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Unidimensional model of adatom diffusion on a substrate submitted to a standing acoustic wave.
I. Derivation of the adatom motion equation
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The effect of a standing acoustic wave on the diffusion of an adatom on a crystalline surface is theoretically
studied. We used an unidimensional space model to study the adatom + substrate system. The dynamic equation
of the adatom, a generalized Langevin equation, is analytically derived from the full Hamiltonian of the
adatom + substrate system submitted to the acoustic wave. A detailed analysis of each term of this equation
as well as of their properties is presented. Special attention is devoted to the expression of the effective force
induced by the wave on the adatom. It has essentially the same spatial and time dependencies as its parent
standing acoustic wave.
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I. INTRODUCTION

While the semiconductors industry extensively uses the
lithography process to stamp the microdevices at the
nanoscale, research centers and laboratories have investigated
the self-assembling properties of materials to avoid this
expensive and time consuming process. Most strategies to
self-assemble materials at the nanoscale, especially during
the atomic deposition process of semiconductor benefit
from the elastic properties or from the structure of the
substrate: the Stranski-Krastanov growth mode relies on
the competition between the surface and elastic energies to
organize the 3D growth,1,2 buried dislocations networks in the
substrate induce a periodic strain field at the substrate surface
that drives the diffusion of adatoms,3,4 and, finally, the use
of patterned substrates (vicinal surfaces, holes, or mesas) can
create some preferential nucleation sites.5–8

An alternative approach to self-assemble materials at the
nanoscale, the dynamic substrate structuring effect has been
recently proposed.9 At the macroscopic scale, a sand bunch
on a drum membrane excited at one of its eigenfrequencies
self-structures by accumulating around the nodes or antinodes
displacements of the membrane.10 Transposing this concept at
the nanoscale, we investigate the diffusion of an adatom on
a crystalline substrate submitted to a standing acoustic wave
(StAW).11 Molecular dynamic simulations have evidenced that
the StAW structures the diffusion of the adatom by encourag-
ing its presence in the vicinity of the maximum displacements
of the substrate.9 These simulations have evidenced that the
effect of the StAW is strong enough to have measurable effects.
The typical and relevant StAW wavelengths vary from a few
to hundreds of nanometers. Experimentally, the production of
standing surface acoustic waves of a few hundred nanometers
to micrometers wavelengths are nowadays available through
the use of interdigital transducer12,13 or optically excited
nanopatterned surfaces,14 whereas one does not know yet
how to efficiently generate smaller wavelengths (few to tens
nanometers) phonons.

In this study, we propose to analytically study the diffusion
of a single adatom on a crystalline surface submitted to a
StAW. The goal of this study is to establish the formalism

and the dynamic equation that describes the diffusion of an
adatom on a crystalline substrate submitted to a StAW. In
Sec. II, a generalized Langevin equation governing the adatom
diffusion on a one-dimensional substrate is analytically derived
from the Hamiltonian of the system (adatom + substrate).
Sections III, IV, V, and VI detail the different terms involved in
this generalized Langevin equation as well as their properties.

II. ADATOM MOTION EQUATION

We consider the diffusion of an adatom on a crystalline
substrate submitted to a StAW with a wave vector in the x

direction. Since the adatom diffusion is expected to be mainly
affected in the x direction, we specialize to a system with one
degree of freedom. The extension to a 2D system to model a
more complex StAW system (for instance, two StAWs with
wave vectors in the x and y directions form a square lattice
of nodes and antinodes) is straightforward, though analytical
calculations may become tedious.

Figure 1 reports a sketch of the model under study. x

and x−N
, . . . ,x

N
, respectively, design the positions of the

adatom and of the 2N + 1 substrate atoms in the reference
frame of the center of mass of the substrate. Following
the work of Zwanzig15 and related works,16–18 we start with
the Hamiltonian of the isolated system (adatom + substrate):

H0 = p2

2m
+�(x,x−N

, . . . ,x
N

)+
N∑

j=−N

p2
j

2mj

+Vsub(x−N
, . . . ,x

N
),

(1)

where m,p and mj,pj are, respectively, the masses and
momenta of the adatom and of the substrate atoms,
Vsub(x−N

, . . . ,x
N

) and �(x,x−N
, . . . ,x

N
) the potential energies

of the substrate-substrate and adatom-substrate interactions.
At this point, the generation process of the StAW has not been
yet introduced, this will be done later on.

