6
0.00

0.05

0.10

0.15

0.20

w

F (∞) = 8
π2N

F (w)

FIG. 8. (Color online) The function F (w) [Eq. (68)] of the
Coulomb coupling constant w [Eq. (69)] describes the renormal-
izations of the Dirac velocity v(l), w(l) itself, and the short-range e-e
and e-ph couplings.

are not renormalized, whereas ḡαx(l) = ḡαy(l) ≡ ḡα⊥(l) and
ḡαz(l), α = 0,x,y,z, are. Different valley channels α are not
coupled, but the ⊥ and z sublattice channels do couple to each
other within each valley channel. The reason for this are the
properties of the electron Green’s function: while a unit matrix
in the KK ′ valley space, it has nontrivial matrix structure in
the ĀB̄ sublattice space. The symmetric Coulomb interactions
themselves couple neither valley nor sublattice channels.

In Eqs. (65) and (66),

F (w) = 8

π2N

(
1 − π

2w
+ arccos w

w
√

1 − w2

)
(68)

is a function of the dimensionless coupling constant

w(l) = πN

8

e2

v(l)
(69)

of the Coulomb interactions, plotted in Fig. 8. The RG
equation44,49,50 for w(l) is also determined by Eq. (68),

dw(l)

dξ
= −F [w(l)]w(l). (70)

The renormalization of w(l) comes from the renormalization of
the Dirac velocity v(l), while the charge e2 is not renormalized
[the diagrams (a1)–(a4) in Fig. 5 cancel each other within the
logarithmic accuracy].

Equation (70) can be solved analytically only the limits of
weak [w(l) � 1, interactions are not screened, F (w) ≈ 2

πN
w]

or strong [w(l) � 1, interactions are fully screened, F (w) ≈
F (∞) = 8

π2N
] coupling. In Fig. 9, we plot the numerical

solution w(l) to Eq. (70) for the bare value w(a) = w ≈ 3.4
obtained at v(a) = v ≈ 108 cm/s, which should be typical for

1 2 5 10 20 50 100
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

l/a

w(l)

FIG. 9. (Color online) Renormalization of the Coulomb coupling
constant w(l) [Eq. (69)]. The bare value w(a) = 3.4 was used.
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suspended graphene. As a general property, w(l) decreases
[the velocity v(l) grows] with increasing the length scale l;
therefore, Coulomb interactions flow toward weak coupling.
At lB/a = 40 (taking lB ≈ 10 nm at B⊥ ≈ 10 T and a = a0 ≈
2.5 Å), we obtain w(lB ) ≈ 2.1, i.e., for experimentally relevant
values, Coulomb interactions remain in the intermediate,
moderate strength, regime.

Since the renormalization of the Coulomb coupling w(l)
[Eq. (70)] does not involve the short-range e-e or e-ph inter-
actions (we neglect the later, see comment (3) in Sec. IV B1
and Ref. 45), one may regard F [w(l)] in Eqs. (65) and (66) as
a known function of l. The system of the coupled equations
(65) and (66) can then easily be solved by making a linear
transformation to the couplings44

ḡα+(l) = 1
3 [ḡαz(l) + 2ḡα⊥(l)], ḡα−(l) = 1

3 [ḡαz(l) − ḡα⊥(l)],

which translates the equations to

dḡα+(l)

dξ
= 0,

dḡα−(l)

dξ
= 6F [w(l)]ḡα−(l).

The solution of these equations is straightforward and, coming
back to ḡα⊥(l) and ḡαz(l), one obtains

ḡα⊥(l)= 1

3
(gαz+2gα⊥) − 1

3
(gαz − gα⊥)Fe-e(l/a,w), (71)

ḡαz(l)= 1

3
(gαz+2gα⊥) + 2

3
(gαz − gα⊥)Fe-e(l/a,w), (72)

Fe-e(l/a,w) = exp

{∫ l

a

dl′

l′
6F [w(l′)]

}
, (73)

for α = 0,x,y,z. The function Fe-e(l/a,w) determines the
strength of renormalization. It depends on the bare Coulomb
coupling w as parameter and reaches its maximum

Fmax
e-e (l/a) = Fe-e(l/a,∞) =

(
l

a

) 48
π2N

in the strong coupling regime w → ∞, when the interactions
are fully screened. This provides an upper bound for the
strength of renormalization.

The RG flows in the space of couplings (ḡα⊥(l),ḡαz(l)),
defined by Eqs. (71) and (72), are plotted in Fig. 10.
Their key properties are as follows. Starting from the point

ḡα⊥(l)

ḡαz(l)

0

FIG. 10. (Color online) RG flows [Eqs. (71)–(73)] of the coupling
constants ḡα⊥(l) and ḡαz(l) of the short-range electron-electron
interactions (11).

(ḡα⊥(a),ḡαz(a)) = (gα⊥,gαz) at the lattice scale l = a, the RG
flow (ḡα⊥(l),ḡαz(l)) follows the straight line

2ḡα⊥(l) + ḡαz(l) = 2gα⊥ + gαz. (74)

This constraint implies that the sum of couplings∑
β=x,y,z ḡαβ(l) = 2ḡα⊥(l) + ḡαz(l) in different sublattice

channels β is conserved under renormalization.
Further, depending on the relation between the bare values

gα⊥ and gαz, eventually, for strong enough renormalization,
the flow line ends up either in the quadrant

(ḡα⊥(l) > 0, ḡαz(l) < 0), if gα⊥ > gαz, (75)

or in the quadrant

(ḡα⊥(l) < 0, ḡαz(l) > 0), if gα⊥ < gαz, (76)

light red regions in Fig. 10. That is, the initially algebraically
larger (smaller) coupling always becomes or stays positive
(negative). Deeper reasons for this interesting behavior could
be sought in the chiral nature of the Dirac quasiparticles, which
is the ultimate cause of coupling between ⊥ and z sublattice
channels.

What concerns the renormalizations of e-ph interactions by
the Coulomb interactions, the RG equations for the couplings

f̄z⊥(l) = F 2
E2

s0

Mω2
E2

(E2 phonons) and f̄⊥z(l) (A1,B1 phonons)

read45

df̄z⊥(l)

dξ
= 2F [w(l)]f̄z⊥(l),

(77)
df̄⊥z(l)

dξ
= 4F [w(l)]f̄⊥z(l).

For e-ph interactions, different sublattice channels do not
couple in the renormalization process. The solution to Eq. (77)
is

f̄⊥z(l) = f⊥zFe-ph(l/a,w), (78)

Fe-ph(l/a,w) = exp

{∫ l

a

dl′

l′
4F [w(l′)]

}
. (79)

Comparing Eqs. (73) and (79), we see that the renormalization
of the e-ph coupling is parametrically weaker than that of the
short-range e-e couplings: Fe-ph(l/a,w) = [Fe-e(l/a,w)]2/3

due to the factor 4 instead of 6 in the exponential. The
maximum, as a function of w, equals

Fmax
e-ph(l/a) = Fe-ph(l/a,∞) =

(
l

a

) 32
π2N

.

Concluding this section, the renormalizations of the short-
range e-e and e-ph couplings are described by Eqs. (67),
(71)–(73), (78), and (79). Since ḡα0(lB) = gα0, α =⊥ ,z,
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are not renormalized and, according to Eq. (62), ḡ0β(lB),
β =⊥ ,z, do not affect the anisotropies, the main contribution
to the anisotropy energies u(e-e)

α due to short-range e-e
interactions comes from the couplings ḡαz(lB). In the regime
Fe-e(lB/a,w) � 1 of strong renormalization, one may neglect
the first term in Eq. (72) (except for the special case, when the
bare values are close to the unstable line gα⊥ = gαz) to obtain

u(e-e)
α ≈ 1

2πl2
B

2

3
(gαz − gα⊥)Fe-e(lB/a,w), α = ⊥,z. (80)

From Eqs. (63), (78), and (79), the anisotropy energies due to
e-ph interactions equal

u
(e-ph)
⊥ = − f⊥z

2πl2
B

Fe-ph(lB/a,w), u(e-ph)
z = 0. (81)

Finally, we also mention that the Zeeman energy εZ [Eq. (46)]
is not renormalized44 by the Coulomb interactions, since the
Zeeman splitting term in Eq. (8) is scalar in KK ′ ⊗ ĀB̄ space.

