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Effective mass theory of monolayer δ doping in the high-density limit
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Monolayer δ-doped structures in silicon have attracted renewed interest with their recent incorporation into
atomic-scale device fabrication strategies as source and drain electrodes and in-plane gates. Modeling the physics
of δ doping at this scale proves challenging, however, due to the large computational overhead associated with ab
initio and atomistic methods. Here, we develop an analytical theory based on an effective mass approximation.
We specifically consider the Si:P materials system and the limit of high donor density, which has been the subject
of recent experiments. In this case, metallic behavior including screening tends to smooth out the local disorder
potential associated with random dopant placement. While smooth potentials may be difficult to incorporate into
microscopic, single-electron analyses, the problem is easily treated in the effective mass theory by means of a
jellium approximation for the ionic charge. We then go beyond the analytic model, incorporating exchange and
correlation effects within a simple numerical model. We argue that such an approach is appropriate for describing
realistic, high-density, highly disordered devices, providing results comparable to density functional theory, but
with greater intuitive appeal and lower computational effort. We investigate valley coupling in these structures,
finding that valley splitting in the low-lying � band grows much more quickly than the �-� band splitting at
high densities. We also find that many-body exchange and correlation corrections affect the valley splitting more
strongly than they affect the band splitting.
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I. INTRODUCTION

As transistors continue to shrink in size, they approach
a limiting regime where the electrons are confined and
controlled over atomic length scales. Silicon-based devices
have shown particular promise in this regard. For example,
electrons on individual donors or traps have been probed in-
side conventional metal-on-insulator field-effect transistors1–4

and have been proposed as qubits for quantum computing
architectures.5–11 In other experiments, quantum dots with
fewer than ten deterministically positioned donors have been
tunnel coupled to proximal leads,12 and single electrons have
been confined using electrostatic top gates.13 In several exper-
iments, individual spins have also been measured.1,2,14 While
such technologies will have applications for conventional
computing, much of the recent progress in this area has been
spurred by the quest for spin-based qubits.5,15–18

In this work, we focus on devices formed of degenerately-
doped phosphorus in silicon. In the laboratory, the silicon
is masked by hydrogen atoms, which are lithographically
patterned using a scanning tunneling microscope.19–22 Phos-
phorus atoms from phosphine gas are then incorporated into
unmasked segments of the top (monatomic) layer of silicon. A
self-limiting growth mechanism leads to rather uniform doping
densities corresponding to one substitutional donor for every
four atomic sites in the δ layer.23 The resulting devices are
fully epitaxial.

Realistic theoretical models of Si:P disorder have proven
challenging, with calculated band structures known to depend

very sensitively on the disorder model. In density functional
calculations, for example, the number, the splitting, or even
the existence of energy bands depends on the nature of the
symmetries, the placement of the donors, and the size of
the computational unit cell.24 In addition to disorder, fabri-
cation geometries play an important role in device operation.
Specialized structures in typical devices may range in size
from nanometers to microns,12 causing technical challenges
for any theoretical treatment. It is not currently feasible to
treat large, disordered devices with atomistic accuracy; hybrid
approaches, however, may provide viable, self-contained
solutions for such large-scale problems. Multiscale methods, in
particular, hold great promise. Examples include the merging
of tight-binding and local-density techniques.25 There are
also computational advantages to eliminating disorder effects
within the doping plane. In this case, translational symmetry
can be restored by averaging.24,26

In this paper, we develop a coarse-grained theory of δ-doped
Si:P devices, consistent with the effective mass approximation.
Effective mass theory (EMT) provides an efficient means for
analyzing large, complex systems, such as tunnel-coupled
devices. Recently, such methods were applied to the problem
of few-electron quantum dots.12 The main modification to
the bulk EMT, required for δ doping, involves the uniform
shifting of energy bands, up or down. These shifts account for
the quantum confinement in the δ-doping potential. A closely
related system, whose band structure can be understood in
terms of band shifting, is the inversion layer.27 An important
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distinction between inversion layer and Si:P devices is that
the latter have very high carrier densities, which leads to the
occupation of multiple bands. Density functional methods
confirm this picture of simple energy shifts in disordered
Si:P geometries.26,28 It is especially important to note that
the parabolic shape of the bands and the corresponding
curvature (the so-called inverse effective mass) are largely
unaffected by the energy shifts. This suggests a straightforward
modification of the bulk effective mass theory to incorporate
the confinement effects, which we describe in detail.

We consider several approaches for obtaining a two-
dimensional (2D) EMT in Si:P. The simplest approach is
empirical. In this case, the relevant parameters in the 2D EMT,
which we can think of as inputs to the theory, are obtained
from a more rigorous ab initio band structure calculation.
When possible, the parameters are obtained directly from
experiments. We go on to describe the physical features
and phenomena that may be computed within the EMT.
These include many-body effects, exchange and correlation,
and valley splitting. The question of disorder and donor
placement is not a concern for the EMT because of the coarse-
grained nature of the theory. The characteristic length scale
associated with the coarse graining is the effective Bohr radius,
aB �1.9 nm, where we have assumed a spherical average for
the anisotropic effective mass. For quarter-monolayer doping,
the Bohr radius encompasses about five donors. A jellium
approximation for describing the donor charge is therefore
appropriate to our problem. Local variations of the jellium
density could be introduced into this theoretical framework;
we do not, however, consider such problems here.

The theoretical approach we employ is similar to the
numerical effective mass theory of Scolfaro et al.,30 who
consider a periodic array of thick low-density δ layers. The
larger separation between their donors required a three-
dimensional (3D) treatment and produced valley splittings
of the � band in the range of 20–46 meV, which is more
consistent with individual donors than high-density δ layers,
where the � band is essentially degenerate.24 These increased
with doping density and are inconsistent with ab initio results
for high-density δ layers.24 Here, we treat the experimentally
relevant case of thin layers of high doping density, where
it is possible to project the 3D EMT onto a 2D theory of
immediate interest for 2D devices. As much as possible, we
focus on analytical (rather than numerical) methods, which
allows us to identify the underlying physics of the δ layers. For
example, we obtain a density-scaling theory. Later, we obtain
numerical solutions that provide theoretical parameters for the
2D theory. The present analysis is formulated in terms of a
single δ layer; although our geometry is not periodic, multiple
layers could be treated by a straightforward extension of our
theory. Rodriguez-Vargas et al.31 also solved a nonperiodic
double-layer system numerically, although their approach is
semiclassical where ours is quantum mechanical.

The paper is outlined as follows. In Sec. II we identify input
parameters and develop a description for the shifting and filling
of the bands within the EMT. In Sec. III, we clarify the main
concepts of the shifted-band model by deriving the δ-doping
EMT from a bulk, 3D EMT. This provides a setting to discuss
those various components of the theory which are not normally
associated with EMT, but may easily be incorporated. These

include many-body interactions, valley splitting, exchange,
and correlation effects. The utility of the effective mass method
is demonstrated in Sec. III B, where an analytical, variational
theory of δ doping is derived. This leads naturally to a scaling
theory for the quantum confinement lengths and the energies
of the different conduction bands. We also perform a more
rigorous numerical analysis of the δ-doping problem to obtain
an alternative set of EMT parameters, which we compare to
results from more microscopic derivations in Sec. IV. We
conclude in Sec. V. The two Appendixes provide further details
on the numerical methods employed in our work (Appendix A)
and our exchange-correlation analysis (Appendix B).