The motion of the substrate atoms will be described in
the harmonic approximation19 with the associated phonons of
eigenvibration frequencies ωn, normal coordinates Qn, and
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FIG. 1. (Color online) Schematic representation of the model
under study. The adatom (red) and substrate atoms (blue) are
characterized by their coordinates x and xj (j ∈ {−N..N}) in the
reference frame of the center of mass of the substrate. Note that, for
clarity reasons, the adatom is not reported on the same horizontal line
as the substrate atoms, but the model is unidimensional.

momenta �n:

∑
j

p2
j

2mj

+ Vsub(x−N
, . . . ,x

N
) � 1

2

∑
n

(
�n�̄n + ω2

nQnQ̄n

)
,

(2)

where over-bar quantities are complex conjugate quantities
and where the potential origin has been fixed at the equilib-
rium positions, Vsub(x0

−N
, . . . ,x0

N
) = 0. In this and in all the

following equations, unless otherwise stated, the summations
over the substrate atoms j are from −N to N and those over
the normal modes n are from −N to N excluding n = 0.
Note that, within the harmonic approximation, for an isolated
substrate, there is no substrate dilation with temperature nor
energy exchanges between the phonons.

The substrate atom displacements, uj = xj − x0
j , around

their equilibrium positions x0
j are thus given by

uj = 1√
mj

∑
n

eiknx
0
j Qn, (3)

where kn is the wave vector of the n normal mode. In Eqs. (2)
and (3), we have

k−n = −kn, ω−n = ωn, Q̄n = Q−n, and �̄n = �−n. (4)

From Eqs. (2) and (3) and performing a development of the
potential � to first order in the uj ’s,

�(x,x−N
, . . . ,x

N
) = �

(
x,x0

−N
, . . . ,x0

N

)
+

∑
j

uj

∂�

∂xj

(
x,x0

−N
, . . . ,x0

N

)
= �0(x)

+1

2

∑
n

[Qn �n(x) + Q̄n �̄n(x)], (5)

where

�0(x) = �
(
x,x0

−N
, . . . ,x0

N

)
, (6)

�n(x) =
∑

j

1√
mj

eiknx
0
j
∂�

∂xj

(
x,x0

−N
, . . . ,x0

N

)
. (7)

The interaction of the adatom with the substrate has been
separated into two contributions. �0(x), the first one, appears
as an external static force field. It is due to the frozen
equilibrated substrate interatomic periodic potential. The
second one, represents the interaction of the adatom with the
phonons Qn, i.e., with the moving substrate atoms around their
equilibrium positions.

Equation (1) hence reads

H0 = p2

2m
+ �0(x)

+ 1

2

∑
n

[Qn �n(x) + Q̄n �̄n(x)]

+ 1

2

∑
n

(
�n�̄n + ω2

nQnQ̄n

)
. (8)

Note that the coupling between the substrate and the adatom
is linear in the phonon variables and nonlinear in the adatom
variable, i.e., the reverse situation of the one studied by Cortes
et al.17

To model the presence of a StAW in Eq. (8), we add a
forcing term with the same F amplitude on two specific normal
variables of opposite wave vectors Qnex and Q̄nex (= Q−nex ).
However, since our model does not consider any dissipation of
the substrate vibration modes, we slightly detune the forcing
frequency �nex = ωnex + δωnex from the eigenfrequency ωnex

to avoid any resonance and subsequent divergence of the
amplitude of the mode Qnex . These two modes will be
equally excited and thus, from basic forced oscillation theory,20

one expects a forced oscillation substrate displacement field
proportional to that of the parent standing wave:

u(x,t) = − 2F

M	2
cos(�nex t) cos(knexx + η), (9)

where M is the mass of the oscillator, η a phase depending on
the initial conditions and with

	2 = �2
nex

− ω2
nex

= (ωnex + δωnex )2 − ω2
nex

. (10)

We thus consider the following Hamiltonian for the system
(adatom + substrate submitted to a StAW):

H = p2

2m
+ �0(x) + 1

2

∑
n

[Qn �n(x) + Q̄n �̄n(x)]

+ 1

2

∑
n

(
�n�̄n + ω2

nQnQ̄n

)
− (Qnex + Q̄nex )F cos(�nex t). (11)

Note that, in Eq. (11), the addition of the StAW term makes
the Hamiltonian time dependent. In addition, the work of the
operator to induce the StAW [the last term of Eq. (11)] is
not null on average and leads to a monotonous increase of
the average energy of the system (adatom + substrate). This
would be the case even taking into account all the nonlinear
terms we have omitted in Eq. (11).