C. Consequences of renormalizations of the anisotropy energies
u⊥,z for the ν = 0 QHFM

The properties of the renormalized isospin anisotropy ener-
gies, obtained in Sec. IV B, have very important consequences
for the physics of the ν = 0 QHFM. The conclusions below
constitute some of the key results of the present work.

1. Magnitude of the anisotropy energies u⊥,z

The first consequence concerns the absolute values of the
anisotropy energies u⊥,z. As follows from Eqs. (16), (51), (52),
and (54), the bare anisotropy energies can be roughly estimated
as

∣∣u(e-e,0)
⊥,z (B⊥)

∣∣, |u(e-ph,0)
⊥ (B⊥)|∼ e2

a0

(
a0

lB

)2

∼B⊥[T]K. (82)

They scale linearly with the perpendicular magnetic field B⊥
and are on the same order as the Zeeman energy εZ = μBB ≈
0.7B[T]K (for moderate tilt angles), as obtained earlier in
Refs. 22,25,30, and 31.

According to Eqs. (80) and (81),

∣∣u(e-e)
⊥,z (B⊥)

∣∣ ∼ ∣∣u(e-e,0)
⊥,z (B⊥)

∣∣Fe-e(lB/a,w) (83)

and

u
(e-ph)
⊥ (B⊥) = u

(e-ph,0)
⊥ (B⊥)Fe-ph(lB/a,w), (84)

i.e., the renormalized anisotropy energies are enhanced by the
factors Fe-e(lB/a,w) and Fe-ph(lB/a,w), compared to the bare
values and their functional dependence on B⊥ is altered.

In Fig. 11, we plot Fe-e(lB/a,w) and Fe-ph(lB/a,w) as
functions of lB/a for the bare Coulomb strength w = 3.4.
Some values are (Fe-e(lB/a,w),Fe-ph(lB/a,w)) ≈ (6.6,3.5),
(19,7), (37,11) at lB/a = 10,40,100, respectively. We see that,
in a typical experimental situation (lB ∼ 10nm and a ≈ 2.5 Å
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Fe-e(lB/a, w)

Fe-ph(lB/a, w)

FIG. 11. (Color online) The functions Fe-e(lB/a,w) and
Fe-ph(lB/a,w) [Eqs. (73) and (79)], characterizing the strength of
renormalizations of the isospin anisotropy energies u(e−e)

α and u(e−ph)
α

[Eqs. (80) and (81)] due to short-range e-e and e-ph interactions. The
value w = 3.4 for the bare Coulomb coupling [Eq. (69)] was used. In
a typical experimental range lB/a ∼ 10–100, the anisotropy energies
are enhanced by about one order compared to their bare values u(e-e,0)

α

and u(e-ph,0)
α [Eqs. (50)–(53), and (82)].

gives lB/a ≈ 40), the renormalization of the anisotropy energy
is expected to be very strong. Since the Zeeman energy
εZ = μBB is not renormalized, u⊥,z can easily exceed εZ

by one order. This implies that the isospin anisotropies play a
major, perhaps, more significant role than the Zeeman effect
in the physics of the ν = 0 QHFM.

2. Signs of the anisotropy energies u⊥,z

The second consequence concerns the possible signs of the
anisotropy energies u⊥,z. According to Eq. (80), in the regime
of strong renormalization Fe-e(lB/a,w) � 1, the sign of the
anisotropy energy u(e-e)

α , α =⊥ ,z, is determined by the relation
gαz ≷ gα⊥ between the bare couplings. This follows from the
discussed peculiar behavior of the RG flows, see Fig. 10 and
Eqs. (75) and (76). This property suggests that, essentially, any
sign combination

u
(e-e)
⊥ ≷ 0, u(e-e)

z ≷ 0 (85)

of the anisotropy energies due to short-range e-e interactions
could be realized in a real graphene system, regardless of the
potential restrictions on the signs of the bare couplings gαβ ,
α,β =⊥ ,z.

To elaborate on this statement, it is instructive to consider
the weak-coupling limit e2/v � 1. In this regime, the bare
couplings gαβ = g

(1)
αβ , α,β =⊥ ,z, obtained in the first order in

the Coulomb interaction, are given by Eq. (13). The expression
(13) in the form of the electrostatic energy leads us to conclude
[Eq. (14)] that the couplings g

(1)
αβ > 0, α,β = ⊥,z, are positive,

i.e., e-e interactions in these channels are repulsive. Then,
according to Eq. (51), the bare anisotropy energies u(e-e,0)

α =
g(1)

αz /(2πl2
B) > 0, α = ⊥,z, can also only be positive (gα0 =

g
(2)
α0 � g(1)

αz , for e2/v � 1).
If the bare expressions u

(e-e,0)
⊥,z provided correct values for

the anisotropy energies, this would significantly restrict the
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variety of possible orders of the ν = 0 QHFM that could be
realized in the system. Anticipating the results of Sec. V, the
fully spin-polarized ferromagnetic phase would be the only
phase favored by the short-range e-e interactions. However, the
positiveness of the bare couplings g

(1)
αβ > 0 does not impose any

sign restrictions on the renormalized energies u
(e-e)
⊥,z ; according

to Eq. (80), the signs of u(e-e)
α (α = ⊥,z) are determined by

the relations g(1)
αz ≷ g

(1)
α⊥ between the couplings, and not their

signs, and there seems to be no physical restriction on the
relative values g(1)

αz /g
(1)
α⊥.

This demonstrates that, even if the signs of the bare
couplings gαβ (α,β = ⊥,z) were fixed to positive by the
repulsive nature of the Coulomb interactions, the renormalized
anisotropy energies u

(e-e)
⊥,z can still come in any possible sign

combination, which brings us to the above statement. We
also do not expect the sign restriction on gαβ (α,β =⊥ ,z)
to necessarily remain in the regime of stronger interactions,
e2/v ∼ 1; the sign change of some couplings could occur
already due to renormalizations at the lattice scale, see
Sec. II B.

What concerns the anisotropies due to electron interactions
with in-plane A1,B1 phonons, as follows from Eqs. (52) and
(81), the energy

u
(e-ph)
⊥ < 0 (86)

always remains negative. The negative sign is a consequence of
the attractive nature of the phonon-mediated interactions and
appears to stay preserved in the renormalization process. We
also mention that electron interactions with the out-of-plane
phonons result in a negative anisotropy energy u

(e-ph)
z < 0,

which is, however, small, |u(e-ph)
z | � |u(e-ph)

⊥ |, and neglected
here. The discussion of the implications of the properties (85)
and (86) for the physics of the ν = 0 QHFM will be continued
in Sec. V B.

V. PHASE DIAGRAM FOR THE ν = 0 QUANTUM
HALL FERROMAGNET

In this section, we obtain the phase diagram of the ν = 0
QHFM in graphene in the presence of the isospin anisotropy
and Zeeman effect, as described by the energy functional
E[P (t,r)] [Eqs. (44)–(48)]. We will consider only the “clas-
sical” ground states, i.e., time-independent configurations
P (r) that minimize the energy functional; effects of thermal
fluctuations are beyond the scope of this paper. In the bulk of
the sample, the functional E[P (r)] is minimized by a spatially
homogeneous configuration P (r) = P that minimizes the sum

E(P ) = E�(P ) + EZ(P ) (87)

of the anisotropy and Zeeman energies. Which P delivers
the minimum of E(P ) depends on the signs of the anisotropy
energies u⊥,z and their relations between each other and the
Zeeman energy εZ . The results of the previous section suggest
that essentially any scenario for (u⊥,uz) could take place in
real graphene. Therefore here, we consider all possibilities
and obtain a generic phase diagram in the space of parameters
(u⊥,uz,εZ).