II. TWO-DIMENSIONAL EFFECTIVE MASS THEORY

In this section, we describe the modifications to the bulk
conduction band structure of Si due to δ doping in the z = 0
plane. For n-type devices in the low-temperature regime, the
active electrons tend to fill only the low-energy portions of
the conduction band, known as valleys. As is well known,32

the valleys in bulk silicon are sixfold degenerate, with minima
occurring in the equivalent [100] directions, about 85% of the
way to the Brillouin zone boundary. A given valley minimum
therefore occurs at k0 � 0.85(2π/a), where a = 0.543 nm is
the length of the cubic unit cell. To a good approximation, the
low-energy band structure in a given valley appears parabolic.
For example, for the +x valley (along [100]),

E+x � h̄2(kx − k0)2

2ml

+ h̄2k2
y

2mt

+ h̄2k2
z

2mt

+ Ec, (1)

where ml � 0.92m0 is the longitudinal effective mass, mt �
0.19m0 is the transverse effective mass, m0 is the bare electron
mass, and Ec is the conduction-band minimum. A cut through
E+x(k) along [100] is sketched as a dashed red (light gray)
curve in Fig. 1(a). Here, we have set Ec = 0, defining the
band minimum as the zero of the energy. Although the band
structure associated with the y and z valleys lies outside the
range of the plot in Fig. 1(a), their wave vectors also have kx

components, which can be projected onto the kx axis, as shown
with a dashed blue (dark gray) line. These projected valleys
are centered at kx = 0, analogous to the transverse terms in
Eq. (1). The anisotropic effective masses, ml and mt , together
with the valley minima at k0, capture the main low-energy
physics of this problem, and they form the main inputs to the
3D bulk effective mass theory.

A single n-type donor ion, such as P, creates a local dip in the
electrostatic potential, with a corresponding low-energy bound
state 46 meV below the conduction band. For δ doping in the
z = 0 plane, an electronic wavefunction extends over many
donors. The electrostatic potential and corresponding binding
energies are much deeper than for a single donor. Because the
electron covers many randomly placed donors, it is convenient
to ignore their individual positions and to instead treat the
dopants through a 2D “jellium” approximation, corresponding
to a totally uniform charge distribution in the z = 0 plane equal
to the average 2D charge density of the discrete dopants. For an
infinite sheet of charge, the electrostatic potential does not vary
in the lateral plane. This is appropriate here due to the strong
screening from densely overlapping wavefunctions in the
plane (the experimental structures exhibit metallic behavior),
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FIG. 1. (Color) (a) Effective mass theory for bulk Si (dashed
lines) and for δ-doped Si:P (solid lines). The minima of the bulk
conduction bands define the energy zero. (b) The donors in the z = 0
plane produce a laterally averaged electrostatic confinement potential,
with the predominant eigenstates �1, �2, and �. The confinement
along z leads to transverse bands along kx and ky that are shifted
downward into the gap, as shown in (a). For all the plots, we take
ky = 0. For the bulk � bands [dashed blue (dark gray) curve] we
also take kz = k0, while for the bulk � bands [dashed red (light gray)
curve] we take kz = 0. The various bands are then projected onto the
same axis. For the δ-doped bands, the energy shifts are determined by
the eigenstates shown in (b). (c) Density of states, in units of mt/πh̄2.

and this paper is therefore focused on the vertical charge
distribution in the absence of lateral variations of the screened
ionic potential. Figure 1(b) shows a vertical cut V (z) through
such an electrostatic potential, together with the resulting
confined states. Assuming overall charge neutrality, V (z)
flattens out far away from the doping plane. The correct binding
energy is obtained by aligning this asymptotic potential with
the bottom of the bulk conduction band, as shown in Fig. 1(b).

The result of the vertical confinement V (z) is to reduce the
continuum of bulk Bloch states from 3D to 2D. Specifically, the
allowable kz components of the Bloch states become quantized
to form bound states. The parabolic energy decomposition of
Eq. (1) suggests that the third term on the right-hand side (the
z term) should be replaced by a quantized band energy:

E+x � h̄2(kx − k0)2

2ml

+ h̄2k2
y

2mt

+ E�. (2)

Similarly, for the +y and +z valleys, we have

E+y � h̄2k2
x

2mt

+ h̄2(ky − k0)2

2ml

+ E�, (3)

E+z � h̄2
(
k2
x + k2

y

)
2mt

+ E�. (4)

Analogous equations are obtained for the −x, −y, and −z

valleys by replacing k0 → −k0. The quantized energies E�

and E� depend on the effective masses in the kz terms of
the bulk equations. The x-y valleys are eightfold degenerate,
including spin and valley degeneracies, while the z valleys are
fourfold degenerate. Later, we will discuss the lifting of the �

degeneracy in a process known as valley splitting. (For most
cases of interest, the lifting of the � degeneracy, if present, will
be negligible.) This leads to the distinct quantized energies, E1

and E2, corresponding to the �1 and �2 bands, which are shown
in Fig. 1(b). The leading-order effect of vertical confinement
is therefore to reduce the 3D band structure to 2D, as shown

in Fig. 1(a), with the 2D bands shifted downward by their
respective binding energies.

In the arguments presented above, the effective masses
in the 2D theory should be identical to the bulk effective
masses. Any deviations from the energy decomposition of
Eq. (1) would imply mixing the effective masses and weaken
the theory. Rigorous ab initio band structure calculations
with a laterally averaged charge distribution confirm that the
2D effective masses for Si:P with the most prevalent 1/4
monolayer (ML) doping level are almost identical to the bulk
masses in Si (Ref. 26) and that the bulk bands are simply
shifted downward by their respective binding energies.28 In
short, all the evidence suggests that 2D and 3D effective mass
theories should both be accurate in this system.

The main parameters characterizing the 2D effective mass
theory are E1, E2, E�, mt , ml , and k0. Preferably, their values
should be obtained from experiments or, if not, from accurate
ab initio theories. In a later section, we will show that E1, E2,
and E� can be derived directly from the 3D effective mass
theory. Additional derived quantities of interest include the
fractional fillings of the different conduction bands. These
fillings have important implications for processes such as
transport and tunneling, which may occur much more readily
in one band than another. While the total filling of the 2DEG
is determined by the total number of electrons or the ionic
charge density (assuming charge neutrality), the problem of
calculating fractional band fillings is much subtler since it
depends on the accuracy of the binding-energy calculations.

The respective filling fractions are defined as β1, β2, and
β�, where

β1 + β2 + β� = 1. (5)

Alternatively, combining the �1 and �2 bands into a single �

band gives

β� + β� = 1. (6)

The corresponding charge densities are given by σγ = −βγ σ ,
where γ = 1, 2, or �, and σ is the average ionic charge density.
For 1/4 ML doping, we have σ = 0.2717 C/m2. Conventional
2D band-filling arguments lead to

EF − E1 = β1
πσh̄2

emt

, (7)

EF − E2 = β2
πσh̄2

emt

, (8)

EF − E� = β�

πσh̄2

4e
√

mtml

, (9)

where we assume a shared chemical potential EF at zero
temperature. (Nonzero temperatures could also be considered,
although very low temperatures are assumed here, as appro-
priate for the main applications of interest.) For a combined �

band we have

EF − E� = β�

πσh̄2

2emt

. (10)
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The linear system of Eqs. (5) and (7)–(9) [or Eqs. (6), (9), and
(10)] may readily be solved to obtain the filling fractions and
EF . For example, the �-� solution is given by

EF = E� + E�

√
mt/4ml + (πσh̄2/4e

√
mtml )

1 + √
mt/4ml

, (11)

β� = E� − E� + (πσh̄2/4e
√

mtml )

(1 + √
mt/4ml)(πσh̄2/2emt )

, (12)

with β� = 1 − β� .
The density of states D can be computed by similar

methods, giving

D = mt

πh̄2

[
	 (E − E1)+	 (E−E2)+4

√
ml

mt

	 (E−E�)

]
,

(13)

where 	(E) is the step function. Typical results are plotted in
Fig. 1(c). Comparison with results shown in Ref. 29 highlights
the fact that the uniform jellium approximation does not
include disorder, which would perturb the band structure. On
the other hand, the present calculation also does not include
artificial translational symmetries, such as those produced by
periodic boundary conditions, which cause level repulsions
and other anomalous structure in the density of states. If
one has specific knowledge about the disorder, it could be
incorporated into the EMT by introducing density fluctuations
in the jellium model. However, this is beyond the scope of the
present work.