We, however, assume that despite this monotonous increase
of the energy, the temperature of the system remains constant,
either by considering that the substrate is infinite and has the
behavior of a thermostat, or by considering that the system is
not totally isolated and coupled to an external thermostat.

The dynamic equations derived from Eq. (11) read21

dQn

dt
= �n, (12a)

d�n

dt
= −ω2

nQn − �̄n(x) + �n,nexF cos
(
�nex t

)
, (12b)
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(12c)
dx

dt
= p

m
,

dp

dt
= −d�0

dx
(x) − 1

2

∑
n

[
Qn

d�n

dx
(x) + Q̄n

d�̄n

dx
(x)

]
,

(12d)

where �i,j = δi,j + δi,−j with δi,j the Kronecker symbol.22 In
Eq. (12b), −�̄n(x) is the force on the substrate normal mode
n, induced by the adatom at position x. Solving Eqs. (12a) and
(12b) between t0 and t , the normal substrate coordinates read

Qn(t) = Qn(t0) cos[ωn(t − t0)] + �n(t0)

ωn

sin[ωn(t − t0)]

−
∫ t

t0

�̄n(x(t ′))
sin[ωn(t − t ′)]

ωn

dt ′

+
∫ t

t0

�n,nexF cos
(
�nex t

′) sin[ωn(t − t ′)]
ωn

dt ′, (13)

where Qn(t0) and �n(t0) are fixed by the initial conditions. An
integration of the second integral and an integration by parts
of the first one gives

Qn(t) = Cn(t0) cos[ωn(t − t0)] + Dn(t0) sin[ωn(t − t0)]

− �̄n[x(t)]

ω2
n

+
∫ t

t0

cos[ωn(t − t ′)]
ω2

n

dx

dt
(t ′)

d�̄n

dx
[x(t ′)]dt ′

−�n,nex

F

	2
cos

(
�nex t

)
, (14)

with

Cn(t0) = Qn(t0) + �n,nex

F

	2
cos

(
�nex t0

) + �̄n[x(t0)]

ω2
n

,

(15a)

Dn(t0) = �n(t0)

ωn

− �n,nex

F

	2

�nex

ωn

sin
(
�nex t0

)
. (15b)

From Eqs. (4) and (7), we have

C̄n = C−n and D̄n = D−n. (16)

Using Eqs. (12c), (12d), and (14), we derive the generalized
Langevin equation governing the adatom diffusion:

m
d2x

dt2
= −d�eff

dx
(x) −

∫ t

t0

γ [x(t),x(t ′),t − t ′]
dx

dt
(t ′)dt ′

+ ξ (t) + FSAW(x,t). (17)

The left-hand side term of Eq. (17) is the usual inertial term.
On the right-hand side, we distinguish four terms, which are
successively:

(1) The force induced by the effective crystalline potential
�eff(x), defined by

�eff(x) = �0(x) − 1

2

∑
n

1

ω2
n

�n(x)�̄n(x). (18)

The properties of this potential will be studied in Set. VI.
(2) The friction term − ∫ t

t0
γ [x(t),x(t ′),t − t ′] dx

dt
(t ′)dt ′ that

depends on the adatom velocity and on the memory kernel

γ (x,x ′,t − t ′) which reads

γ (x,x ′,t − t ′) =
∑

n

cos[ωn(t − t ′)]
ω2

n

d�n

dx
(x)

d�̄n

dx
(x ′). (19)

The properties of γ (x,x ′,t − t ′) will be studied in Set. IV.
(3) The stochastic force17,18 ξ (t) is

ξ (t) = −
∑

n

{Cn(t0) cos[ωn(t − t0)]

+Dn(t0) sin[ωn(t − t0)]}d�n

dx
[x(t)]. (20)

This term depends on the initial conditions and adatom position
and is a quickly varying force generated by the substrate. The
properties of this force will be described in Sec. V.

(4) The last term FSAW(x,t) is the effective force due to the
applied forcing term at �nex , i.e., the force FSAW(x,t) induced
by the StAW on the adatom through the substrate:

FSAW(x,t) = F

	2

[
d�nex

dx
(x) + d�̄nex

dx
(x)

]
cos

(
�nex t

)
. (21)

This force will be detailed in Sec. III. The three first forces,
crystalline, friction and stochastic, exist even in the absence of
the StAW excitation. They are the usual forces describing the
dynamics of the atoms in a crystalline material.