A. Relevant states

According to Sec. III A, the order parameter matrices P

of the ν = 0 QHFM in graphene form a representation of
the eight-dimensional Grassmanian manifold Gr(2,4). For the
purpose of finding the ground states, however, considering
the most general parametrization of P is not necessary, since
the anisotropy terms [Eqs. (47) and (48)] act explicitly on
the isospin only. Here, we will consider two simpler six-
dimensional submanifolds of Gr(2,4) of physical relevance
to the problem. We will find that all possible ground states
belong to these subsets.

First, consider a family of states [see Eqs. (38) and (40),
direct products are in KK ′ ⊗ s space],

χa = |na〉 ⊗ |s〉, χb = |nb〉 ⊗ |−s〉, (88)

P n = Pna
⊗ Ps + Pnb

⊗ P−s, (89)

in which two electrons occupy the states χa,b with opposite
spin (±s) and arbitrary isospin (na,b) polarizations. Here and
below,

Ps = |s〉〈s| = 1
2 (1̂ + τ s)

is the density matrix of the spin (isospin, if in KK ′ space) in
the state |s〉; na,b, s, and n, sa,b below, are unit vectors defining
the spin or isospin states. Calculation of the anisotropy energy
[Eqs. (47) and (48)] of the state (89) gives

E�(P n) = u⊥(naxnbx + naynby) + uznaznbz. (90)

As an important special case of P n states, for coinciding
isospins na = nb ≡ n, one obtains a fully isospin-polarized
(IP) spin-singlet state

P IP = Pn ⊗ 1̂ (91)

with the anisotropy energy

E�(P IP) = u⊥n2
⊥ + uzn

2
z, n2

⊥ = n2
x + n2

y. (92)

The observable order of such state depends on the orientation
of the isospin n. In particular, when the isospin is at the
poles of the Bloch sphere, n = ±nz, nz = (0,0,1), the state
has a charge-density-wave (CDW) order (Fig. 12), with both

x y

z

n |K

|K

FIG. 12. (Color online) Charge-density-wave (CDW) phase of
the ν = 0 QHFM.
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FIG. 13. (Color online) Kekulé-distortion (KD) phase of the ν = 0
QHFM.

electrons per orbital occupying the same sublattice, and energy
ECDW

� = uz. When the isospin is on the equator of the Bloch
sphere, n = n⊥ = (cos ϕn, sin ϕn,0), the state has the Kekulé-
distortion (KD) order, represented schematically in Fig. 13,
and energy EKD

� = u⊥. The angle ϕn is related to the orientation
of the atom displacements in Fig. 3 (right).

The second important family of states is “dual” to P n,

χa = |n〉 ⊗ |sa〉, χb = |−n〉 ⊗ sb〉, (93)

P s = Pn ⊗ Psa
+ P−n ⊗ Psb

. (94)

Here, two electrons occupy the states χa,b with opposite isospin
(±n) and arbitrary spin (sa,b) polarizations. Calculation of the
anisotropy energy gives

E�(P s) = −(2u⊥ + uz)
1 + sasb

2

− (
u⊥n2

⊥ + uzn
2
z

)1 − sasb

2
. (95)

As a special case of P s states, for coinciding spins sa =
sb ≡ s, one obtains a fully spin-polarized isospin-singlet state

P F = 1̂ ⊗ Ps, (96)

with the ferromagnetic (F) order (Fig. 14) and anisotropy
energy

EF
� = −2u⊥ − uz. (97)

Note that in the isospin-singlet F state, each isospin channel
α = x,y,z contributes −uα to the anisotropy energy (47).

FIG. 14. (Color online) Spin-polarized ferromagnetic (F) phase
of the ν = 0 QHFM.

FIG. 15. (Color online) Antiferromagnetic (AF) phase of the
ν = 0 QHFM.

An intersection of the subsets (89) and (94) is the family of
states

χa = |n〉 ⊗ |s〉, χb = |−n〉 ⊗ |−s〉
(98)

P ns = Pn ⊗ Ps + P−n ⊗ P−s.

Here, two electrons have simultaneously opposite spin (±s)
and isospin (±n) polarizations. For brevity, we will denote
the states (98) with n = n⊥ and n = ±nz as P ns

⊥ and
P ns

z , respectively. At n = ±nz, electrons with opposite spin
polarizations ±s reside on different sublattices and P ns

z state
has an antiferromagnetic (AF) order (Fig. 15).

The state (98) has the anisotropy energy

Ens
� = −u⊥n2

⊥ − uzn
2
z, (99)

as can be obtained from either Eqs. (90) or (95). Comparing
Eqs. (95), (97), and (99), we also notice that, for arbitrary
orientations of spins sa and sb, the anisotropy energy (95) of
the state (94) is a linear combination of the energies of the F
and P ns states, with the weights determined by the product
sasb, i.e., by the angle between the spins.

The properties of the states (91), (96), and (98) are
summarized in Table I.

B. Phase diagram neglecting the Zeeman effect

To get a clear understanding of the orders favored by the
isospin anisotropy, let us first neglect the Zeeman energyEZ(P )
completely and find the states P that minimize the anisotropy
energy E�(P ) [Eqs. (47) and (48)] alone.

We accomplish this by noticing the following property.
For a given isospin channel α = x,y,z, the function tα(P )
[Eq. (48)] belongs to the range

−2 � tα(P ) � 2.

The maximum tα(P ) = 2 is reached at the IP state (91)
with n parallel to the α axis, nα = ±1. For the remaining
components ᾱ, one has tᾱ(P ) = 0. The minimum tα(P ) = −2
is reached within the subset (94), when(

1 − n2
α

)
(s+s− − 1) = 0,

i.e., in two cases.
(i) In the first case, s+ = s−, and the minimum is reached at

the F state (96) (hence, n can be arbitrary). For the remaining
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TABLE I. Relevant states of the ν = 0 QHFM. For given values of (u⊥,uz), the anisotropy energy E�(P ) is minimized by one of these
states, see Table II.

ν = 0 QHFM state Single-particle spinors χa,b Order parameter P Anisotropy energy E�(P )

Spin-polarized isospin singlet |n〉 ⊗ |s〉, |−n〉 ⊗ |s〉 1̂ ⊗ Ps −2u⊥ − uz

Isospin-polarized spin singlet |n〉 ⊗ |s〉, |n〉 ⊗ |−s〉 Pn ⊗ 1̂ u⊥
(
n2

x + n2
y

) + uzn
2
z

P ns state |n〉 ⊗ |s〉, |−n〉 ⊗ |−s〉 Pn ⊗ Ps + P−n ⊗ P−s −u⊥
(
n2

x + n2
y

) − uzn
2
z

components ᾱ, one also has tᾱ(P ) = −2, see also the comment
after Eq. (97).

(ii) In the second case, nα = ±1. For the remaining
components ᾱ, one has tᾱ(P ) = −(1 + s+s−), for which the
maximum tᾱ(P ) = 0 is reached at s+ = −s−, i.e, at the P ns

α

(α = ⊥,z) state, and the minimum tᾱ(P ) = −2 – at the F state.
The latter just brings us back to the case (i).

Using these properties, we arrive at the conclusion that, for
given signs and ratio of u⊥ and uz, the anisotropy energy E�(P )
is minimized by one of the above states – F, IP, or P ns

α – that
either minimize or maximize tα(P ).

The four possible cases (u⊥ ≷ 0,uz ≷ 0) of sign combina-
tions are considered below; three of them split into subcases,
depending on the relative absolute value |u⊥/uz|.