To conclude this section, we note that the 2D effective mass
theory, described above, includes only the six low-lying valleys
of the bulk conduction band structure. It is known that other
bands may also begin to fill at the 1/4 ML doping level; most
notably, the 1X/2X bands may dip slightly below the Fermi
energy.26 These bands could be included in our 2D theory using
the same methods described above. Their fractional fillings,
however, are small enough that the main physics is already
captured in the theory as presented here.

III. THREE-DIMENSIONAL TREATMENT OF δ DOPING

In this section, we use the 3D EMT to study the problem
of δ doping in the z = 0 plane. Due to our assumption of
uniform doping in the lateral plane, the calculation is one-
dimensional in the variable z. Our ultimate goal is to derive
the input parameters for a 2D EMT.

The theory must include many-body effects, and we begin
by developing a simple Hartree theory. We go on to obtain
a variational solution to the problem of δ doping in Si, as
well as scaling estimates for the vertical confinement lengths
and energies in the � and � bands. We show how valley
splitting can readily be included as a correction to the effective
mass theory. Finally, we extend the theory to include exchange
and correlation contributions, which are used to obtain more
accurate results for the 2D EMT.

A. Hartree theory

Within the jellium approximation, the ionic charge density
is given by

ρi(z) = σδ(z), (14)

where we take z = 0 as the δ-doping plane. In an effective
mass–Hartree theory,32 the electron charge densities in the �

and � bands are defined as

ρ�(z) = −σβ�F 2
�(z), (15)

ρ�(z) = −σβ�F 2
�(z), (16)

where F�(z) and F�(z) are the corresponding envelope
functions obtained by solving the Schrödinger-like equations[

− h̄2

2ml

d2

dz2
+ V (z)

]
F�(z) = ε�F�(z), (17)

[
− h̄2

2mt

d2

dz2
+ V (z)

]
F�(z) = ε�F�(z). (18)

Note that the full electronic wavefunctions also involve fast
oscillations (e.g., Bloch oscillations) that occur over atomic
length scales. These fast oscillations do not enter the envelope-
function equations (17) and (18).33 In Sec. III D, we investigate
perturbative corrections to the energy that occur when fast
oscillations are taken into account in the � bands. At the
present level of approximation, however, �1 and �2 have
the same effective mass and the same envelopes. For now,
we therefore consider just a single � band. Equations (6)
and (14)–(16) explicitly satisfy charge neutrality when the
envelope functions are properly normalized. The full 3D
charge density is then given by ρ(z) = ρi(z) + ρ�(z) + ρ�(z);
by design, we obtain

∫
ρ(z) = 0.

The electrostatic potential is calculated from Poisson’s
equation and Eqs. (14)–(16). It is convenient to compute the
electric-field contributions from each of the different charge
sources. Making use of charge uniformity in the lateral plane,
we obtain

Ei(z) = ẑσ
2ε

sign(z), (19)

Eγ (z) = ẑ
ε

∫ z

0
ργ dz, (20)

where we have adopted the convention that
∫ ∞

0 δ(z) dz = 1/2.
Note that we will adopt the dielectric value ε = 11.4 ε0

throughout this work, as appropriate for silicon at very low
temperatures.

The corresponding contributions to the electrostatic con-
finement potential are then given by

Vi(z) = eσ |z|
2ε

, (21)

Vγ (z) = e

∫ z

0
Eγz(z) dz, (22)

where Eγz = Eγ · z. The total Hartree potential, used in
Eqs. (17) and (18), is then given by V (z) = Vi(z) + V�(z) +
V�(z). Note that we have adopted the energy normalization
V (0) = Vi(0) = 0. In this way, the potential minimum remains
anchored and is not affected by the specific details of the
electronic wavefunctions. Such considerations simplify our
variational calculation in Sec. III B and are analogous to the
Fang-Howard procedure used for inversion layers.32 (Later,
for presentation purposes, we will renormalize the energy as
in Fig. 1 such that the electrostatic potential is aligned with the
bulk conduction band in the region far from the δ-doped layer.)
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In principle, the methods described here could be modified to
include external gates, for example, by introducing an external
electric field. We do not consider this possibility here.

In the Hartree many-body method, we must obtain self-
consistent solutions for the envelope functions (17) and (18),
the Hartree potentials (21) and (22), and the Fermi level (11).
The electron energies E� and E� that appear in Eqs. (11) and
(12), however, correspond to band minima; they are not the
same as the single-particle energies ε� and ε� that appear in
Eqs. (17) and (18). The band minima are given by

E� = 〈T [ml]〉� + 〈Vi〉� + 1
2 〈V�〉� + 〈V�〉�, (23)

E� = 〈T [mt ]〉� + 〈Vi〉� + 〈V�〉� + 1
2 〈V�〉�, (24)

where T [m∗] are the same kinetic-energy operators appearing
in Eqs. (17) and (18) and the subscripts � and � refer to
single-particle wavefunctions used to compute the expectation
values. The prefactors of 1/2 in the Hartree terms prevent over-
counting of the electron-electron interactions.32 We emphasize
that Eqs. (23) and (24) describe the band minima and do not
include any lateral kinetic energy. The lateral kinetic energy
appears explicitly in the Fermi-level equation.

B. Variational calculation

One of the main benefits of an effective mass theory is its
simplicity and the ease with which solutions can be obtained.
We take advantage of this now to obtain initial estimates for
the band minima and the electron wavefunctions by means of
a variational method. We may even obtain simple analytical
estimates, which allow us to scale the electron eigenfunctions
and energy values.

The problem can be formulated in several ways. Here,
we consider a simple variational form for the single-electron
wavefunctions which is generally found to be consistent with
more accurate treatments:

Fγ (z) =
(

2

πa2
γ

)1/4

e−(z/aγ )2
. (25)

The wavefunction widths a� and a� and the filling fractions β�

and β� represent the variational parameters in this approach,
although we will use Eq. (6) to eliminate one of these variables
(β�). The Gaussian form is particularly effective in such a
variational calculation because of its simplicity and because
it captures the essential properties of the wavefunction (the
width), while the maximum value of the wavefunction is cor-
rectly determined via normalization. The Gaussian tail decays
too quickly compared with a more realistic wavefunction;
the tail, however, contributes very little to the expectation
values in Eqs. (23) and (24) and therefore does not affect
the leading-order results of the variational calculation.

Equation (25) immediately leads to analytical forms for
quantities of interest, including the confinement potentials,

Vγ (z) = −eσaγ βγ

ε
√

8π
(e−2z2/a2

γ − 1)

− eσβγ

2ε
|z| erf(

√
2|z|/aγ ), (26)

where erf(x) is the error function. Equations (23) and (24) then
reduce to

E� = h̄2

2mla
2
�

− eσ

ε
√

8π
(1 − β�)

√
a2

� + a2
�

+ eσ

ε
√

8π

[(
1 + 1 − √

2

2
β�

)
a� + (1 − β�)a�

]
,

(27)

E� = h̄2

2mta
2
�

− eσ

ε
√

8π
β�

√
a2

� + a2
�

+ eσ

ε
√

8π

[(
3 − √

2

2
+

√
2 − 1

2
β�

)
a� + β�a�

]
,

(28)

in terms of the variational parameters.
To complete the variational analysis, we must minimize

the average electron energy with respect to the variational
parameters. Here, we take the slightly different approach of
minimizing the band energies E� and E� while introducing a
level-filling constraint from Eq. (12). The constrained problem
is then converted to an unconstrained problem by employing a
Lagrange multiplier λ. The minimization statement becomes

∇(E� + λg) = 0, (29)

where the derivative is taken with respect to variables a� , a�,
β� , and λ, and we have defined

g = E� − E� + πσh̄2

4e
√

mtml

− β�

(
1 +

√
mt

4ml

)
πσh̄2

2emt

.

