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We study nonlinear inter-subband microwave absorption of electrons bound to the liquid helium surface.
Already for a comparatively low radiation intensity, resonant absorption due to transitions between the two lowest
subbands is accompanied by electron overheating. The overheating results in a significant population of higher
subbands. The Coulomb interaction between electrons causes a shift of the resonant frequency, which depends on
the population of the excited states and thus on the electron temperature Te . The latter is determined experimentally
from the electron photoconductivity. The experimentally established relationship between the frequency shift and
Te is in reasonable agreement with the theory. The dependence of the shift on the radiation intensity introduces
nonlinearity into the rate of the inter-subband absorption, resulting in bistability and hysteresis of the resonant
response. The hysteresis of the response explains the behavior in the regime of frequency modulation, which we
observe for electrons on liquid 3He and which was previously seen for electrons on liquid 4He.
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I. INTRODUCTION

Free electrons outside liquid helium can be trapped at the
vapor-liquid interface owing to the attractive polarization po-
tential above the surface and a repulsive barrier at the surface,
which prevents electrons from entering the liquid.1–3 As a
result, the electron motion perpendicular to the helium surface
is quantized, with energies εα = −R/α2 (α = 1,2, . . .), where
R is the effective Rydberg energy, R ≈ 7.6 K for liquid
4He and R ≈ 4.2 K for liquid 3He. An external electric
field E⊥ applied perpendicular to the surface Stark shifts the
energy levels. The shift depends on the quantum number α.
Consequently, the level spacing can be varied by changing
E⊥. If there are no other confining fields the electrons are free
to move along the surface and their overall energy spectrum
consists of two-dimensional (2D) subbands.

Resonant inter-subband optical absorption due to transi-
tions between the subbands has been directly observed for
surface electrons (SEs) above liquid 4He using radiation in
the millimeter4,5 and far-infrared6 ranges. Recently, resonant
absorption of millimeter-range microwaves was also observed
for electrons on liquid 3He (Ref. 7). In the experiments, SEs
were tuned in resonance with radiation by adjusting the value
of E⊥ and optical absorption was detected as the variation
in radiation power passing through the system. Inter-subband
absorption has been also probed indirectly by observing a
change in the conductivity of irradiated SEs on both 4He
and 3He (Refs. 8 and 9). This change is mainly caused
by radiation-induced overheating of the electron system.10

The overheating occurs both where electrons are scattered
primarily by helium vapor atoms or by surface vibrational
modes, ripplons.11–14

The recent interest in resonant absorption was stimulated by
the proposal to use laterally confined electrons on the helium
surface as qubits for quantum computing, with the qubit states
being the out-of-plane states with α = 1 and 2.15,16 Resonant

interaction with an externally applied microwave field provides
a natural way to manipulate the qubit state. Coupling between
the qubits comes from the Coulomb interaction between the
electrons. The interaction energy depends on the electron
quantum numbers α, because the electron distance from the
surface depends on α. Therefore, the change of the quantum
state of one electron results in the shifts of the quantum levels
of other electrons.

In microwave absorption experiments with electrons that
are free to move along the surface, one would expect to see
a shift in the resonance frequency for the transition from the
ground to the first excited subband (and also in other transition
frequencies) depending on the population of excited subbands.
The subband-population-dependent shifts of the energy levels
due to many-electron effects were predicted earlier for semi-
conductor heterostructures.17,18 In such systems the electron
correlation effects are a perturbation, because the system is
close to metallic.

A distinctive feature of the electron system on helium is that
it is strongly correlated.2,3,19–22 Therefore, the frequency shifts
turn out to be much stronger than in semiconductors. Signs of
the dependence of the frequency shift on the state of the system
were seen earlier in a complicated response to radiation with
modulated frequency23 and the power-dependent shift of the
photoconductivity signal.12 However, no systematic studies of
these effects have been carried out.