(++): u⊥ > 0, uz > 0. The anisotropy energy is minimized
by the F state (96), which minimizes tα(P ) = −2 simultane-
ously for all α = x,y,z, and gives EF

� = −2u⊥ − uz.
(−−): u⊥ < 0, uz < 0. The anisotropy energy is minimized

by one of the IP states (91), which maximize tα(P ) = 2.
For |u⊥| > |uz|, E�(P ) is minimized by the KD state with
EKD

� = −|u⊥|, whereas for |u⊥| < |uz| – by the CDW state
with ECDW

� = −|uz|.
(−+): u⊥ < 0, uz > 0. The anisotropy energy is minimized

by either the KD state with EKD
� = −|u⊥|, which minimizes

the E⊥(P ) = 1
2u⊥[tx(P ) + ty(P )] part of E�(P ), or the AF state

[Eq. (98) with n = ±nz] with EAF
� = −uz, which minimizes

the Ez(P ) = 1
2uztz(P ) part of E�(P ), E�(P ) = E⊥(P ) + Ez(P ).

Comparing these energies, we obtain that for |u⊥| > uz, the
KD state is realized, whereas for |u⊥| < uz, the AF state is
realized. The F state, which also minimizes Ez(P ), cannot be
realized, since EF

� = 2|u⊥| − uz > EAF
� in this regime.

(+−): u⊥ > 0, uz < 0. In this case, one has to compare the
energies of three states: the CDW state with ECDW

� = −|uz|,
which minimizes the Ez(P ); the F state with EF

� = −2u⊥ +
|uz|, which minimizes E⊥(P ) but maximizes Ez(P ) at the same
time; and the P ns

⊥ state [Eq. (98) with nz = 0] with E�(P ns
⊥ ) =

−u⊥, which has a higher E⊥(P ) than the F state, but zero Ez(P ),
on the other hand. Comparing these three energies, we find that
only the first two states are realized: for u⊥ > |uz|, E�(P ) is
minimized by the F state, whereas for u⊥ < |uz| – by the
CDW state. The P ns

⊥ state is not realized since E�(P ns
⊥ ) > EF

�
for u⊥ > |uz| and E�(P ns

⊥ ) < ECDW
� for u⊥ < |uz|.

These cases are summarized in Table II. Together, they
combine into the phase diagram of the states of the ν = 0
QHFM that minimize the isospin anisotropy energy, plotted
in Fig. 16. The phase diagram consists of four states with the
following orders: F, AF, CDW, and KD, shown in Figs. 12–15.
The phases are separated by the first-order transition lines:

u⊥ = −uz > 0, between the F and CDW phases;

u⊥ = uz < 0, between the CDW and KD phases;

u⊥ = −uz < 0, between the KD and AF phases;

u⊥ = 0, uz > 0, between the AF and F phases.

These transition lines come together at the origin (u⊥,uz) =
(0,0), where the anisotropy energy vanishes and all orders P

have the same energy.
Without the Zeeman effect, the phases have the following

symmetries: the F and AF phase are SU(2) symmetric in
the spin space [the spin polarization s in Eqs. (96) or (98)
can be arbitrary], the KD phase has U(1) symmetry [n =
n⊥ = (cos ϕn, sin ϕn,0) can have arbitrary orientation ϕn in
the nz = 0 plane], and the CDW phase has Z2 symmetry
(n = ±nz, according to the occupation of either A or B

sublattice). Exactly at the phase transition lines, the symmetry
of the ground state becomes higher; we do not attempt to
study the details of the transitions here. The key properties of
the phases are summarized in Table III.

TABLE III. States minimizing the isospin anisotropy energy
E�(P ) [Eqs. (47) and (48)] and forming the phase diagram in Fig. 16.
The last column (symmetry) denotes the symmetries of the ground
states in the isospin (KK ′) and spin (s) spaces.

State Order parameter P E�(P ) Symmetry

F 1̂ ⊗ Ps −2u⊥ − uz SU(2)s
KD Pn⊥ ⊗ 1̂ u⊥ U(1)KK ′

CDW P±nz
⊗ 1̂ uz Z2 KK ′

AF Pnz
⊗ Ps + P−nz

⊗ P−s −uz SU(2)s

TABLE II. Minimization of the anisotropy energy E�(P ) [Eqs. (47) and (48)].

Sign combination u⊥ > 0, uz > 0 u⊥ > 0, uz < 0 u⊥ < 0, uz > 0 u⊥ < 0, uz < 0
Subcase u⊥ > |uz| u⊥ < |uz| |u⊥| > uz |u⊥| < uz |u⊥| > |uz| |u⊥| < |uz|
State minimizing E�(P ) F F CDW KD AF KD CDW
Minimal E�(P ) −2u⊥ − uz −2u⊥ + |uz| −|uz| −|u⊥| −uz −|u⊥| −|uz|
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FIG. 16. (Color online) Phase diagram of the ν = 0 QHFM states
minimizing the isospin anisotropy energy E�(P ) [Eqs. (47) and (48)],
in the space of the anisotropy energies (u⊥,uz). Physical orders of the
phases are shown in Figs. 12–15.

Let us come back to the microscopic origins of the isospin
anisotropy. The conclusions of Sec. IV C [Eq. (85)] imply
that any possibility for the signs and relative values of the
anisotropy energies u

(e−e)
⊥,z could be realized and, therefore,

any phase on the diagram in Fig. 16 could be favored by the
short-range e-e interactions alone. The reason for that are the
peculiar properties of the renormalizations of the short-range
e-e interactions in graphene, which allow for sign changes of
the coupling constants (Fig. 10), switching the interactions
from repulsive (ue-e

α > 0) to attractive (ue-e
α < 0) in certain

channels.
In contrast, according to Eq. (86), the leading e-ph

interactions always favor the Kekulé distortion order, in
agreement with earlier predictions.30,31 Unlike short-range e-e
interactions, different sublattice channels do not couple in
the renormalization process and e-ph couplings retain their
negative sign, characteristic of attractive interactions. We also
mention that e-ph interactions with the out-of-plane phonons,
neglected here as weak, result in u

(e-ph)
z < 0 and favor CDW

order, in line with Ref. 32.
Of course, the values of the bare couplings gαβ are

determined by the details of e-e interactions and band structure
at atomic scale and should be a robust material property.
Therefore in real graphene, one can expect one particular
situation for the anisotropy energies (u(e-e)

⊥ ,u(e-e)
z ) to be realized

[which, in the experimentally relevant regime of strong
renormalizations, cannot be changed by varying B⊥, see
Eq. (80) and discussion in Sec. V E] and one certain order
to be favored. In this sense, a more accurate formulation of
the statement (85) is that one cannot theoretically rule out any
possibility for u

(e-e)
⊥,z , based just on the repulsive nature of the

underlying Coulomb interactions. Doing so requires a reliable
numerical estimate for the bare couplings.

In the absence of such an estimate, we point out one case
that may be the most relevant to the real system. For that, we
turn again to the first-order expressions (13) for the couplings
g

(1)
αβ , α,β = ⊥,z. There, ραβ(�r), α,β = x,y, and ρzz(�r) are the

staggered-type densities given by the linear combinations of
the products uμA(�r)uμ′A(�r) and uμB(�r)uμ′B(�r), μ = K,K ′, of
the Bloch wave functions. On the other hand, the densities

ραz(�r) and ρzα(�r), α = x,y, are determined by the overlaps
uμA(�r)uμ′KB(�r) of the Bloch wave functions peaked at the
atomic sites of different sublattices. Therefore it would be
reasonable to expect the couplings g

(1)
⊥z and g

(1)
z⊥ to be smaller

than g(1)
zz and g

(1)
⊥⊥, i.e.,

g(1)
zz , g

(1)
⊥⊥ > g

(1)
⊥z, g

(1)
z⊥ > 0.