(30)

Note that the λ derivative is equivalent to setting g = 0.
Eliminating the Lagrange multiplier from Eq. (29) leads to

a system of three equations,

g = 0, (31)
∂E�

∂a�

∂E�

∂a�

= ∂E�

∂a�

∂E�

∂a�

, (32)

∂E�

∂a�

[
∂E�

∂β�

−
(

1 +
√

mt

4ml

)
πσh̄2

2emt

]
= ∂E�

∂β�

∂E�

∂a�

, (33)

which may be solved to obtain estimates for the variational
parameters. We do not report on such an analysis (yet) since
Eqs. (31)–(33) cannot be solved exactly by analytical methods
and since we will perform a more rigorous numerical analysis
later, which includes other contributions to the physics. The
variational formulation, however, leads immediately to an
important scaling theory, which we discuss now.

C. Scaling theory

Our simple variational theory describes the main portion
of the wavefunction envelopes correctly and should therefore
capture the leading-order physics of the δ-doping problem.
Based on this statement, we may draw some very general
conclusions, which can be expressed in terms of a scaling
theory. Of particular interest, the scaling theory captures the
principal dependence of various quantities of interest regarding
the doping density σ .
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The main expressions entering the variational procedure are
given in Eqs. (27), (28), and (31) [or (12)]. We can reformulate
Eqs. (27) and (28) in terms of dimensionless variables as
follows:

aγ =
(

h̄2ε
√

8π

em0σ

)1/3

ãγ , (34)

Eγ =
(

e2σ 2h̄2

8πm0ε2

)1/3

Ẽγ , (35)

where the quantities with tildes are dimensionless and m0 can
be taken as the bare electron mass. Recall here that Eγ refers
to the ground-state confinement energy of the � or � band, as
measured from the bottom of the confinement potential. When
the energy is normalized in this way, Eγ is strictly positive.

Since (mt/m0), (ml/m0), and β� are all of order unity, we
expect that ãγ and Ẽγ should also be of order unity. Indeed, we
may go beyond the variational calculation described above to
obtain more rigorous numerical estimates (described below)
for the case of 1/4 ML filling. The results are shown in Table I.
Note that these estimates could be improved by using results
from rigorous microscopic calculations or from experiments.
The scaling theory itself, however, would remain unaffected.

Based on Eqs. (34) and (35), we can deduce the scaling
behaviors for other quantities of interest. For example, from
Eq. (12) we obtain the relative filling fractions

β� � 0.19 + b̃

(
e5m2

0

σh̄4π4ε2

)1/3

, (36)

β� � 0.81 − b̃

(
e5m2

0

σh̄4π4ε2

)1/3

. (37)

In the Hartree theory, the electrostatic potential is defined as
V (z) = Vi(z) + V�(z) + V�(z). The depth of the confinement
potential, V0 = V (∞) − V (0), plays an important role for the
quantum theory. Within the variational approach described
above, this quantity can be expressed as

V0 = eσ

ε
√

8π
(a�β� + a�β�) . (38)

To conclude this section, we note that the scaling theory
breaks down outside a regime of validity. In the present
analysis, we have assumed a jellium model for the doping.
In the low-density limit, however, the jellium model breaks
down when the average dopant separation

√
e/πσ approaches

the characteristic effective mass length scale, min[a�,a�].
Within the scaling theory, we can estimate this breakdown

TABLE I. Dimensionless parameters appearing in the scaling
theory. All scaling parameters were determined numerically from
the case of 1/4 ML doping, as described in Sec. IV.

Parameter Value Equation

ã� 1.23 (34)
ã� 2.49 (34)
Ẽ� 1.34 (35)
Ẽ� 2.13 (35)
b̃ 0.13 (37)
ṽ 0.89 (38)

density as 1/18 ML. In the high-density limit, it is important
to note that we have only included the � and � bands in
the present analysis. For densities larger than 1/4 ML, the
filling of additional bands becomes important. This can easily
be accomplished and incorporated into the present formalism,
although it lies outside the scope of the present work.

D. Valley splitting

As discussed in Sec. II, the combination of inhomogeneous
(vertical) confinement and effective mass anisotropy lifts the
degeneracy of the bulk bands. The resulting splittings can
be quite large. Remaining degeneracies are lifted when the
confinement potential is sharp. For patterned devices, the
valley splitting in the � band is extremely small due to weak
lateral confinement.12 In this section, we focus on the coupling
between the z valleys due to the sharp δ-doping potential,
which splits the � band to form �1 and �2 bands.

The envelope function Eqs. (17) and (18) do not explicitly
take into account the fact that the envelopes are formed from
Bloch states within a given valley. We can account for this
translation in the Brillouin zone in a simple way by introducing
an overall phase factor.33 In the absence of valley coupling, we
may therefore define the z-valley basis as follows:34–36

f±(z) = e±ik0zF�(z). (39)

Here, F�(z) is obtained from Eq. (17), and the resulting basis
states f±(z) are degenerate. Valley coupling can be treated
perturbatively in the same basis, through the Hamiltonian

H� =
(

ε� VVO

V ∗
VO ε�

)
. (40)

There are two types of contributions that enter the valley-orbit
coupling term VVO. The first type cannot be described within an
EMT. It includes the so-called central-cell corrections, which
arise due to core electrons,37 as well as discretization effects
associated with the crystal lattice.38 The latter contributions
are fairly weak. Central-cell corrections are also weak for
shallow donors such as Si:P. Indeed, for isolated donors, the
main contributions to valley-orbit coupling may be treated
effectively using methods similar to those described below.39

For simplicity, we therefore ignore non-EMT corrections here.
Instead, we focus on those valley-orbit couplings which

may be treated perturbatively within the EMT. They are defined
as

VVO = 〈+|V |−〉 =
∫ ∞

−∞
V (z)F 2

�(z)e−2ik0zdz, (41)

where V (z) is the electrostatic confinement potential. The
valley-split single-electron energy levels are then given by
ε1 = ε� − |VVO| and ε2 = ε� + |VVO|, while the valley split-
ting is given by 2|VVO|. Similarly, the individual band minima
are given by

E1 = E� − |VVO|, E2 = E� + |VVO|. (42)

The self-consistent numerical solutions, described below,
are unaffected by valley splitting. This becomes clear if we
note that while the �1 and �2 bands fill differently, the
electrostatic equations depend only on the combined fill-
ing factor, β� = β1 + β2. Likewise, the quantum-mechanical
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envelope-function equations are identical for �1 and �2. We
may therefore solve for the energies E� and E� and the
fillings β� and β�, as we did previously, while computing the
perturbations due to valley splitting a posteriori. After solving
for the envelope functions, VVO is determined from Eq. (41).
The band minima are then obtained from Eq. (42), while the
fillings are obtained from

β1,2 = β�

2
± emt |VVO|

πσh̄2 . (43)

It is interesting to analyze the scaling behavior of the
valley splitting since energy splittings can be measured
experimentally via spectroscopy techniques. Since k0 ∼ 1/a,
Eq. (41) may be regarded as an integral transform that picks
out the Fourier components in V (z)F 2

�(z) with very short
wavelengths. The predominant feature at short wavelengths is
the sharply peaked confinement potential at z = 0. The more
slowly varying features occurring away from z = 0 effectively
cancel out and do not contribute greatly to the integral. (In some
cases, a sharp variation of the wavefunction can also contribute
to VVO;40 however, we ignore this possibility in the simple
estimate presented here.) We may therefore approximate
VVO by truncating the integration range in Eq. (41) to a
single oscillation of the exponential, from z = −π/2k0 to
π/2k0. Over this range, we can approximate V (z)F 2

�(z) �
eσ |z|/√2πεa� , leading to the following estimate for the valley
splitting:

2|VVO| ∼ eσ√
2π εa�k2

0

. (44)

Despite the obvious roughness of this estimate, we expect it
to encompass the leading-order contributions to the scaling
theory, which we find to be

2|VVO| =
(

m0 e4σ 4

8π2h̄2ε4k6
0

)1/3

ṽ. (45)

Thus, we note that the �1-�2 splitting exhibits a much stronger
dependence on the doping density σ than the �1-� splitting
does, as borne out by the numerical analysis, described below.