The state-dependent shift of resonance frequency intro-
duces nonlinearity in the absorption rate. Such nonlinearity
can cause bistability and hysteresis of resonant response.
Hysteretic effects related to nonlinear absorption are familiar
already from the early work on ferromagnetic resonance
in ferrite crystal disks.24–26 For 2D systems, magnetization
bistability was observed in spin-polarized atomic hydrogen gas
absorbed on the superfluid helium film.27 For semiconductor
heterostructures, the nonlinearity of inter-subband absorption
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was predicted and studied since late 1980s28–33 and absorption
bistability has been long sought.34–37

In this work, we present theoretical and experimental
studies of nonlinear absorption effects for a strongly correlated
electron system on a liquid-helium surface. A short account
of the results appeared earlier.38 We provide a theory of the
frequency shift associated with electron correlations and show
that this shift causes bistability and hysteresis of resonant
response. We describe experimental results on the frequency
shift and nonlinear absorption effects for electrons on liquid
3He in the temperature range 0.2 K–0.4 K that covers both
vapor-atom and ripplon scattering regimes. The response is
observed as a change of the longitudinal conductivity σxx of
SEs in a weak perpendicular magnetic fields. The frequency
shift is measured as a function of electron temperature Te,
which is determined from the relative change of σxx at
resonance. The shift is compared with the theoretical estimate
and a reasonable agreement is found.

At high values of input microwave power, the absorption
cross section shows a jump as a function of E⊥ and depends
on the direction of sweeping E⊥, that is, displays hysteresis.
This behavior agrees well with our theoretically predicted
bistability of nonlinear response. We also describe the results
of the experiment, in which resonance is observed by direct
measurements of the microwave power absorbed by the
electron system. We show that the complicated behavior of
the response to radiation with slowly modulated frequency
can be explained by taking into account the nonlinearity of the
absorption rate.

In Sec. II we derive a many-body quantum kinetic equation
for a strongly correlated system and use it to describe nonlinear
resonant absorption and to predict bistability of resonant
response. In Sec. III we describe the experimental techniques.
In Sec. IV the experimental results are presented. In Sec. V we
discuss the results of the measurements and make comparison
with the theory. The experimentally observed nonlinear effects,
in particular the bistability and hysteresis of inter-subband
absorption, are also discussed in this section. Section VI
provides a summary of the main results and the conclusions.

II. THEORETICAL BACKGROUND

A. Qualitative picture of electron dynamics

In the absence of the electron-electron interaction, electron
motion normal to the helium surface is described by the
Schrödinger equation

− h̄2

2m

d2

dz2
ψα(z) + V (z)ψα(z) = εαψα(z), (1)

where z is the out-of-plane coordinate, ψα(z) and εα are
the eigenfunctions and eigenvalues (α = 1,2, . . .), m is the
electron mass, and V (z) is the electron potential energy,
V (z) = −�/z + eE⊥z for z > 0. Here, � = e2(ε − 1)/4(ε +
1), −e is the electron charge, ε is the dielectric constant of
liquid helium, and E⊥ is the electric field applied normal to
the surface. On the surface, z = 0, the potential V (z) has a
high step ∼1 eV. Neglecting penetration of the electron wave
function into the liquid, Eq. (1) can be solved numerically
with the boundary condition ψα(0) = 0. For the field E⊥ <

102 V/cm, the typical localization length of the low-lying
electron states is rB = h̄2/�m ≈ 0.8 × 10−6 cm−1 for 4He.

Of central interest for this paper is electron response to a
microwave field which is resonant with the α = 1 → α = 2
transition. This response depends on electron relaxation. To
describe the relaxation we note that, for electron densities
ns and temperatures T studied in experiment, the electron-
electron interaction is strong. The interaction is characterized
by the plasma parameter � and the characteristic plasma
frequency ωp,

� = e2(πns)
1/2/kBT , ωp = (

2πe2n3/2
s

/
m

)1/2
. (2)

Most of the existing experimental results on electrons on
helium refer to the range � � 1. This means that the electron
system is strongly correlated, SEs form a nondegenerate liquid
or, for � > 130, a Wigner solid; the experiment described in
this paper refers to the range where the system is a liquid. The
reciprocal plasma frequency ω−1

p gives the characteristic time
of interelectron in-plane momentum and energy exchange.
In our experiment ωp > 6 × 109 s−1. This was the shortest
relaxation time in the range of temperatures studied in our
experiment. Also, ωp exceeded the microwave absorption rate
(see below).