We have chosen to keep in FSAW(x,t) only the forced
oscillation term at the angular frequency �nex . All the other
terms depending on F have been included in the stochastic
force ξ (t). They correspond to the responses of the oscillators
Qnex and Q̄nex to the initial conditions at t = t0. Since the
normal modes of the substrate are undamped, these last terms
are periodic and do not cancel. For damped oscillators, the
terms depending on F in the stochastic force would correspond
to a transient regime and would thus cancel, contrary to the
forced oscillation term at the angular frequency �nex .

III. THE STAW FORCE

To derive the expression of the force FSAW(x,t) induced
by the StAW, we need to explicit the expression of �nex (x)
in Eq. (21). Since interaction potentials depend only on the
relative position of the interacting particles, so do �0 and �n.
�n then reads

�n(x) =
∑

j

1√
mj

eiknx
0
j
∂�

∂xj

(
x − x0

−N
, . . . ,x − x0

N

)
= αn(x)eiknx, (22)

with αn(x) defined as

αn(x) =
∑

j

1√
mj

e−ikn(x−x0
j ) ∂�

∂xj

(
x − x0

−N
,...,x − x0

N

)
. (23)

Note that for an infinite crystal, the αn(x) functions have
the lattice periodicity.23 In addition, ᾱn(x) = α−n(x) so that
introducing the real αr

n(x) = �[αn(x)] and imaginary αi
n(x) =

�[αn(x)] parts of αn(x), we have

αr
n(x) = αr

−n(x) and αi
n(x) = −αi

−n(x), (24)
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which leads to

d�n

dx
+ d�̄n

dx
= 2[gn(x) cos(knx) + hn(x) sin(knx)], (25)

with

gn = dαr
n

dx
− knα

i
n hn = −

(
knα

r
n + dαi

n

dx

)
, (26)

where gn(x) and hn(x) have the lattice substrate periodicity.
The FSAW(x,t) force then reads

FSAW(x,t) = 2F

	2
cos

(
�nex t

)[
gnex (x) cos

(
knexx

)
+hnex (x) sin

(
knexx

)]
. (27)

The comparison of Eqs. (27) and (9) shows that, as
expected, the SAW force on the adatom, induced by the
standing surface acoustic wave through the substrate, has the
large scale spatial and time dependence of the corresponding
standing wave. This dependence at spatial length scales
2π/knex has been exhibited in molecular dynamic simulations9

of adatom diffusing on a substrate submitted to a standing
surface acoustic wave. However, at a finer scale, x smaller
than the lattice parameter, this force experiences an amplitude
and a phase modulation due to the presence of the crystalline
potential through the functions gnex (x) and hnex (x).

At this point, it is instructive to turn to a particular case by
specifying the substrate and the interaction potential between
the adatom and the substrate atoms, especially in order to
get an explicit expression of the functions αn(x) and thus of
gn(x) and hn(x). We assume that the substrate atoms have
the same mass M and that the adatom interacts with each
substrate atom through an attracting pair potential Vpair(x − xi)
that cancels at infinity. We choose for Vpair an exponential
curve of extension σ (roughly the pair interaction range), i.e.,
a potential expression, that is physically meaningful and that
allows the derivation of analytical calculations:

�
(
x,x0

−N
, . . . ,x0

N

) =
∑

j

Vpair
(
x − x0

j

)

= −
∑

j

V0e
−|x−x0

j
|

σ , (28)

where V0 is the bonding energy. Note that minima of �

correspond to atoms substrate positions. We have x0
j = ja

where a is the lattice spacing and j ∈ [−N,N ]. αn(x) then
reads

αn(x) = 1√
M

∑
j

e−ikn(x−x0
j ) ∂�

∂xj

(
x − x0

−N
, . . . ,x − x0

N

)

= − 1√
M

∑
j

e−ikn(x−x0
j ) dVpair

dx

(
x − x0

j

)

= V0√
M

∑
j

e−ikn(x−ja) d

dx

[
e

−|x−ja|
σ

]
. (29)

To take into account the discontinuties of the derivative of
Vpair at its minima, we define m0(x) and r(x), respectively,
the quotient and the rest of the Euclidian division of x by
a: x = m0a + r , with m0 ∈ [−N, + N ] and 0 � r(x) < a.
m0(x) is related to the potential well [m0a,(m0 + 1)a] in
between which the adatom is and r(x) where it is exactly
in between. Extending the size of the substrate to infinity
(N → ∞) in Eq. (29), we obtain

αn(x) = V0

σ
√

M

⎡
⎣ ∞∑

j=m0+1

e−ikn(x−ja)e
x−ja

σ

−
m0∑

j=−∞
e−ikn(x−ja)e− (x−ja)

σ

⎤
⎦ (30)