E. Exchange and correlation

Self-consistent many-body effects were included in the
variational calculations of Sec. III B. There, we employed a
Hartree theory in order to simplify our analytical calculations.
For more accurate numerical results, it is important to also
include exchange (X) and correlation (C) effects. We do
this here, using the local-density approximation (LDA).41

Although we are primarily interested in higher densities,
it is well known that exchange and correlation effects are
most significant at lower densities. For completeness, we will
therefore study a wide range of densities over which the LDA
must remain valid. Typically, this requires specially developed
parametrizations.42–44 Here, we follow the method of Scolfaro
et al.30 and Rodriguez-Vargas and Gaggero-Sager,31 where
the LDA is applied to the EMT equations, rather than at
the atomistic level, although we use a more recent and
accurate density functional parametrization developed by
Perdew and Wang.44 The final outcome is a pair of new

potential terms, VX(z) and VC(z), which we add to the total
electron confinement potential V (z):

V
′ = V + VX + VC. (46)

Following Perdew and Wang, the exchange and correlation
potentials may be approximated as

VX(z) = ∂(nεx)

∂n
= −

[
m∗e4

(4πεh̄)2

] (
9π

4

)1/3 1

πrs

, (47)

VC(z) = ∂(nεc)

∂n

= −2A

[
m∗e4

(4πεh̄)2

]{(
1 + 2α1rs

3

)
ln

[
1 + 1

2Af

]

+ (1 + α1rs)

3

f ′

f (1 + 2Af )

}
, (48)

where the 3D particle density is given by n(z) = ρ(z)/e, and
we define

rs(n) =
(

4πa∗3n

3

)−1/3

, (49)

f (rs) = b1r
1/2
s + b2rs + b3r

3/2
s + b4r

2
s . (50)

Following Refs. 30 and 31, we adopt a geometrically averaged
effective mass, m∗ = (m2

t ml)1/3, and an averaged effective
Bohr radius, a∗ = (4πεh̄2/m∗e2). The parametrization con-
stants we use are appropriate in the absence of spin po-
larization: A = 0.031091, α1 = 0.21370, b1 = 7.5957, b2 =
3.5876, b3 = 1.6382, and b4 = 0.49294.

We can estimate the magnitude of the exchange and
correlation terms. We specifically consider the case of 1/4
ML δ doping. Because of the high doping density, we find that
the dimensionless electron separation length rs ranges from
about 0.6 at the center of the δ-doping layer to ∞ far away
from the doping plane. In the high-density region, which is our
main interest here, the exchange potential dominates over the
correlation potential. We can estimate its depth directly from
Eq. (47), finding that VX0 � 70 meV. This may be compared
to the electrostatic potential depth in Eq. (38), which we find
from numerical calculations to be V0 � 670 meV.

In the numerical calculations discussed below, we solve
the δ-doping problem using the 3D EMT, including valley
splitting, exchange, and correlation effects, as outlined in
Appendix A. Overall, we find that exchange and correlation
have relatively small effects on the population of the bands
or on the valley splitting. The z confinement of the electrons,
however, is enhanced, particularly in the � band. This is to
be expected since the exchange and correlation interactions
both deepen the potential well, particularly near the doping
layer, where the electron density is highest. Since the �

wavefunctions still spread out well beyond the doping plane,
the overall effect of exchange and correlation on the �-�
splitting is fairly weak. The effect on the �1-�2 valley splitting
is stronger, however, as it is directly related to the sharpness
of the confinement potential. Additional discussion of the
exchange and correlation contributions to δ doping is presented
in Appendix B.
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IV. RESULTS AND COMPARISON

In this section, we describe the numerical results of our
3D-EMT description of δ-doping in Si:P, with details given
in the Appendixes. We also compare our results to other
reports in the literature, mainly based on density functional
theory. The closest points of comparisons include the planar
Wannier orbital (PWO) method of Qian et al.26 and the
full density functional calculations of Carter et al.,24 using
the single-zeta plus polarization (SZP) basis set. Both of
these techniques may be modified to include disorder effects.
For the PWO method, this was accomplished using laterally
averaged confinement potentials. For the SZP method, quasi-
random dopant arrays were considered, as well as “mixed”
pseudopotentials, averaged over the atoms in the doping layer.
In the interest of brevity and generality, we compare explicitly
to Ref. 26 and also to the full ab initio results of Ref. 28.
Other abbreviations used hence are as follows: our effective
mass theory (EMT), the PWO method including short-ranged
interactions between the dopants (PWOf),26 and the fully
ordered (SZPo) vs partially disordered dopant arrays (SZPd)
discussed in Ref. 28.

Before discussing our main numerical results, it is important
to emphasize that the parabolic band structure assumed in
the EMT (e.g., Fig. 1) is far more consistent with the highly
disordered implementations of the density functional theory.
The small unit cells associated with dopant ordering generate
effective terms in the Hamiltonian that couple the donor
bands and lead to band structures that differ greatly from
bulk silicon.28 We therefore conjecture that the EMT based
on the jellium donor model should be understood as a highly
disordered model. Dopant ordering, or any specific type of
disorder, can be introduced into the EMT through additional
modifications of the jellium model. The smooth charge profiles
obtained by EMT in Fig. 2 are also consistent with spatial
averaging in the presence of disorder, as compared with
the more oscillatory profile obtained from density functional
theory for an ordered dopant array.

For the case of 1/4 ML doping, we can summarize our main
EMT results as follows. A fit of the numerical wavefunction
envelopes to the Gaussian form used in the variational proce-
dure of Sec. III B gives the envelope widths a� = 0.64 nm and
a� = 1.30 nm. The band-filling parameters are given by β1 =
0.19, β2 = 0.18, and β� = 0.63, while the valley splitting is
given by 2|VVO| = 19 meV. In Figs. 3–5, we plot our numerical
results for the band minima E� and E�, the wavefunction
widths (in terms of the Gaussian fitting parameters a� and
a�), and the band-filling fractions β� and β� as a function
of doping density. The insets in Figs. 3– 5 provide additional
comparisons with the literature. (In some cases, the values
have been determined graphically from published plots.)

We now discuss the main plots in Figs. 3–5 in more detail.
In each plot, the symbols represent numerical results obtained
as a function of P doping density in the δ layer, while the curves
reflect the corresponding scaling theory parameters given in
Table I. Direct comparisons are made to Ref. 26 (a fully dis-
ordered technique) and to Ref. 28 (a full ab initio technique).