The fast interelectron energy exchange leads to a thermal
distribution over the in-plane electron energy, with an effective
electron temperature Te. We note that the time it takes to
form such distribution in a correlated electron system can
be longer than ω−1

p . For example, if one thinks of electrons
forming a Wigner crystal, this is the thermalization time of the
phonons of the Wigner crystal. Still this time is much shorter
than the characteristic energy relaxation time due to inelastic
electron scattering by helium vapor atoms or ripplons/phonons
in helium. Of major interest to us is the parameter range
where kBTe > h̄ωp. In this range electron in-plane motion is
semiclassical and the electron in-plane state can be described
by well-defined momentum and coordinate.

The temperature Te should be the same in all subbands,
even though the distribution over the subbands does not
necessarily have to be thermal. This is a consequence of
the strong difference between the characteristic in-plane and
out-of-plane interelectron distance in the correlated system,
n

−1/2
s and rB . Since n

−1/2
s � rB , the in-plane momentum

exchange �pee is essentially the same whether the electrons
are in the same or in different subbands, leading to the same
in-plane momentum distribution irrespective of the subband.
At the same time, the electron-electron interaction practically
does not lead to inter-subband transitions, because it requires
short-range collisions which do not occur in the correlated
system.

Other scattering mechanisms come from the interaction of
SEs with the surrounding, primarily with helium vapor atoms,
for comparatively high temperatures, T > 0.3 K for electrons
on 3He, and with surface waves and bulk excitations in liquid
helium for lower temperatures.3,15 Scattering by vapor atoms
and by surface capillary waves, ripplons, is mostly quasielastic.
This is a consequence, respectively, of the large ratio of the
helium atom mass to the electron mass and the slowness of
ripplons: even for the ripplon wave number as large as r−1

B
the ripplon frequency is very small, ∼108 Hz, and the ripplon
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energy is much smaller than the average energy of in-plane
electron motion.

B. Hamiltonian of the many-electron system

Using the condition n
−1/2
s � rB , the Hamiltonian of the

isolated electron system can be written as H0 + H (1)
ee , where

the leading term is

H0 = HK + H (0)
ee + Hz, HK = 1

2m

∑
n

p2
n,

(3)

H (0)
ee = e2

2

∑
n�=n′

r−1
nn′ , Hz =

∑
n,α

εασ αα
n .

Here, rn and pn are the lateral coordinate and momentum of
an nth electron, respectively, rnn′ ≡ |rn − rn′ | is the in-plane
interelectron distance, and

σαβ
n = |α〉n n〈β|, (4)

where |α〉n ≡ [ψα]n is the αth out-of-plane state of the nth
electron.

The part of the electron-electron interaction incorporated
into H0 corresponds to the approximation of the electrons
being in a plane. The part of the interaction related to the
out-of-plane electron displacement is described by H (1)

ee . To
the leading order in rB/rnn′ ,

H (1)
ee = −e2

4

∑
n�=n′

(zn − zn′)2/r3
nn′ . (5)

As we will see, this interaction leads to an analog of the de-
polarization effect in semiconductor heterostructures.17,18,29–33

However, because SEs on helium are strongly correlated the
effect is much stronger and is described in a qualitatively
different way.

The electron coupling to a resonant microwave field is
described by the Hamiltonian

HF = −h̄
RcosωF t
∑

n

(
σ 12

n + σ 21
n

)
. (6)

Here, 
R = eEMWz12/h̄ is the Rabi frequency, EMW and
ωF are the amplitude and frequency of the radiation field,
respectively, and zαβ = 〈α|z|β〉. Frequency ωF is assumed to
be close to the transition frequency of the electron system,
ω21 = (ε2 − ε1)/h̄, |ω21 − ωF | � ω21.