(This certainly becomes true in the limit of “strongly localized”
atomic orbitals, when the size of the atomic wave function is
much smaller than the bond length.) In this case, according
to Sec. IV B, ḡzz(lB) > 0 will stay positive and grow upon
renormalization, while ḡ⊥z(lB) will turn negative and grow in
absolute value. This results in the signs

u
(e-e)
⊥ < 0, u(e-e)

z > 0

of the anisotropy energies [Eq. (62)]. The same holds for the
total anisotropy energies,

u⊥ < 0, uz > 0,

once e-ph interactions [Eq. (86)] are included. In this case,
according to Fig. 16 only either KD or AF phase can be favored
by the isospin anisotropy (the latter becomes canted in the
presence of the Zeeman effect, see Sec. V C).

C. Phase diagram in the presence of the Zeeman effect

We now take the Zeeman effect into account and find the
ground states P that minimize the the sum E(P ) [Eq. (87)] of
the anisotropy and Zeeman energies. The question is how the
phase diagram in Fig. 16 is modified by the Zeeman effect.

We first note that the spin-singlet CDW and KD phases are
unaffected by the Zeeman field and their total energy E(P ) is
equal to the anisotropy energy,

ECDW = uz, EKD = u⊥. (100)

One the other hand, the “spin-active” F and AF phases are
affected by the Zeeman field and, therefore, their whole sector
has to be reconsidered. Since both of these states belong to the
family (94), it is sufficient to minimize the energy

E(P s) = −u⊥ − uz − u⊥sasb − εZ(saz + sbz) (101)

of P s state with n = nz but generally noncollinear spins sa,b.
One can easily check that for a given angle 2θs between
the spins, sasb = cos(2θs), 0 � θs � π/2, which fixes the
anisotropy energy E�(P s), the Zeeman energy EZ(P s) is
minimized by the spin orientations

sa,b = ( ±
√

1 − s2
z cos ϕs, ±

√
1 − s2

z sin ϕs,sz

)
, (102)

sz = cos θs , that have equal projections on the direction of the
magnetic field (z) and are antiparallel in the perpendicular (xy)
plane, as shown in Fig. 17. The total energy (101) then equals

E(sz) = −u⊥ − uz − u⊥
(
2s2

z − 1
) − 2εZsz. (103)

Minimizing it with with respect to sz, we obtain that, for
u⊥ < −εZ/2, a canted antiferromagnetic (CAF) state with the
optimal angle θ∗

s between the spins (Fig. 18),

s∗
z = cos θ∗

s = εZ

2|u⊥| (104)
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FIG. 17. (Color online) Canted antiferromagnetic (CAF) phase
of the ν = 0 QHFM.

and energy

ECAF = −uz − ε2
Z

2|u⊥| (105)

is realized, whereas for u⊥ � −εZ/2, the fully spin-polarized
F state (θ∗

s = 0, s∗
z = 1) with the energy

EF = −2u⊥ − uz − 2εZ (106)

is realized.
We see that in the presence of the Zeeman effect, the total

energy (105) of the CAF state is indeed smaller than that
ECAF = −uz of the AF state with antiparallel spins: by forming
a noncollinear orientation (Fig. 17), electrons lose some of
the anisotropy energy, but gain more in the Zeeman energy.
Therefore the AF phase in Fig. 16 is completely substituted by
the CAF phase, in which the optimal angle θ∗

s depends on the
ratio εZ/|u⊥|. The antiparallel orientation (θ∗

s = π/2, s∗
z = 0)

is reached asymptotically for −u⊥ � εZ .

u

sz

1

Z 2

u

uz

F

CDW

KD

CAF

0

1,1
ΕZ
2

FIG. 18. (Color online) Phase diagram of the ν = 0 quantum Hall
ferromagnet in monolayer graphene in the presence of the isospin
anisotropy and Zeeman effect, in the space of the anisotropy energies
(u⊥,uz) and with the Zeeman energy εZ as parameter. Physical orders
of the phases are shown in Figs. 12–14, and 17. Top graph shows the
optimal value s∗

z [Eq. (104)] of the spin projection on the direction of
the magnetic field in the CAF and F phases.

We can now determine the boundaries between different
phases. As obtained above, the F and CAF phases are separated
by the line

u⊥ = −εZ

2
. (107)

The separation line between the CDW and KD phases
[Eq. (100)] remains at

u⊥ = uz. (108)

Next, comparing the energy (105) of the CAF state with that
(100) of the KD state, we obtain the separation line

u⊥ + uz = ε2
Z

2u⊥
. (109)

Analogously, the phase boundary between the F and CDW
phases is now given by

u⊥ + uz = −εZ. (110)

All four lines (107)–(110) come together and terminate at point
(u⊥,uz) = −(1,1)εZ/2.

This forms the phase diagram of the ν = 0 quantum
Hall ferromagnet in monolayer graphene in the presence of
the generic isospin anisotropy and Zeeman effect, plotted
in Fig. 18. This diagram constitutes the key result of the
present work. The total energy (87) is minimized by the
states with one of the following orders: spin ferromagnetic
(F), charge-density-wave (CDW), Kekulé distortion (KD), or
canted antiferromagnetic (CAF). As compared to the situation
without it (Fig. 16), the Zeeman effect (i) substitutes the
AF phase with antiparallel spins by the CAF phase with
noncollinear spins and (ii) naturally widens up the region of the
F phase in the (u⊥,uz) plane. The discussion of the microscopic
origins of the isospin anisotropies done in Sec. V B can be
directly carried over here. The key properties of the phases are
summarized in Table IV.

As far as the symmetries are concerned, the fully isospin-
polarized CDW and KD phases, unaffected by the Zeeman
field, retain their U(1) and Z2 degeneracies of the isospin
orientation. At the same time, the F phase becomes nonde-
generate, with the spin s = sz = (0,0,1) directed along the
Zeeman field (i.e., the total magnetic field), and the CAF phase
is U(1)-degenerate with respect to simultaneous rotations of
the spins sa,b about the direction of the Zeeman field [angle ϕs

in Eq. (102)]. The continuous U(1) degeneracies of the CAF
and KD phases could be subject to thermal fluctuations, which
we do not address here.

TABLE IV. States minimizing the sum E�(P ) + EZ(P ) of the
isospin anisotropy and Zeeman energies and forming the phase
diagram in Fig. 18. The last column (symm.) denotes the symmetries
of the ground states in the isospin (KK ′) and spin (s) spaces.

State Order parameter P E�(P ) + EZ(P ) Symm.

F 1̂ ⊗ Psz −2u⊥− uz−2εZ none
KD Pn⊥ ⊗ 1̂s u⊥ U(1)KK ′

CDW P±nz
⊗ 1̂s uz Z2 KK ′

CAF Pnz
⊗Psa + P−nz

⊗Psb −uz − ε2
Z

2|u⊥| U(1)s
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Note that, while all phase transitions in Fig. 16 and the
rest of the transitions in Fig. 18 are first-order (black lines),
the CAF-F transition [Eq. (107), dashed blue line in Fig. 18]
is second-order: upon increasing εZ/|u⊥|, the CAF phase
continuously crosses over to the F phase, as the AF component
(∼√

1 − s∗2
z ) of the CAF order parameter gradually decreases,

while its F component (∼s∗
z ) grows; eventually, at the CAF-F

transition line (s∗
z = 1), the AF component turns to zero, while

the F component saturates and experiences a jump in derivative
(see top graph in Fig. 18).