Figure 3 shows the energies of the various band minima
measured from the bottom of the bulk (undoped) Si con-
duction band. In these calculations, we have not considered

FIG. 2. Electronic charge density for the case of 1/4 ML doping
in a Si:P δ layer. The black solid line shows density functional
theory from Ref. 28. The density functional results exhibit small
oscillations, which arise due to perfect ordering in the 2D dopant
array. The gray line shows the variational calculation of Sec. III B.
The dashed black line shows the self-consistent numerical solutions
for the wavefunction envelope, as described in Appendix A. Note that
we have assumed a smooth lateral distribution for the dopants via the
jellium model. The resulting effective mass solutions do not oscillate.
Also note that the Gaussian variational solution accurately represents
the full numerical results, except in the tail region.

background dopants, so the bulk band minimum (V = 0) cor-
responds to the asymptotic value of the confinement potential
V (z) far from the doping layer. As the doping increases, V (z)
deepens significantly, dragging the confinement energy levels
with it. The valley splitting between the �1 and �2 band minima
also increases quickly at higher densities. The inset shows
agreement between EMT and the SZPd method for the � and
�2 bands and agreement with the PWO and PWOf methods for
the valley splitting for the 1/4 monolayer doping density case.

We observe that the scaling theory describes the loca-
tion of the band minima quite well. (The scaling of the
valley splitting will be discussed below.) It appears that the
scaling theory is less accurate for the potential minimum
V0 = V (∞) − V (0). In this case, the scaling form (dashed
black line) was derived from Eqs. (34)–(38) using the
parameters in Table I. This discrepancy in the scaling theory
is primarily due to the inclusion of correlation and exchange
effects in the numerical solution, while they are absent from
the discussion leading to the scaling theory. Exchange and
correlation both tend to deepen the confinement potential, and
they both have their greatest (absolute) effect at the origin. It is
a sign of robustness of the scaling theory that such corrections
can be accommodated by a simple adjustment of the scaling
parameters, as indicated by the dotted black line.

The aγ parameters, or Gaussian widths for the wavefunc-
tions, are shown in Fig. 4. As expected, higher doping tends
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FIG. 3. (Color online) Minimum band energies relative to the bulk
band minima for the �1 band (blue circles), �2 band (red squares),
and � band (green diamonds). Scaling theory fits are also shown
as dashed lines. The minima of the confinement potential V0 are
shown as black crosses. The corresponding scaling theory for the
confinement minima V st

0 , based on derived parameters, is shown as
a dashed black line (see main text). A rescaled fitting is shown as a
dashed gray line. The inset shows a comparison of 1/4 ML results
with Refs. 28 (SZPd) and 26 (PWO, PWOf) for the minima of the �1

(triangles), �2 (asterisks), and � (crosses) bands. (See main text for
abbreviations.)

to enhance the electron confinement, despite the Coulomb
repulsion between the larger number of electrons. At low
densities, the electron wavefunctions appear unphysically
large, although our predictions for densities lower than 1/18
ML should not be compared directly to physical systems, as
explained in Sec. III C, due to the breakdown of the jellium
approximation.

The scaling theory provides an excellent description of the
numerical results over the entire range of densities in Fig. 4.
Small inaccuracies of the scaling theory may be attributed to
exchange and correlation effects, as discussed in Appendix B.

We expect the filling fractions plotted in Fig. 5 to match
the predictions of scaling theory quite well because Eq. (12)
is exact for a parabolic band structure and because the band
minima are also well described by the scaling theory. Note
that we have plotted the results for β1 and β2 separately and
compared them to the scaling theory result for β�/2, where
β� = β1 + β2. As before, the main deviations from the scaling
theory occur at low densities, where exchange and correlation
effects are most important.

Because Eq. (12) is generic, the scaling theory for βγ could
also be applied to results from other methods, such as those
in Ref. 26. The latter (β� values) are graphically estimated
and shown in the main panel of Fig. 5. The asymptotic,
high-density values of βγ depend only on the effective mass
and should be nearly identical to those calculated here. The
main deviations between the scaling theory and EMT at high
densities arise because of small errors in the scaling theory for

FIG. 4. (Color online) Gaussian widths of the wavefunction
envelopes: a� (blue circles) and a� (red squares). Scaling theory fits
are shown as dashed curves. The inset shows a comparison of results
for the full width at half maximum of the full electronic density: this
work (crosses) and SZPo results from Ref. 28 (asterisks).

the quantity (E� − E�). At low densities, the discrepancies
are due to exchange and correlation effects.

For the 1/4 ML results shown in the inset of Fig. 5
(graphically estimated from band structures in the relevant
papers), our EMT results are most similar to PWOf. For the
SZP results, the disordered model (SZPd) is most similar to
EMT. This is consistent with our conjecture that the EMT
provides a good description of the high-disorder limit. We also
note that, using the definitions of β in Eqs. (7)–(9), it appears
that the charge-neutrality condition, Eq. (5), is not satisfied in
either case (particularly in Ref. 28), though this is due, at least
in part, to their inclusion of other bands, as discussed below.

Figure 6 shows our calculated results for the Fermi energy
relative to the bulk conduction-band minimum. Some Fermi
energies obtained by density functional methods are also
shown. Fermi levels are notoriously difficult to calculate
accurately. This is especially true for highly doped Si:P due
to the filling of multiple bands and the fact that separate
band minima must all be computed self-consistently. The
EMT results in Fig. 6 change sign, unphysically, near the
1/4 ML doping level. This can be attributed to the conspicuous
absence of the 1X/2X bands at this density, which we have
chosen not to include in our model in light of the fact
that the relevant filling fraction has been found to be less
than 0.01.26 Such high-lying bands would absorb high-energy
electrons and would therefore lower the Fermi level as they
begin to fill. Although no experimental measurements of the
Fermi level are available at the present time, preliminary
tunneling experiments between nanofabricated wires suggest
a Fermi energy of about −20 meV for the case of 1/4 ML
doping.45 We also direct the reader to further discussion in
Appendix B.
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FIG. 5. (Color online) Filling fractions for the different bands:
β1 (blue circles), β2 (red squares), and β� (green diamonds). Scaling
theory fits are shown as dashed curves (see main text); as discussed
in Sec. III D and in light of Eq. (43), half the scaling theory value
for the � filling fraction (βst

� /2) is plotted. Black downward-pointing
triangles correspond to β� results from Ref. 26. The inset shows a
comparison of β1 (asterisks), β2 (triangles), and β� (crosses) for the
case of 1/4 ML doping. (See main text for abbreviations.)

Finally, we plot our results for the valley splitting between
the �1 and �2 band minima in Fig. 7. The valley splitting
varies by several orders of magnitude over this density range.
Carter et al. have noted that the valley splitting is particularly
sensitive to the disorder model used in the calculations, with
ordered dopants typically leading to larger valley splittings.24

The scaling results shown in Fig. 7 provide an excellent
representation of our numerical solutions. It is interesting
to note that, once again, the deviations are due to exchange
and correlation effects [and partially to the truncation of the
integral in Eq. (41) and subsequent linear approximation to the
potential in this region]. In this case, however, the deviations
are most evident at high densities. This occurs because
exchange and correlation deepen the confinement potential at
high densities, while the sharpness of the confinement potential
provides the main contribution to the valley splitting.

V. SUMMARY AND CONCLUSIONS

In this paper, we developed an effective mass theory for
high-density δ-doped Si:P, and we argued that the model
is consistent with the limit of high disorder. The method
was applied to study infinite planes of Si:P. First, a varia-
tional model was solved, which provided simple analytical
results and demonstrated a remarkable agreement with density
functional theories for very few assumptions. Second, a
more comprehensive numerical model was solved, including
exchange and correlation effects, and valley splitting between
the �1 and �2 bands. Self-consistent solutions were obtained
for systems comprised of δ layers with P densities ranging
from 1/512 to 1 monolayer.