The nonlinear response of a strongly correlated system
can be analyzed using the many-electron density matrix. It
depends on the states of in-plane and out-of-plane motion of
all electrons. It is convenient to write it in the interaction repre-
sentation using canonical transformation U (t) = exp(−iHt t),
where

Ht = H0 + h̄(ωF − ω21)
∑

n

σ 22
n + HHe. (7)

The term HHe in Eq. (7) describes excitations in liquid helium
and the almost ideal gas formed by helium vapor atoms. The
transformed Hamiltonian of coupling to the field U †HF U

is independent of time in the rotating-wave approximation.
We emphasize that the electron-electron interaction H (0)

ee is
incorporated into Ht ; this is not a perturbation.

We write the density matrix in the interaction representation
with Hamiltonian Ht using the Wigner representation with
respect to in-plane motion as ρ0(t ; {αn,βn,rn,pn}). For weak
coupling to ripplons and helium vapor atoms, one can obtain
a many-electron kinetic equation for ρ0. This equation is
Markovian for times longer than h̄/kBTe,ω

−1
21 and presents

an immediate extension to the multi-subband case of the
kinetic equation discussed previously in the one-subband
approximation.39

Because the Coulomb interaction is strong, to zeroth order
in the interaction with excitations in helium and in H (1)

ee func-
tion ρ0 depends on the coordinates and momenta of individual
electrons in terms of the total in-plane momentum P = ∑

n pn

and the total in-plane energy HK + H (0)
ee . The distribution

over the total in-plane energy is of the Boltzmann form.
Moreover, in the classical range kBTe > h̄ωp the distribution
over momenta pn is also of the Maxwell form.

Coupling to helium vapor atoms and ripplons causes mixing
of states with different P and also of different out-of-plane
states |α〉n. The coupling Hamiltonian can be written as

Hi =
∑
q,n

∑
α,β

V̂qαβeiqrnσ αβ
n . (8)

Here, V̂ is an operator with respect to the variables of ripplons
or phonons in helium and the positions of the helium vapor
atoms, while h̄q is the lateral momentum transferred from
these excitations to an electron. Terms with α = β describe
intrasubband coupling, whereas terms with α �= β describe
mixing of states in different subbands.

The characteristic values of the transferred momentum are
comparatively large, q � n

−1/2
s , because the density of states

of excitations in helium and often the interaction strength
increase with q. Thus, scattering by helium excitations is
short range. As a result, in the electron liquid each electron
is scattered individually; processes where two electrons are
scattered by the same ripplon, phonon, or a vapor atom can
be disregarded.19,39 Since between the scattering events the
electrons have time to exchange lateral momentum and energy
with each other, the scattering rates can be averaged over lateral
electron motion with the Boltzmann factor.

Resonant response of the electron system to microwave
field is independent of the electron lateral motion. Of interest
for the study of this response is the single-particle density
matrix

ραβ (t) = Tr
[
σβα

n ρ̂0(t)
] = N−1

∑
n

Tr
[
σβα

n ρ̂0(t)
]
. (9)

The trace is taken over the in-plane coordinates and momenta
and over the out-of-plane states of all electrons; N is the total
number of electrons. In a spatially uniform system ραβ is
independent of the subscript n in Eq. (9).

C. Many-electron shift of the transition frequency

Qualitatively, the major effect of the interaction H (1)
ee on

resonant absorption is the linear Stark shift of the frequency
of the inter-subband |1〉 → |2〉 transition of an electron due
to the out-of-plane component of the electric field created
by other electrons. This field for an nth electron is given
by e−1∂H (1)

ee /∂zn. As seen from Eq. (5), the field depends
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on the relative distance between the electrons normal to the
surface and therefore on the states of out-of-plane motion of
different electrons, as well as on the interelectron distance in
the plane. We emphasize that we are interested in the field on
an electron, not in the average field in the electron layer, which
is significantly different.