D. Relation to earlier works

Here, we discuss the connection of our results to earlier
related studies. In Refs. 22 and 29, the lattice effects of
e-e interactions on the ν = 0 QHFM were studied using
the tight-binding extended Hubbard model with adjustable
interactions at the lattice scale and asymptotically Coulomb
interactions at large scales. Within this model, the overlap
of the orbitals at different atomic sites is exactly zero and,
neglecting renormalizations, the anisotropy energy u

(e-e)
⊥ = 0

vanishes exactly, and only u(e-e)
z is present. The cases u(e-e)

z > 0
and u(e-e)

z < 0 are realized when, roughly, the sum of three
nearest-neighbor repulsions is smaller or greater than the
on-site repulsion, respectively. Accordingly, in Ref. 22, in
the presence of the Zeeman effect, the competition between
the F and CDW phases was predicted, which agrees with the
phase diagram in Fig. 18 at the line u⊥ = 0; the transition
point is given by Eq. (110). In Ref. 29, the comparison
between the CDW, F, and AF phases was done using numerical
mean-field analysis. The conclusion was reached that, ignoring
the Zeeman effect, depending on the details of interactions at
lattice scale, either CDW or AF phase is favored, while the
F phase has higher energy. This is also consistent with the
phase diagram in Fig. 16 at u⊥ = 0. Note that, at u⊥ = 0
and uz > 0, the system is right at the transition line between
the AF and F phases and therefore, even minor perturbations
(numerical or other) would drive the system into one of the
phases.

One may also draw certain parallels between the ν = 0
QHFM in graphene and the semiconductor quantum Hall
bilayers43,55–57 (QHB) at the total filling factor νQHB = 2.
There, the role of the isospin is played by the layer degrees
of freedom. The leading anisotropy comes from the difference
between the Coulomb interactions within and between the
layers. The resulting “capacitance” effect is described by
the anisotropy uz > 0, while a minor u⊥ > 0 due to the
Coulomb interactions is usually neglected in theoretical
studies.

The proximity of the layers results a finite overlap of the
different-layer wave functions and a possibility of tunneling.
In the QHFM theory, this is described by an extra isospin
“Zeeman” term Et (P ) = −εt tr[TxP ], εt > 0, in the energy
E(P ) [Eq. (87)], i.e., tunneling by itself favors the isospin-
polarized (IPx) state P IPx = Pnx

⊗ 1̂s with the isospin nx =
(1,0,0) along the x direction. Remarkably, in addition to the
F and IPx phases favored by the Zeeman effect and interlayer
tunneling, the CAF phase with the spin polarizations of the
layers as in Fig. 17 was also predicted55–57 to exist in a
finite-size region of the phase diagram between the F and

IPx phases. According to Refs. 55–57, the antiferromagnetic
coupling between the spins in different layers favoring the
CAF phase has a superexchange nature and arises from the
correlated two-particle tunneling processes.

It should be emphasized that the physical origin of KD and
CAF phases in graphene and IPx and CAF phases in QHB is
different. On the one hand, the possibility of tunneling between
the layers is a necessary condition for the existence of both IPx

and CAF phases in QHB. An analogous ingredient is absent
in the bulk of real graphene samples: creating the isospin
“Zeeman” field directed in the xy isospin plane requires a
static “nanoengineered” Kekulé distortion, Fig. 3(right). On
the other hand, in graphene, the KD phase is favored by
large enough negative anisotropy u⊥ < 0, |u⊥| > |uz|, while
the AF phase (CAF, in the presence of the Zeeman effect)
is favored by the combined anisotropies uz > 0 and u⊥ < 0
at uz > −u⊥. The negative anisotropy u⊥ < 0 arises from the
attractive interactions in ⊥-isospin channel, provided by either
the e-ph interactions or short-range e-e interactions that turned
attractive upon renormalization. Such mechanisms of u⊥ < 0
are minor or absent in QHB.

E. Inducing phase transitions in the ν = 0 QHFM

Turning to potential practical applications of the present
theory, two important questions can be addressed: (i) which
phase in Fig. 18 is realized in the experimentally observed
insulating ν = 0 state and (ii) whether one can induce
transitions between different phases in a real system. We
address the latter question in this subsection and the former in
Sec. VI.

The ground state of the ν = 0 QHFM is determined by the
relations between the parameters (u⊥,uz,εZ), the anisotropy
u⊥,z and Zeeman εZ energies, and the question is whether
one can change these relations in the experiment. Changing
the bare couplings gαβ α,β = ⊥,z, in order to modify the
relation between u⊥ and uz, seems quite challenging as they are
determined by the details of the interactions and band structure
at atomic scale. Varying the magnetic field, in magnitude or
orientation, is then virtually the only practical option.

Let us first neglect the Zeeman effect and inquire if the
relation between u⊥(B⊥) and uz(B⊥) could be modified by
varying the magnitude of the perpendicular magnetic field B⊥.
As the RG analysis of Sec. IV B shows, the short-range e-e
couplings ḡαβ(lB) [Eqs. (71)–(73)] do change their signs and
relative values upon renormalization, and, as a result, so do
the anisotropy energies u⊥,z(B⊥) [Eqs. (61) and (62)] upon
varying the magnetic field B⊥. However, according to the
estimates of Sec. IV C, these changes occur at magnetic length
lB ∼ a on the order of the lattice scale, where the renormal-
izations are still moderate in magnitude, Fe-e(lB/a,w) ∼ 1,
i.e., for unrealistically high magnetic fields. For all laboratory
fields, lB/a ∼ 10–100 and the renormalizations are strong,
Fe-e(lB/a,w) � 1. In this regime, the signs and relative value
of the anisotropy energies u⊥,z(B⊥) [Eq. (80)] cannot anymore
be changed and, hence, the transitions cannot be induced, by
varying the magnetic field.

A potentially more fruitful way to induce phase transitions
could be by tilting the magnetic field.22,29 The anisotropy
energies u⊥,z(B⊥) depend on the magnetic field component
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FIG. 19. (Color online) Phase transitions induced by tilting the
magnetic field, which increases the Zeeman energy εZ relative to the
anisotropy energies u⊥,z. The transitions from the CAF (point a) or
CDW (point c) to the F phase occur directly, while the transition
from the KD (point b) to the F phase can occur only through the CAF
phase.

B⊥, perpendicular to the sample, while the Zeeman energy
εZ(B) = μBB depends on the total value B =

√
B2

⊥ + B2
‖ .

Therefore tilting the magnetic field increases the Zeeman
energy εZ relative to the anisotropy energies u⊥,z, which makes
the F phase more favorable. Provided at perpendicular field
orientation the system is in a different phase, eventually, upon
increasing B/B⊥, the system must end up in the F phase.

Figure 19 shows the evolution of phases as one applies the
parallel component B‖, while keeping B⊥ fixed, thus changing
the Zeeman energy from εZ⊥ = μBB⊥ to εZ = μBB > εZ⊥
and keeping the anisotropy energies (u⊥,uz) constant. It
is convenient to present the phase diagram in the units
εZ⊥
εZ

(u⊥,uz): this way, the phase boundaries remain fixed,
while the phase point with constant (u⊥,uz) moves along
the straight line from its position at B‖ = 0 to the origin at
B/B⊥ → ∞. If the system is in either the CAF or CDW
phases at B‖ = 0, points a or c, respectively, the transition
occurs directly into the F phase upon increasing εZ/εZ⊥, via
a continuous second-order transition in the former case and a
first-order transition in the latter case. Remarkably, however,
if the system is in the KD phase at B‖ = 0, point b, the
transition to the F phase cannot occur directly: upon increasing
εZ , the system first makes a first-order phase transition into
the CAF phase, and then continuously transitions to the
F phase.