FIG. 6. Comparison of Fermi levels obtained in this work
(circles), PWO results from Ref. 26 (diamonds), and SZPo results
from Ref. 28 (squares).

In our model the inclusion of valley splitting in the self-
consistent description has no effect on the extent of the donor
wavefunctions or on the relative populations of the � and �

bands. Splitting between the �1 and �2 band minima naturally
produces a difference in the filling of those bands. Similar to
Ref. 26, we find that electrons are mainly concentrated in the �

bands at low densities, while nearly two thirds of the electrons
shift to the � band for densities approaching 1/4 ML. We
predict that the � filling should approach 70–80% at higher

0 1/16 1/4 1/3 1/2 2/3 1
0

20

40

60

80

100

120

140

160

180

200

V
al

le
y 

sp
lit

tin
g 

(m
eV

)

P density (monolayers)

FIG. 7. Numerical solutions for valley splitting between the �1
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densities, although such densities are not easily achieved in
physical systems.

Since effective mass calculations mainly involve solving for
coarse-grained envelope functions, they can be implemented
much more efficiently than ab initio methods, such as density
functional theory, or tight binding. In fact, the EMT method
can provide a speedup of over five orders of magnitude in
computation time for typical models, as discussed below.
Speed comes at a price, however, since the technique relies
upon accurate input data, including the anisotropic effective
masses for the conduction electrons, the dielectric constant of
the host material, and knowledge of the underlying bulk band
structure. The effective mass method may also have limited
applicability at low and high densities. In the first case, the
jellium approximation breaks down below the metal-insulator
transition. In the second case, the � and � bands tend to overfill
above 1/4 ML doping density due to the absence of additional
bands in the present theory. Fortunately, the applicable range
includes most problems of current experimental interest. One
of the main attractions of the effective mass theory is its
versatility and its potential for treating complex problems of
current interest for devices.12 The method is easily extended
to higher-dimension and large-scale geometries, in contrast to
ab initio techniques such as density functional theory, which
can accommodate ∼1000 atoms. Self-consistent tight-binding
methods can be applied to geometries of order 40 000 atoms.46

For comparative purposes, some numerical benchmarks are
provided in Appendix A.

It is perhaps surprising that a minimal model like the
effective mass theory could provide such a reasonable account
of the broad range of physics in these δ layers. The power
of such a simple representation has been well illustrated
in the preceding sections, suggesting that the inputs to the
effective mass theory capture the main physics in this problem.
Our results are well matched to the predictions not only
of Qian et al.,26 whose technique incorporates disorder in
a similar manner as ours, but also of Carter et al.,28 who
utilize quasidisordered dopant arrays. Our calculated valley
splitting agrees with Ref. 26, and our �2-� band splitting and
binding energies agree well with Ref. 28. Our results for the
band fillings compare well to other values in the literature,
particularly to the fully disordered results of Ref. 26.

Finally, we have condensed our effective mass results
into a scaling theory, which may represent the simplest and
most far-reaching outcome of the theory of infinite Si:P
planes. The scaling theory reproduces our numerical results
very well up to high doping densities of order 1/2 ML,
and it enables analytical calculations of various physical
quantities as a function of the doping density. Examples
include the band energies, Eγ ∼ σ 2/3, the Gaussian widths of
the wavefunctions, aγ ∼ σ−1/3, the depth of the confinement
potential, V0 ∼ σ , and the valley splitting, 2VVO ∼ σ 4/3.
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APPENDIX A: 1D NUMERICAL PROCEDURE

In this Appendix, we obtain full numerical eigenvalue
solutions of Eqs. (17) and (18) in the presence of correlation
and exchange. In contrast to the variational calculations of
Sec. III B, we do not fix the value of β� . The method we use is
iterative. At each stage of the procedure, a new density profile
is obtained. The density is used to compute the electrostatic
potential, which is used to compute a new density profile and
so on. Self-consistency is accomplished by introducing a new
constraint:

h =
∫

[nα+1(z) − nα(z)]2dz = 0. (A1)

Here, α and α + 1 indicate the iteration number. In other
words, the density should not change from iteration to iteration
once convergence is achieved.

The self-consistency constraint of Eq. (A1) is well defined
and can be applied to density approximations involving many
parameters. For example, the density could be defined spatially
as ni = n(zi), where i is now a spatial index (not the iteration
index α). In this case, the self-consistency procedure is
high-dimensional, involving many independent parameters.
To simplify our analysis, we will calculate the electrostatic
potential using Gaussian density profiles, similar to those in
Sec. III B. From Fig. 2, we see that such Gaussian forms
provide a very reasonable estimate for the density and can
be immediately integrated to obtain Hartree potentials, as in
Eq. (26). Indeed, by fitting Gaussian forms to “exact” results
for F� and F�, obtained by finite element methods, we obtain
density approximations that are much more accurate than the
variational approximation shown in Fig. 2.

Our self-consistent method is then expressed as follows:
(i) provide a Gaussian estimate for the density profile in iter-
ation α, (ii) incorporate the corresponding Hartree, exchange,
and correlation potentials into a finite-element Schrödinger
solver, (iii) fit the resulting eigenfunctions F� and F� to
Gaussian forms, to be used in iteration α + 1, and (iv) repeat
until convergence is achieved, by minimizing the constraint of
Eq. (A1), where nα refers to the Gaussian forms. The mini-
mization step (i.e., the constraint) is multidimensional in the
Gaussian parameters a� and a� and can be accomplished using
the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method.47–50

Note that for a more accurate result, the wavefunction could be
expanded in a larger basis of Gaussian functions. Minimization
of such a parametrization would still be accomplished more
efficiently than for the spatial parametrization {ni}.

It is possible to incorporate the self-consistency constraint
of Eq. (A1) into the variational construction of Eq. (29). The
quantity to be minimized would then be f = E� + λg + μh.
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In such an approach, h = 0 would never be satisfied until
convergence is achieved. We have found, however, that the
extended parameter space associated with allowing h �= 0
introduces new local minima, which are difficult to avoid.
We therefore employ a different method, as described below.

The quantum-mechanical problem involves two
Schrödinger equations, (17) and (18), whose coupling,
through the electrostatic potential V (z), is fully specified
by the parameter β� . Consequently, the parameters a� and
a� are completely determined by β� and do not depend
on parameters used in the variational approach, such as λ.
This statement remains true for more complex geometries,
such as the 2D geometries considered in Ref. 12. In such
cases, many parameters may be required to fully describe the
wavefunctions, although self-consistency still depends only
on β� . We can therefore use a numerical approach where the
Schrödinger equations are solved self-consistently for a fixed
value of β� . This one parameter is then varied in order to satisfy
the Fermi-level constraint, g = 0. The latter problem is simple
and can be accomplished using a Newton-Raphson method.

The BFGS method, used to achieve self-consistency,
involves solving for ν different parameters, such as a� and
a�, which may not have the same dimensions. The technique
involves calculating a ν × ν Hessian matrix whose elements
may have values that differ by many orders of magnitude. It
is numerically challenging to invert such a matrix. Therefore,
to make the problem tractable, we transform to dimensionless
variables. We have already identified the appropriate quantities
for rescaling lengths in Eq. (34) and energies in Eq. (35). The
envelope functions and Gaussian form for the electron density
may be simply expressed in these terms, as may the potentials
and the Fermi constraint.

The Schrödinger equations are solved by finite-element
methods. The average dimensionless energy expectation val-
ues Ẽ� and Ẽ� are used in the Fermi constraint. These are
readily computed by our finite-element solver, via Eqs. (17)
and (18), as

Ẽ� = ε̃� − 1
2 〈Ṽ�〉�, (A2)

Ẽ� = ε̃� − 1
2 〈Ṽ�〉�. (A3)

The parameters to be solved for in our 1D model are then
{ã�,ã�,β�}. The valley splitting does not affect these solutions
and is therefore calculated post hoc, as described in Sec. III D.