Formally, the term H (1)
ee couples a single-particle density

matrix, in particular that given by Eq. (9), to a two-particle
one. This coupling is described by the term in the ki-
netic equation (∂t ρ̂0)ee = ih̄−1[ρ̂0(t),H (1)

ee (t)], where H (1)
ee (t) =

U †(t)H (1)
ee U (t). The density matrix in the interaction represen-

tation slowly varies in time. Therefore, the main contribution
to ρ̂0 comes from slowly varying terms in H (1)

ee (t).
To find the smooth terms H (1)

ee (t) we write in Eq. (5)
zn = ∑

αβ zαβσ
αβ
n (and similarly for z2

n) and notice that

U †(t)σαβ
n U (t) ∝ exp(iωαβt). Here zαβ =n〈α|zn|β〉n; the ma-

trix elements of z2
n are defined similarly. The inter-subband

transition frequencies ωαβ largely exceed the in-plane vibration
frequencies, which are ∼ωp and characterize time variation of
the factors r−3

nn′ in H (1)
ee (t). Therefore, the first type of slowly

varying matrix elements in H (1)
ee (t) are those containing only

diagonal components zαασαα
n and (z2)αασ αα

n . The second type
comes from the terms ∝znzn′ with n �= n′. The corresponding
slowly varying terms are proportional to |zαβ |2σαβ

n σ
βα

n′ with
α �= β.

We analyze the interaction H (1)
ee in the mean-field approx-

imation. This approximation is justified when the number of
nearest neighbors for each electron is large, so that correlations
between out-of-plane states of neighboring electrons and their
positions are averaged out. In other words, tracing over the
positions of coupled electrons and over their out-of-plane
states is done independently. In a strongly correlated 2D
electron liquid the number of nearest neighbors is six, on
average, which makes the approximation reasonable. For
typical times on the order of the duration of a collision
with helium excitations or a radiation-induced inter-subband
transition the relative shift of the positions of neighboring
electrons is small. It is a good approximation then to describe
the distribution of interelectron distances rnn′ by the static pair
correlation function g(rnn′).

The many-electron frequency shift �ωβα of the |α〉 → |β〉
transition is determined by the ratio h̄−1Tr{σαβ

n [H (1)
ee ,ρ̂0]}/ρβα .

From the above arguments,

Tr

{
σαβ

n

∑
n′

′
r−3
nn′ ρ̂

(0)

}
≈ Fn3/2

s ρβα,

(10)

Tr

{
σαβ

n

∑
n′

′
r−3
nn′ σ

α′β ′
n′ ρ̂(0)

}
≈ Fn3/2

s ρβαρβ ′α′ ,

where the prime over the sum indicates that n′ �= n and

F = n−3/2
s

〈∑
n′

′
r−3
nn′

〉
. (11)

Numerically, in a strongly correlated liquid F ≈ 8.91
(Ref. 40).

From Eqs. (5) and (10) with account taken of the commu-
tation relation [σαβ

n ,σ
α′β ′
n′ ] = δnn′(σαβ ′

n δβ ′,α′ − σ
α′β
n δα,β ′ ), the

frequency shift of the |1〉 → |2〉 transition due to the electron-
electron interaction is

�ω21 = Fe2n
3/2
s

2h̄
[(z2)11 − (z2)22 − 2(z11 − z22)

×
∑

α

zααραα + 2|z12|2(ρ11 − ρ22)]. (12)

From Eq. (12), the frequency shift �ω21 is determined by
the populations of all subbands ραα . In Eq. (12) we dropped
terms proportional to ρ1αρα2 with α �= 1,2. These terms
would be important if radiation excited transitions other than
|1〉 → |2〉. However, such transitions are nonresonant, and for
a comparatively small microwave power that we consider they
can be disregarded.

The effect of the electron correlations on the position of
the absorption line was considered earlier by Lambert and
Richards.6 Their results referred to the weak-power limit,
ραα ∝ δα,1, and the expression they were using differed from
Eq. (12); in particular, the last term was missing all together.