= V0

σ
√

M

(
e−iknr+ r

σ

e
a
σ
−ikna − 1

− e−iknr− r
σ

1 − e−ikna− a
σ

)
. (31)

αn(x) appears then as a function of r(x) only, which reads

αn[r(x)] = V0

σ
√

M

eikna cosh
(

r
σ

) − cosh
(

r−a
σ

)
cosh

(
a
σ

) − cos(kna)
e−iknr . (32)

From this expression of αn, we deduce the following
expressions for �n, gn, and hn:

�n(x) = V0

σ
√

M

eikna cosh
(

r
σ

) − cosh
(

r−a
σ

)
cosh

(
a
σ

) − cos(kna)
eiknm0a, (33)

gn(r) = V0

σ 2
√

M
[

cosh
(

a
σ

) − cos(kna)
] {

cos[kn(r − a)] sinh
( r

σ

)
− cos(knr) sinh

(
r − a

σ

)}
, (34)

hn(r) = V0

σ 2
√

M
[

cosh
(

a
σ

) − cos(kna)
] {

sin[kn(r − a)] sinh
( r

σ

)
− sin(knr) sinh

(
r − a

σ

)}
. (35)

Note that, since gn(x) and hn(x) in Eq. (26) have the lattice periodicity, we have gn(x) = gn(m0a + r) = gn(r) and hn(x) =
hn(m0a + r) = hn(r). One can easily verify that FSAW [see Eq. (27)] is a continuous function of x, despite the discontinuity of the
derivative of Vpair. A more symetric expression can be obtained through the r = r ′ + a/2 translation, with now −a/2 � r ′ � a/2
(r ′ = 0 corresponds to the midposition between two successive potential wells, located at r ′ = ±a/2):

FSAW[x,r ′(x),t] = Fsaw(r ′) cos
(
�nex t

)
cos

[
knex (x − r ′) + ϕ0(r ′)

] = Fsaw(r ′) cos
(
�nex t

)
cos

[
knexx + ϕ(r ′)

]
, (36)
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with

Fsaw(r ′) = 2F0

[
cos2 knexa

2
sinh2 a

2σ
cosh2 r ′

σ
+ sin2 knexa

2
cosh2 a

2σ
sinh2 r ′

σ

]1/2

,

= 2F0 cos

(
knexa

2

)
sinh

(
a

2σ

) [
1 +

(
1 + tan2 knexa

2
coth2 a

2σ

)
sinh2 r ′

σ

]1/2

, (37)

tan[ϕ0(r ′)] = tan
knexa

2
coth

a

2σ
tanh

r ′

σ
, (38)

F0 = 2V0F

	2σ 2
√

M
[

cosh
(

a
σ

) − cos
(
knexa

)] , (39)

where Fsaw(r ′) and ϕ(r ′) = ϕ0(r ′) − knexr
′ are, respectively, the

amplitude and the phase of the large scale spatial dependence
of FSAW[x,r ′(x),t]. Equation (36) again evidences the large
scale spatial and time dependence of the SAW. This point is
also evidenced by evaluating the force at the substrate atoms
positions, r ′ = ±a/2, and at the midway position between two
successive potential wells, r ′ = 0:

FSAW(x,r ′ = ±a/2,t)

= F0 sinh
( a

σ

)
cos

(
knexx

)
cos

(
�nex t

)
, (40)

FSAW(x,r ′ = 0,t) = 2F0 cos

(
knexa

2

)
sinh

(
a

2σ

)
× cos

(
knexx

)
cos

(
�nex t

)
. (41)
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FIG. 2. (Color online) Top and bottom: maximum force induced
by the StAW [t = 0[2π/�nex ] in Eq. (36)] and middle: interatomic
potential [see Eq. (28)] as a function of x/a, for knexa = 2π/15 and
two values of σ/a: 0.5 (black) and 1.5 (red). Top and bottom: envelop
curve at the substrate atom positions [blue, Eq. (41)] and midway in
between [magenta, Eq. (40)].

Figure 2 reports both the maximum force [t = 0[2π/�nex ]
in Eq. (36)] induced by the StAW and the interatomic potential
[see Eq. (28)] as a function of x/a for knexa = 2π/15 and two
values of σ/a: 0.5 and 1.5. The large scale spatial dependence
in cos(knexx) of the force FSAW[x,r ′(x),t] is clearly evidenced,
whereas the finer scale, between two successive potential
wells exhibits the sinus hyperbolic-based dependence of the
force evidenced in Eq. (37). As σ increases, the amplitude
of the wells of the adatom-substrate potential [see Eq. (28)]
and the amplitude of the variations of the force at both
the large scale 2π/knex and at the fine scale a decrease:
indeed, if the interaction between the adatom and the substrate
is less pronounced, the force induced by the wave on the
adatom will also be reduced on both fine and large spatial
scales.