We note, however, that, since the renormalizations of the
isospin anisotropies are strong, such transitions may be quite
challenging to realize. According to Sec. IV C, although
the bare energies u

(0)
⊥,z ∼ B⊥[T]K [Eq. (82)] are comparable

with the Zeeman energy εZ⊥ = μBB⊥ for perpendicular field
orientation, the renormalized energies u⊥,z [Eqs. (83) and (84)]
can easily exceed εZ⊥ by one order of magnitude. Therefore
achieving the transition by applying the parallel component B‖,
would generally require large ratios B/B⊥ � 10, i.e., large
tilt angles. Since one should, at the same, maintain a large
enough perpendicular component B⊥ to preserve the correlated
quantum Hall state above the disorder level (B⊥ ≈ 3–5 T,
according to Refs. 15 and 17), the practical maximum of the

ratio B/B⊥ is limited by the maximum achievable magnetic
field and disorder in the system. An exception concerns the
special cases when, for perpendicular field orientation, the
system is “anomalously” close to one of the KD-CAF, CDW-F,
or CAF-F transitions lines in Fig. 16 [i.e., the point (u⊥,uz) is
∼εZ⊥ away from the line] and is on the KD, CDW, or CAF
side, respectively. In this case, smaller ratios B/B⊥ ∼ 1 would
be sufficient for the phase transition to occur.

VI. CONCLUSIONS

In conclusion, in this paper, we studied the ν = 0 quantum
Hall state in monolayer graphene in the framework of
quantum Hall ferromagnetism, with the key emphasis on the
isospin anisotropies that arise from the valley and sublattice
asymmetric short-range electron-electron and electron-phonon
interactions. The phase diagram in Fig. 18, obtained in the
presence of the generic isospin anisotropy and Zeeman effect
(neglecting thermal fluctuations), consists of four phases
characterized by the following orders: spin ferromagnetic (F),
charge density wave (CDW), Kekulé distortion (KD), and
canted antiferromagnetic (CAF). To the best of our knowledge,
the CAF phase has not been predicted before in the context
of the correlated quantum Hall states in graphene. We took
into account the Landau level mixing effects (see Sec. IV) and
found that they result in (i) the suppression of the stiffness
ρs due to screening and (ii) critical renormalizations of the
anisotropy energies u⊥,z. The latter has crucial implications
for the physics of the ν = 0 state. First, the anisotropies are
greatly enhanced and can significantly exceed the Zeeman
energy. Second, and most importantly, we conclude that the
short-range electron-electron interactions could favor any state
on the generic phase diagram: one cannot theoretically rule
out any possibility based just on the repulsive nature of
the underlying Coulomb interactions. The leading electron-
phonon interactions, on the other hand, always favor the
Kekulé distortion phase.

The main open practical question is then which of the phases
in Fig. 18 corresponds to the strongly insulating ν = 0 state
observed in transport experiments.13–15,17,18 For high quality
suspended graphene samples,15,17 the two-terminal resistance
was instrument-limited at R ∼ 109–1010 Ohm at B ∼ 10 T
and T � 1 K. In the absence of an accurate estimate for the
anisotropy energies, one can try to infer about the nature of
the real ν = 0 state by addressing the transport properties of
the phases in Fig. 18.

While the charged excitations of the ν = 0 QHFM are
gapped in the bulk for any order,21,22,25,41 the phases in Fig. 18
are expected to have markedly different edge transport behav-
ior. Existing studies23,24 suggest that the F phase has gapless
edge excitations. Therefore, an ideal sample with the F bulk
order would have a two-terminal resistance R = 1/(2e2/h) ∼
104Ohm, with the factor 2 due to two edges. On the other
hand, the CDW,29,58 AF,29,58 and KD59 phases were shown to
have gapped single-particle mean-field edge excitations, which
implies that these phase should exhibit insulating behavior. The
edge excitations of the CAF phase have not yet been addressed.
Note, however, that the spin-polarized F phase, being an
isospin singlet, is the only phase of the ν = 0 QHFM that does
not break the sublattice symmetry. This observation could be
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used as a “rule of thumb” argument in speculating about the
edge transport properties of the ν = 0 states. Based on this,
one can expect all three phases, CDW, KD, and CAF, to have
gapped edge excitations and exhibit insulating behavior, which
makes them much stronger candidates than the F phase for
the ν = 0 state realized experimentally. Distinguishing further
between the three insulating phases based on the transport
properties requires a more detailed analysis of their bulk and
edge charge excitations, to be presented elsewhere.33

ACKNOWLEDGMENTS

Author is thankful to Eva Andrei, Matt Foster, Piers
Coleman, Andrea Young, and Peter Silvestrov for insightful
discussions and acknowledges the hospitality of the TPIII
group at Ruhr-Universität Bochum, Germany, where part of
the work was completed. The work was supported by the US
Department of Energy under Contracts DE-FG02-99ER45790
at Rutgers University and DE-AC02-06CH11357 at Argonne
National Laboratory.

1K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang,
S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666
(2004).

2Y. Zhang, J. P. Small, M. E. S. Amori, and P. Kim, Phys. Rev. Lett.
94, 176803 (2005).

3C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai,
A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer,
J. Phys. Chem. B 108, 19912 (2004).

4K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature (London) 438, 197 (2005).

5Y. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature (London)
438, 201 (2005).

6A. K. Geim and K. S. Novoselov, Nat. Mater. 6, 183 (2007).
7A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and
A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

8S. Das Sarma, S. Adam, E. H. Hwang, and E. Rossi, Rev. Mod.
Phys. 83, 407 (2011).

9Y. Zheng and T. Ando, Phys. Rev. B 65, 245420 (2002).
10V. P. Gusynin and S. G. Sharapov, Phys. Rev. Lett. 95, 146801

(2005).
11N. M. R. Peres, F. Guinea, and A. H. Castro Neto, Phys. Rev. B 73,

125411 (2006).
12Y. Zhang, Z. Jiang, J. P. Small, M. S. Purewal, Y.-W. Tan,

M. Fazlollahi, J. D. Chudow, J. A. Jaszczak, H. L. Stormer, and
P. Kim, Phys. Rev. Lett. 96, 136806 (2006).

13J. G. Checkelsky, Lu Li, and N. P. Ong, Phys. Rev. Lett. 100, 206801
(2008); Phys. Rev. B 79, 115434 (2009).

14L. Zhang, J. Camacho, H. Cao, Y. P. Chen, M. Khodas, D. E.
Kharzeev, A. M. Tsvelik, T. Valla, and I. A. Zaliznyak, Phys. Rev.
B 80, 241412 (2009).

15Xu Du, I. Skachko, F. Duerr, A. Luican, and E. Y. Andrei, Nature
(London) 462, 192 (2009).

16D. A. Abanin, I. Skachko, X. Du, E. Y. Andrei, and L. S. Levitov,
Phys. Rev. B 81, 115410 (2010).

17K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, and
P. Kim, Nature (London) 462, 196 (2009).

18C. R. Dean, A. F. Young, P. Cadden-Zimansky, L. Wang, H. Ren,
K. Watanabe, T. Taniguchi, P. Kim, J. Hone, and K. L. Shepard,
Nature Phys. 7, 693 (2011).

19F. Ghahari, Yue Zhao, P. Cadden-Zimansky, K. Bolotin, and P. Kim,
Phys. Rev. Lett. 106, 046801 (2011).

20K. Nomura and A. H. MacDonald, Phys. Rev. Lett. 96, 256602
(2006).

21Kun Yang, S. Das Sarma, and A. H. MacDonald, Phys. Rev. B 74,
075423 (2006).

22J. Alicea and M. P. A. Fisher, Phys. Rev. B 74, 075422 (2006); Solid
State Commun. 143, 504 (2007).

23D. A. Abanin, P. A. Lee, and L. S. Levitov, Phys. Rev. Lett. 96,
176803 (2006).