The physics of the terms proportional to the diagonal and
off-diagonal matrix elements of z, z2 in Eq. (12), is different.
The diagonal terms come from the fact that SEs in different out-
of-plane states |α〉 have different static dipole moments in the
out-of-plane direction. These static moments lead to the static
Stark shift of the transition frequency ω21 of other electrons,
which depends on the occupancies ραα . The term proportional
to |z12|2 in Eq. (12) is dynamic in nature: it describes resonant
excitation transfer between different electrons.15

D. Kinetic equation

An equation for the single-electron density matrix for out-
of-plane motion ραβ can be obtained from the full kinetic
equation for ρ̂0 in the interaction representation,41

ρ̇αα =
∑

β

(γβαρββ − γαβραα) + 
R(δα,1 − δα,2)Imρ12,

(13)

ρ̇12 = −(iδω + γ0)ρ12 + 1

2
i
R(ρ22 − ρ11),

where

δω = ωF − ω21 − �ω21. (14)

In Eq. (13) we do not incorporate explicitly the electron-
electron interaction, which leads to establishing thermal
distribution over lateral motion, with effective temperature
Te. We also do not incorporate the relaxation processes that
lead to energy exchange between the electrons and the helium
excitations.

Parameters γαβ in Eq. (13) are the rates of inter-subband
transitions |α〉 → |β〉, which are essentially quasielastic. The
electron momentum goes to helium excitations, whereas the
energy of motion normal to the helium surface goes into the
kinetic energy of lateral motion and the energy of the electron-
electron interaction,

γαβ = h̄−2
∑

q

|Vqαβ |2
∫ ∞

−∞
dt exp[i(εα − εβ)t/h̄]

×〈exp[iqrn(t)] exp[−iqrn(0)]〉. (15)
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FIG. 1. (Color online) Sketch of the energy subbands and the
electron transitions. The total energy of an electron Eα = εα +
p2/(2m) is plotted on the vertical axis. Vertical (red) arrows
indicate photon-induced transitions, while horizontal (blue) arrows
indicate transitions due to elastic scattering by excitations in
helium.

Here, the overline indicates averaging over the thermal
distribution (with temperature T ) of the relevant excitations
in helium; 〈· · ·〉 denotes averaging over the in-plane electron
motion with temperature Te. Expression (15) is independent
of the electron number n. In deriving it we used the aforemen-
tioned picture in which electrons are scattered by a short-range
potential independently; that is, one electron collides with a
short-range scatterer at a time. However, during a collision the
electron is in the in-plane potential created by other electrons,
which is determined by H (0)

ee . This potential is smooth on
the electron wavelength λT and for kBTe � h̄ωp weakly
affects short-range scattering in the absence of a magnetic
field.39

The electron-electron interaction plays a critical role if the
electron system is in a strong magnetic field B normal to
the surface. Here, in the single-electron approximation the
electron energy spectrum is discrete (the Landau quantization),
and the Born approximation used to derive Eq. (15) would
not apply. However, because an electron is in a fluctuational
electric field of other electrons Ef , its potential (and thus
kinetic) energy is uncertain by eEfλT ∼ h̄ωp, and if this
uncertainty exceeds h̄ωc, where ωc = eB/mc is the cyclotron
frequency, the effect of the Landau quantization on scattering
is essentially eliminated.20 This condition was met in the
experiment, even though the magnetic field was classically
strong.

The processes described by Eq. (15) are shown schemati-
cally in Fig. 1. The calculation of the rates γαβ is similar to that
of the in-plane relaxation rate in a correlated electron system.39

Even where Te �= T , since the scattering described by Eq. (15)
is elastic and the electron distribution is thermal, the transition
rates satisfy the detailed balance condition

γαβ = γβα exp[(εα − εβ)/kBTe]. (16)

The decay rate γ0 of the off-diagonal matrix element ρ12 in
Eq. (13) in the single-electron approximation for Te = T �
(ε2 − ε1)h̄ was considered in Ref. 42. Using the approach of
Ref. 39 the results can be extended to the many-electron case
and made applicable in the presence of a magnetic field normal

to the helium surface,

γ0 = 1

2

( ∑
α �=1

γ1α +
∑
α �=2

γ2α

)
+ 1

2

∑
q

|Vq11 − Vq22|2

× h̄−2
∫ ∞

−∞
dt〈exp[iqrn(t)] exp[−iqrn(0)]〉. (17)

The frequency detuning (14) depends on the distribution of
SEs[cf. Eq. (12)], which makes the overall quantum kinetic
equation (13) nonlinear. As shown below, this nonlinearity
may result in the bistability of the response of the electron
system to resonant radiation.