IV. THE MEMORY KERNEL

Let’s now study the memory kernel γ (x,x ′,t − t ′) of the
friction force [see Eq. (19)] that depends on the αn functions
through �n(x) [see Eq. (22)]:

γ (x,x ′,t − t ′) =
∑

n

cos[ωn(t − t ′)]
ω2

n

d�n

dx
(x)

d�̄n

dx
(x ′).

Note that this memory kernel depends on the adatom position
so that the dissipation term in Eq. (17) is nonlinear in the
adatom variables.15,24 An explicit expression of γ is out of
scope. However, since the αn functions are periodic functions
of period the lattice parameter a, we can make an evaluation of
the kernel without taking into account their spatial variations.
They are then replaced in Eq. (19) by their mean value over
the period a. This is equivalent to take into account only the
first term, α̃n(0), of their Fourrier expansion:

γ (x,x ′,t − t ′) ≈
∑

n

cos[ωn(t − t ′)]eikn(x−x ′)

ω2
n

k2
nα̃n(0)α̃n(0),

(42)

with

α̃n(0) = 1

a

∫ a

0
αn(x)dx. (43)
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Again using the particular interatomic potential [see Eq. (28)]
with Eqs. (31) or (32), one gets

α̃n(0) = 2iknV0

aσ
√

M
(
k2
n + 1/σ 2

) . (44)

Within this approximation, the memory kernel reads

γ (x − x ′,t − t ′) ≈ 4V 2
0

a2M

∑
n

k4
n cos[ωn(t − t ′)]

ω2
n

×
(

σ

1 + k2
nσ

2

)2

eikn(x−x ′).

(45)

In the same spirit, we will use the Debye model,25 which is
well adapted for simple monoatomic lattices at intermediate
temperatures, to describe the phonon dispersion relation, ωn =
cskn, where cs is the speed of sound of the substrate, and change
the discrete summation to an integral:

γ (x − x ′,t − t ′) ≈ 4V 2
0 σ 2

a2Mc2
s

×
∫ kD

−kD

k2 cos[csk(t − t ′)]eik(x−x ′)

(1 + k2σ 2)2
g(k)dk,

(46)

where kD = π/a is the Debye wave number and g(k) =
L/(2π ) the density of states in the reciprocal space, with
L = 2Na the size of the substrate. Moreover, since the
function k2/(1 + k2σ 2)2 is a peaked function centered at
k = 0 of extension 1/σ , and considering that σ is generally
larger than a, the limits of integration are extended to ∞.
An integration by parts leads to the calculation of Fourier
transform of Lorentzians and to the following approximated γ

expression:

γ (x − x ′,t − t ′) = LV 2
0

2c2
s a

2Mσ

{
H

[ |x − x ′ + cs(t − t ′)|
σ

]

+ H

[ |x − x ′ − cs(t − t ′)|
σ

]}
with H (x) = (1 − x)e−x. (47)

The expression of the memory kernel in Eq. (47) is an even
function of x − x ′ and t − t ′. The dependence on x − x ′ is
a direct consequence of the elusion of the dependence of
αn(x) on x (at the scale a) (see Sec. VI). We do not find
for γ (x,x ′,t − t ′) a simple exponentially decreasing function
of |t − t ′| as usually assumed in most textbooks.26–28 However,
we emphasize that the γ expression in Eq. (47) crucially
depends on the interaction potential chosen [see Eq. (28)]
and that Eq. (47) provides a rather crude estimation of
γ (x,x ′,t − t ′): we have ignored the dependence of �n on the
length scale a and the extension of the integral Eq. (46) to
infinity is a rough assumption (σ/a is not, in general, very
large compared to one).

In addition, from Eq. (47), the correlation time appears to
be of the order of σ/cs . Knowing that σ is of the order of
magnitude of the lattice paramater, this correlation time is of
the order of the inverse of the Debye frequency.