The final results are obtained numerically for the 1/4 ML
case, giving a� = 0.64 nm and a� = 1.30 nm. The value of
β� is slightly larger than the estimate β� � 1/3 obtained in
Ref. 26 and larger than the estimated value of 0.310 from
Ref. 28 (see Sec. III).

It is also of some interest that the technique presented here
takes less than 100 s to compute on a dual-core laptop for a
given (nonideal) set of input parameters. Compared to DFT,
where an example 320-atom calculation took >16 000 h (168 h
over 96 cpus),51 or tight binding, where a typical 15 360-atom
model took >12 000 cpu hours to run (48 h over 256 cpus),29

our technique represents a method of calculating certain prop-
erties several orders of magnitudes faster than more rigorous
models, while embedding the δ layer in an infinite amount of
silicon, and could potentially be used to model much larger

TABLE II. Envelope widths (a�,� values) with and without
exchange and correlation.

Dopant density a� a� , no XC a� a�, no XC
(ML) (nm) (nm) (nm) (nm)

1 0.403 0.412 0.825 0.876
2/3 0.461 0.472 0.943 1.007
1/2 0.508 0.521 1.036 1.112
1/3 0.581 0.598 1.183 1.280
1/4 0.639 0.660 1.298 1.415
1/8 0.804 0.837 1.625 1.804
1/16 1.009 1.063 2.027 2.302
1/32 1.265 1.350 2.521 2.948
1/64 1.580 1.718 3.120 3.774
1/128 1.959 2.185 3.854 4.852
1/256 2.420 2.788 4.677 6.208
1/512 2.955 3.547 5.601 7.993

systems, with device scales beyond the reach of more rigorous
techniques.

APPENDIX B: EXCHANGE AND CORRELATION

The purpose of this Appendix is to detail when inclusion
of correlation and exchange effects in the numerical model is
necessary for accurate calculation. It assumes the treatment
given above, accounting for valley splitting. To characterize
the effects of exchange and correlation, we perform our self-
consistent calculations both with and without VX and VC in the
Hamiltonian.

The primary effect of including exchange and correlation
(XC), as discussed in the main text, is to slightly deepen the
potential well and steepen it in the vicinity of the minimum.
This results in a contraction of the envelope functions, as can be
seen in Table II. The effect is more marked for the low-density
cases, where the jellium approximation is in question and
(VX0 + VC0) /V0 is closer to 1. In the regime above 1/16 ML,
the modified potential results in a change of less than 6% in
a� and less than 12% in a�.

TABLE III. Filling fraction (β) values, with and without exchange
and correlation.

Dopant
density β1, β2, β�,
(ML) β1 no XC β2 no XC β� no XC

1 0.169 0.169 0.146 0.147 0.685 0.684
2/3 0.174 0.174 0.157 0.158 0.670 0.669
1/2 0.178 0.178 0.164 0.165 0.658 0.657
1/3 0.186 0.186 0.175 0.175 0.640 0.639
1/4 0.192 0.192 0.182 0.183 0.626 0.625
1/8 0.210 0.209 0.202 0.202 0.588 0.590
1/16 0.231 0.228 0.225 0.223 0.544 0.549
1/32 0.255 0.249 0.251 0.245 0.494 0.506
1/64 0.284 0.272 0.280 0.269 0.437 0.459
1/128 0.317 0.295 0.314 0.293 0.370 0.412
1/256 0.357 0.319 0.354 0.317 0.289 0.365
1/512 0.408 0.341 0.406 0.339 0.186 0.320
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TABLE IV. Energy level splittings with and without exchange
and correlation.

Dopant �1-�2, �1-�,
density �1-�2 no XC �1-� no XC
(ML) (meV) (meV) (meV) (meV)

1 183.2 175.6 595 600
2/3 88.3 84.0 446 449
1/2 54.1 51.6 363 365
1/3 28.8 27.6 271 272
1/4 19.0 18.2 220 220
1/8 7.3 7.0 132 132
1/16 2.8 2.7 79.2 77.8
1/32 1.1 1.0 47.1 45.4
1/64 0.44 0.41 27.9 26.2
1/128 0.18 0.16 16.4 14.8
1/256 0.07 0.06 9.7 8.3
1/512 0.03 0.02 5.8 4.6

The filling fractions, β1, β2, and β�, are relatively in-
sensitive to this perturbation. For 1/4 ML doping density
as described above, and indeed for densities above 1/16,
the values are almost identical with and without exchange
and correlation, although there is a marked difference at low
densities. Table III details values of β1, β2, and β�.

Table IV shows the effects of exchange and correlation
and density on the various energy-level splittings. As might
be expected, the valley splitting also shows little effect of
the inclusion or exclusion of exchange and correlation for
those doping densities where VXC is less significant. For
densities higher than 1/16 ML, the difference in the relative
predicted splitting is less than 6%. Of course, if instead one
is interested in the absolute difference in the predictions,
then exchange and correlation lead to an increase in the
splitting of more than 0.1 meV for all doping densities above
1/32 ML.

The �1-� energy gap behaves similarly, with a relative
difference of less than 2% for systems denser than 1/16
ML. Like the �1-�2 splitting, the energy gap increases with
inclusion of exchange and correlation. This is unsurprising
since the deeper potential corresponds to stronger confinement
and hence wider spacings between energy levels.

Table V displays the calculated Fermi energy with
and without exchange and correlation. It is of note that
we observe Fermi energies greater than zero, correspond-
ing to an unphysical “overfilling,” over a much larger
range of densities when ignoring exchange and correla-
tion, with all densities above 1/128 ML (inclusive) having

TABLE V. Fermi energy values with and without exchange and
correlation. Note that the asymptotic value of the potential V (∞) has
been defined as the energy zero.

Dopant density EF EF , no XC
(ML) (meV) (meV)

1 474 668
2/3 251 414
1/2 151 296
1/3 63.1 185
1/4 24.6 132
1/8 −22.5 57.7
1/16 −35.7 24.0
1/32 −35.5 8.97
1/64 −30.6 2.81
1/128 −24.8 0.32
1/256 −19.3 −0.38
1/512 −14.8 −0.57

positive Fermi energies. This effect is more pronounced
for higher densities.

We note that, despite the Fermi energies changing by several
meV for the 1/16–1/4 ML models and being greater than
zero when exchange and correlation are excluded, all other
results are largely unaffected by the inclusion or exclusion of
exchange and correlation in the calculation. This is in line with
the observations made in Ref. 26, where the Fermi level was
by far the measure most sensitive to exclusion of exchange
and correlation. We therefore observe that the overfilling
appears to have little effect on these results, again in line with
the discussion regarding the populations of higher bands in
Ref. 26. We may then also consider it to have a similarly small
effect on the higher densities, which also exhibit change due
to the inclusion of exchange and correlation.

While, to first order, the inclusion of exchange and correla-
tion appears to have little effect on our main results, we would
like to emphasize its contribution to second-order effects such
as the Fermi energy. We have noted that for several considered
densities, including exchange and correlation reduces or even
eliminates overfilling. It can easily be imagined that, when
connected in a physical device, significant overfilling would
lead to breaking charge neutrality as the high-energy electrons
are energetically free to vanish into the leads. As charge
neutrality is a central assumption in the derivation of our
model, this is more important than perhaps it first appears.
We therefore recommend the inclusion of correlation and
exchange in any EMT model of this type, especially if
larger-scale device modeling is to be undertaken.
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