E. Absorption bleaching

To find the stationary distribution of the system, Eq. (13)
must be complemented with the equation that describes
electron energy relaxation. However, an important conclusion
about the distribution can be reached even without the analysis
of energy relaxation in the case of weak to moderately strong
microwave radiation, where


2
R � γ0γ21. (18)

Condition (18) is sufficient to suppress the conventional
absorption saturation. Such saturation is well known for two-
level systems and requires that radiation makes the populations
of the excited and ground states ρ22 and ρ11 close to each
other, so that the probabilities of radiation-induced transitions
up and down in energy become close, too. In the saturation
regime the population ratio ρ22/ρ11 significantly differs from
the Boltzmann factor exp[(ε1 − ε2)/kBTe]. In our case instead
of the levels we have subbands of electron motion. It is seen
from Eq. (13) that in the range (18) the deviation of ρ22/ρ11

from the Boltzmann factor is small even at resonance, δω = 0,
and even if one disregards transitions between subbands 1,
2, and other subbands. This shows that absorption saturation
does not occur in our system.

From Eq. (13) and from the detailed balance condition
(16) it follows that in the range (18) the overall stationary
distribution of the electron system both over the energy of
lateral motion and over the subbands of out-of-plane motion
is characterized by the same temperature Te,

ραα ≈ Z−1e−εα/kBTe , Z =
∑

α

e−εα/kBTe . (19)

Even though there is no absorption saturation in the
range (18), the absorption significantly changes with the
increasing radiation intensity. The mechanism of this change is
absorption bleaching.12,41 It can be understood from Fig. 1. As
a result of inter-subband scattering an electron that resonantly
absorbed a photon in subband 1 and made a transition to
subband 2 can go back to subband 1, but with higher energy.
It can then again absorb a photon. Now it can be elastically
scattered from subband 2 to subband 3. It can also go back to
subband 1, again resonantly absorb a photon, and be scattered
into subbands 4, 5, etc.

The cascade of photon-induced transitions and inter-
subband scattering leads to population of higher and higher
subbands and to a decrease of the population of subband 1.
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Such decrease, along with the fact that the populations of
subbands 1 and 2 become closer with increasing Te, lead to an
overall decrease of resonant absorption.

F. Bistability of resonant response

A complete analysis of nonlinear response requires incorpo-
rating inelastic processes that lead to energy exchange between
the electrons and excitations in helium. By now several types
of inelastic processes have been identified, including the weak
inelasticity of scattering by helium vapor atoms, the inelastic
two-ripplon scattering, and the inelastic scattering by phonons
in liquid helium. For all of them, the energy relaxation rate
depends on the electron state and helium temperature.3,14,16,43

The description of energy relaxation is simplified by the
fact that it is slow. Between inelastic scattering events electrons
have time to exchange energy with each other, and the state
of the electron system is described by electron temperature.
Therefore, one can introduce a single energy relaxation rate
νE , which is independent of the electron state and depends only
on Te, T , and ns .3,10–12,14,41 This leads to an implicit equation
for Te. It has the form of a simple energy balance equation

νEkB(Te − T ) = h̄ωF rZ−1[e−ε1/kBTe − e−ε2/kBTe ],
(20)

r = 1
2
2

Rγ0/[γ 2
0 + (ωF − ω21 − �ω21)2].

We have introduced here absorption coefficient r , which is
determined by Eqs. (13) and (14). The left- and right-hand
sides of Eq. (20) are, respectively, the energies dissipated into
helium and absorbed by an electron from radiation per unit
time. For all energy relaxation mechanisms considered so far,
the left-hand side of Eq. (20) is an increasing function of
Te − T , at least for not too large Te − T .