V. THE STOCHASTIC FORCE

In this section, we describe the properties of ξ (t), the
stochastic force [see Eq. (20)]. Since this force depends on
the adatom position through the coupling term d�n

dx
[x(t)], it

represents multiplicative fluctuations.24 Using Eqs. (15a) and
(15b), it reads

ξ (t) = −
∑

n

({
Qn(t0) + �n,nex

F

	2
cos

(
�nex t0

)

+ �̄n[x(t0)]

ω2
n

}
cos[ωn(t − t0)]

+
[
�n(t0)

ωn

− �n,nex

F

	2

�nex

ωn

sin
(
�nex t0

)]

× sin[ωn(t − t0)]

)
d�n

dx
[x(t)]. (48)

This force partially results from the initial state of the substrate.
In that sense, our system is completely deterministic. However,
we have considered a quadratic approximation in Eq. (2) and
a linear development of � in Eq. (5). In a real substrate,
the nonlinear terms can hold and/or exchange some energy
with the normal substrate modes and in addition the substrate
is never completely uncoupled to the experimental setup. To
take into account these exchanges of energy without explicitly
describing them, we characterize the state of the substrate
( �Q, ��) at t0 using a probability distribution p[ �Q(t0), ��(t0)],
where �Q and �� are vectors whose coordinates are the variables
Qn and �n. We suppose that the StAW forcing terms in
Eq. (11) initially switched off are switched on at t0: the
Hamiltonian describing our system at t < t0 is thus given by
Eq. (8).

Besides, if we want Eq. (17) to be regarded as a conventional
generalized Langevin equation, the quantity ξ (t) ought to
have the properties that are expected for Langevin noise.
Especially, its average is expected to cancel with respect to the
probability distribution p[ �Q(t0), ��(t0)].27 In order to satisfy
this last requirement, we choose the following expression for
p[ �Q(t0), ��(t0)]:

p[ �Q(t0), ��(t0)] = Z−1e−βHs , (49)

where β = 1/(kBT ), kB the Boltzmann constant, T is the
temperature of a surrounding thermostat that mimics the
coupling of the system with the experimental setup, and Hs

given by

Hs( �Q, ��) = 1

2

∑
n

(
�n�̄n + ω2

nQnQ̄n

)

+ 1

2

∑
n

{Qn �n[x(t0)] + Q̄n �̄n[x(t0)]}

+ 1

2

(
Qnex + Q̄nex

) Fω2
nex

	2
cos

(
�nex t0

)
. (50)

Hs describes the coupling between the substrate and the
adatom at position x(t0) and contains a term derived from the
StAW force to take into account the initial conditions imposed
by the StAW on the Qn variables at t = t0. The Hamiltonian Hs

is hence different from the H0 one [see Eq. (8)] of the system
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for t < t0, i.e., the probability distribution p[ �Q(t0), ��(t0)]
corresponds to a nonequilibrium (macro-)state of the system
described by H0 coupled to a thermostat at temperature T . We
will now establish the properties of the fluctuating force ξ (t)
for the probability distribution (49).

The examination of Eqs. (48) and (50) reveals that the
appropriate variables are

Rn = Qn + �̄n

ω2
n

+ �n,nex

F

	2
cos

(
�nex t0

)
. (51)

With these variables, Hs and ξ (t) read

Hs( �Q, ��) = 1

2

∑
n

[
�n�̄n + ω2

nRnR̄n

−
∣∣∣∣ �̄n

ω2
n

+ �n,nex

F

	2
cos

(
�nex t0

)∣∣∣∣
2]

, (52)

ξ (t) = −
∑

n

d�n

dx
[x(t)]

{
Rn(t0) cos[ωn(t − t0)]

+
[
�n(t0)

ωn

− �n,nex

F

	2

�nex

ωn

sin
(
�nex t0

)]

× sin[ωn(t − t0)]

}
. (53)

From Eqs. (49) and (52), variables �n and Rn appear as
complex variables with centered Gaussian distributions of
variance β−1. Note, however, that since �̄n = �−n and
R̄n = R−n, all these variables are not independent. One can
easily rewrite Eq. (52) using a set of 2N independent variables
(Rn,�n) with n > 0:

Hs( �Q, ��) =
∑
n>0

[
�n�̄n + ω2

nRnR̄n

−
∣∣∣∣ �̄n

ω2
n

+ �n,nex

F

	2
cos

(
�nex t0

)∣∣∣∣
2]

. (54)

So that, for any two variables X and Y ∈ {ωnRn,�n} (n >

0), their mean values 〈X〉 are 0 and their covariances 〈[X −
〈X〉][Ȳ − 〈Ȳ 〉]〉 are (2/β)δXY .