24H. A. Fertig and L. Brey, Phys. Rev. Lett. 97, 116805 (2006).
25M. O. Goerbig, R. Moessner, and B. Doucot, Phys. Rev. B 74,

161407 (2006).
26R. L. Doretto and C. M. Smith, Phys. Rev. B 76, 195431 (2007).
27P. M. Ostrovsky, I. V. Gornyi, and A. D. Mirlin, Phys. Rev. B 77,

195430 (2008).
28S. Das Sarma and Kun Yang, Solid State Commun. 149, 1502

(2009).
29J. Jung and A. H. MacDonald, Phys. Rev. B 80, 235417

(2009).
30K. Nomura, S. Ryu, and D.-H. Lee, Phys. Rev. Lett. 103, 216801

(2009).
31C.-Yu Hou, C. Chamon, and C. Mudry, Phys. Rev. B 81, 075427

(2010).
32J.-N. Fuchs and P. Lederer, Phys. Rev. Lett. 98, 016803 (2007).
33M. Kharitonov (unpublished).
34D. V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001).
35E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy,

Phys. Rev. B 66, 045108 (2002).
36V. P. Gusynin, V. A. Miransky, S. G. Sharapov, and I. A. Shovkovy,

Phys. Rev. B 74, 195429 (2006).
37I. F. Herbut, Phys. Rev. Lett. 97, 146401 (2006); Phys. Rev. B 75,

165411 (2007); 76, 085432 (2007).
38E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy,

Phys. Rev. B 78, 085437 (2008).
39K. Yang, Solid State Commun. 143, 27 (2007).
40M. O. Goerbig, Rev. Mod. Phys. 83, 1193 (2011).
41D. P. Arovas, A. Karlhede, and D. Lilliehook, Phys. Rev. B 59,

13147 (1999).
42K. Yang, K. Moon, L. Zheng, A. H. MacDonald, S. M. Girvin,

D. Yoshioka, and Shou-Cheng Zhang, Phys. Rev. Lett. 72, 732
(1994); K. Moon, H. Mori, K. Yang, S. M. Girvin, A. H. MacDonald,
L. Zheng, D. Yoshioka, and S.-C. Zhang, Phys. Rev. B 51, 5138
(1995); K. Yang, K. Moon, L. Belkhir, H. Mori, S. M. Girvin,
A. H. MacDonald, L. Zheng, and D. Yoshioka, ibid. 54, 11644
(1996).

43K. Hasebe and Z. F. Ezawa, Phys. Rev. B 66, 155318 (2002); Z.
F. Ezawa, G. Tsitsishvili, and K. Hasebe, ibid. 67, 125314 (2003);
Z. F. Ezawa and G. Tsitsishvili, Phys. Rev. D 72, 085002 (2005);
G. Tsitsishvili and Z. F. Ezawa, Phys. Rev. B 72, 115306 (2005).

44I. L. Aleiner, D. E. Kharzeev, and A. M. Tsvelik, Phys. Rev. B 76,
195415 (2007).

155439-22

http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1103/PhysRevLett.94.176803
http://dx.doi.org/10.1103/PhysRevLett.94.176803
http://dx.doi.org/10.1021/jp040650f
http://dx.doi.org/10.1038/nature04233
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nature04235
http://dx.doi.org/10.1038/nmat1849
http://dx.doi.org/10.1103/RevModPhys.81.109
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/RevModPhys.83.407
http://dx.doi.org/10.1103/PhysRevB.65.245420
http://dx.doi.org/10.1103/PhysRevLett.95.146801
http://dx.doi.org/10.1103/PhysRevLett.95.146801
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1103/PhysRevB.73.125411
http://dx.doi.org/10.1103/PhysRevLett.96.136806
http://dx.doi.org/10.1103/PhysRevLett.100.206801
http://dx.doi.org/10.1103/PhysRevLett.100.206801
http://dx.doi.org/10.1103/PhysRevB.79.115434
http://dx.doi.org/10.1103/PhysRevB.80.241412
http://dx.doi.org/10.1103/PhysRevB.80.241412
http://dx.doi.org/10.1038/nature08522
http://dx.doi.org/10.1038/nature08522
http://dx.doi.org/10.1103/PhysRevB.81.115410
http://dx.doi.org/10.1038/nature08582
http://dx.doi.org/10.1038/nphys2007
http://dx.doi.org/10.1103/PhysRevLett.106.046801
http://dx.doi.org/10.1103/PhysRevLett.96.256602
http://dx.doi.org/10.1103/PhysRevLett.96.256602
http://dx.doi.org/10.1103/PhysRevB.74.075423
http://dx.doi.org/10.1103/PhysRevB.74.075423
http://dx.doi.org/10.1103/PhysRevB.74.075422
http://dx.doi.org/10.1016/j.ssc.2007.06.035
http://dx.doi.org/10.1016/j.ssc.2007.06.035
http://dx.doi.org/10.1103/PhysRevLett.96.176803
http://dx.doi.org/10.1103/PhysRevLett.96.176803
http://dx.doi.org/10.1103/PhysRevLett.97.116805
http://dx.doi.org/10.1103/PhysRevB.74.161407
http://dx.doi.org/10.1103/PhysRevB.74.161407
http://dx.doi.org/10.1103/PhysRevB.76.195431
http://dx.doi.org/10.1103/PhysRevB.77.195430
http://dx.doi.org/10.1103/PhysRevB.77.195430
http://dx.doi.org/10.1016/j.ssc.2009.06.039
http://dx.doi.org/10.1016/j.ssc.2009.06.039
http://dx.doi.org/10.1103/PhysRevB.80.235417
http://dx.doi.org/10.1103/PhysRevB.80.235417
http://dx.doi.org/10.1103/PhysRevLett.103.216801
http://dx.doi.org/10.1103/PhysRevLett.103.216801
http://dx.doi.org/10.1103/PhysRevB.81.075427
http://dx.doi.org/10.1103/PhysRevB.81.075427
http://dx.doi.org/10.1103/PhysRevLett.98.016803
http://dx.doi.org/10.1103/PhysRevLett.87.206401
http://dx.doi.org/10.1103/PhysRevB.66.045108
http://dx.doi.org/10.1103/PhysRevB.74.195429
http://dx.doi.org/10.1103/PhysRevLett.97.146401
http://dx.doi.org/10.1103/PhysRevB.75.165411
http://dx.doi.org/10.1103/PhysRevB.75.165411
http://dx.doi.org/10.1103/PhysRevB.78.085437
http://dx.doi.org/10.1016/j.ssc.2007.03.051
http://dx.doi.org/10.1103/RevModPhys.83.1193
http://dx.doi.org/10.1103/PhysRevB.59.13147
http://dx.doi.org/10.1103/PhysRevB.59.13147
http://dx.doi.org/10.1103/PhysRevLett.72.732
http://dx.doi.org/10.1103/PhysRevLett.72.732
http://dx.doi.org/10.1103/PhysRevB.51.5138
http://dx.doi.org/10.1103/PhysRevB.51.5138
http://dx.doi.org/10.1103/PhysRevB.54.11644
http://dx.doi.org/10.1103/PhysRevB.54.11644
http://dx.doi.org/10.1103/PhysRevB.66.155318
http://dx.doi.org/10.1103/PhysRevB.67.125314
http://dx.doi.org/10.1103/PhysRevD.72.085002
http://dx.doi.org/10.1103/PhysRevB.72.115306
http://dx.doi.org/10.1103/PhysRevB.76.195415
http://dx.doi.org/10.1103/PhysRevB.76.195415


PHASE DIAGRAM FOR THE ν = 0 QUANTUM HALL . . . PHYSICAL REVIEW B 85, 155439 (2012)

45D. M. Basko and I. L. Aleiner, Phys. Rev. B 77, 041409(R)
(2008).

46L. D. Landau and E. M. Lifshitz, Electrodynamics of Continuous
Media, Course of Theoretical Physics (Pergamon, New York, 1975),
Vol. 8.

47It is worth noting that, for generic symmetric repulsive interactions
and/or arbitrary integer filling factor, a strict proof that the QHFM
eigenstate is, in fact, a ground state does not exist in literature.
(This is definitely true for point interactions and singly occupied
orbitals,21 since in this case, E0 = 0 and the Hamiltonian of
repulsive interactions is positive semidefinite: 〈�Ĥ
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