From which we deduce the stochastic properties of ξ (t):

〈ξ (t)〉 = F

	2

{
d�nex

dx
[x(t)] + d�̄nex

dx
[x(t)]

}

×
{

�nex

ωnex

sin
(
�nex t0

)
sin[ωnex (t − t0)]

}
, (55)

C(t,t ′) = 〈[ξ (t)− < ξ (t) >] [ξ (t ′)− < ξ (t ′) >]〉
= 1

β

∑
n

cos[ωn(t − t ′)]
ω2

n

{
d�n

dx
[x(t)]

d�̄n

dx
[x(t ′)]

}

= 1

β
γ [x(t),x(t ′),t − t ′]. (56)

We recover in this last equation the fluctuation-dissipation
theorem: this result is especially independent of the precise

expression of the potentials � and Vsub in Eq. (1) as soon as this
later can be approximated by Eq. (8). The same result has been
demonstrated in a general frame by Zwanzig.15 The non-null
value of 〈ξ (t)〉 is related to the time-dependent Hamiltonian
(11) and, more precisely, to the initial conditions that are
imposed by abruptly switching on the StAW term at t0. The
Hamiltonian Hs , see Eq. (52), actually takes into account the
initial conditions imposed by the StAW on the Qn variables
but not on the �n variables. As a consequence, the non-null
value of 〈ξ (t)〉 is directly correlated to the initial conditions
imposed on the �n variables.

To recover that the average value of the stochastic force
cancels, we impose that �nex t0 = 0[π ]: this corresponds to
switching on the StAW force at an extremum of the force.

VI. THE EFFECTIVE CRYSTALLINE POTENTIAL

The effective crystalline potential �eff(x) reads

�eff(x) = �0(x) + 	�0(x), (57)

with 	�0(x) = −
∑

n

1

2ω2
n

�n(x)�̄n(x). (58)

Using Eq. (22), 	�0(x) reads

	�0(x) = −
∑

n

1

2ω2
n

αn(x)ᾱn(x). (59)

	�0(x) is then a periodic function of the lattice. 	�0(x)
physically corresponds to the potential seen by the adatom
induced by the modifications of substrate atoms positions due
to the adatom at position x. Such interaction also appears in the
memory kernel. Actually, both terms 	�0(x) and the memory
kernel derive from the integration by parts of the third term
of Eq. (13) leading to Eq. (14). The term 	�0(x) derived
from the third term of Eq. (14), corresponds to the static and
instantaneous modification of the substrate variables due to
the presence of the adatom at position x, while the memory
kernel derived from the fourth term of Eq. (14), corresponds to
the retarded effects, i.e., how the past positions of the adatom
influence the substrate positions at present. Both quantities
	�0(x) and γ (x,x ′,t − t ′) can be related by introducing the
function �(x,x ′,t − t ′):

�(x,x ′,t − t ′) =
∑

n

cos[ωn(t − t ′)]
ω2

n

�̄n(x ′)
d�n

dx
(x),

d	�0(x)

dx
= −1

2

[
�(x,x,0) + �̄(x,x,0)

]
,

γ (x,x ′,t − t ′) = ∂�

∂x ′ (x,x ′,t − t ′).

An explicit expression of the spatial dependence of 	�0(x)
can be obtained using the particular interatomic potential [see
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Eq. (28)], and the �n expression of Eq. (33), in Eq. (58):

	�0(x) = − V 2
0

2σ 2M

{ [
cosh2

(
r

σ

)
+ cosh2

(
r − a

σ

)]

×
∑

n

1

ω2
n

[
cosh

(
a
σ

) − cos(kna)
]2

− 2 cosh
( r

σ

)
cosh

(
r − a

σ

)

×
∑

n

cos(kna)

ω2
n

[
cosh

(
a
σ

) − cos(kna)
]2

}
, (60)

where the two sums are only numerical factors independent of
x. We recover in Eq. (60) that 	�0(x) is a periodic function
of the lattice.

VII. CONCLUSION

We have studied the diffusion of an adatom on a substrate
submitted to a StAW. We found that the adatom motion is
governed by a generalized Langevin equation:

m
d2x

dt2
= −d�eff

dx
(x) + ξ (t) −

∫ t

t0

γ (x,x ′,t − t ′)
dx

dt
(t ′)dt ′

+FSAW(x,t). (61)

We have characterized each of the terms involved in this equa-
tion and have given them their analytical expression and most
of the time, an explicit expression. A key result is the expres-
sion of the force FSAW induced by the StAW as a function of x

and t . FSAW essentially varies as cos(knexx) cos(�nex t), where
knex and �nex are the spatial and angular frequencies of the
StAW. However, a deeper analysis reveals that this force also
varies on the crystalline substrate lattice scale. The next paper
of this series is devoted to the study of the solutions of Eq. (61).
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