Parameter r is a nonlinear function of Te, as seen from
Eqs. (12) and (14). Therefore, Eq. (20) is fairly complicated.
A convenient way of understanding the possible types of its
solution is based on the graphical solution, an example of
which is shown in Fig. 2. The plot shows the rates of energy
absorption and relaxation calculated for T = 0.4 K, where
the scattering is dominated by interaction with helium vapor
atoms. In this regime, the Te dependence of νE , γ0, and �ω21

are calculated for the typical experimental parameters with
account taken of 200 subbands of electron motion normal to
the helium surface.

The left-hand side of Eq. (20) is shown in Fig. 2 by a
dashed line, while the right-hand side (rhs) is shown by the
solid lines for ωF − ω21 = 0.1 and 0.4 GHz (lines a and b,
respectively). The major part of Te dependence in the rhs comes
from the frequency shift �ω21. From Eq. (12), �ω21 rather
quickly increases with the increasing Te. In a certain range of
ωF − ω21, the change of Te can bring �ω21 in resonance with
ωF − ω21. This leads to a resonant peak of r and thus of the
rhs of Eq. (20) as function of Te seen in Fig. 2.

The heights of the resonant peaks in Fig. 2 depend on ωF −
ω21. From Eq. (20), the coefficient in front of r decreases with
increasing Te. The maximal value of r at resonance, rmax ∝
1/γ0, also decreases. Therefore, the higher the value of Te,
where �ω21 = ωF − ω21, the smaller is the height of the peak
of the rhs of Eq. (20).

FIG. 2. (Color online) Graphical solution of the energy balance
equation (20) for T = 0.4 K and ns = 4.0 × 107 cm2. The dashed line
is the energy loss rate [the left-hand side of Eq. (20)] due to inelastic
scattering by helium vapor atoms. The solid lines show the rate of
the microwave power absorption [the right-hand side of Eq. (20)]
calculated for ωF = 104.5 GHz, 
R = 2.0 MHz, and ωF − ω21 =
0.1 GHz (a) and 0.4 GHz (b). For the case (a), the stable solutions
of Eq. (20), which are given by the intersections of solid and dashed
lines, are marked by (red) circles.

The solutions of Eq. (20) are determined by the crossings
of the dashed and solid lines in Fig. 2. They give the effective
temperature Te in the stationary state. Where the microwave
frequency is relatively far from resonance, that is, ωF − ω21

is relatively large, there exists only one solution for Te, with
Te close to the helium temperature T . Closer to resonance,
on the other hand, Eq. (20) can have two stable solutions
with comparatively large and small Te − T . They are marked
by circles in Fig. 2. In this case Eq. (20) also has a stationary
solution for intermediate Te, as seen from Fig. 2. By writing the
energy change per unit time as the difference of the right- and
left-hand sides of Eq. (20), one can see that this intermediate
solution is unstable.

The left- and right-hand sides of Eq. (20) display a
qualitatively similar behavior for other parameters and for
other relaxation mechanisms. This indicates that the onset of
bistability is a general consequence of absorption bleaching.

The occurrence of two stable regimes can be understood in
the following way. In one regime, which corresponds to lower
Te, the overall detuning of the electron transition frequency
ω21 + �ω21 from the radiation frequency ωF is large compared
to γ0. Therefore, the absorption rate is comparatively small
and Te is self-consistently low. On the other hand, if Te is
sufficiently high, ω21 + �ω21 is close to ωF , absorption is
comparatively strong, and Te is self-consistently high. We note
that, since �ω21 is positive, such bistability can occur only for
ωF − ω21 > 0.

The bistability leads to the hysteresis of electron absorption
with varying ωF − ω21. If we start from large detuning
ωF − ω21 (curve b in Fig. 2) and then decrease it (curve
a in Fig. 2), the system will stay in the small-absorption
state, which corresponds to left circle in Fig. 2. On the other
hand, if we start from small ωF − ω21, the system will be on
the decreasing with increasing Te part of the resonant solid
line in Fig. 2. As ωF − ω21 increases, the system will get into
the region of strong absorption, but ultimately will switch to the
low-absorption branch for large ωF − ω21. Below we present
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the experimental observation of frequency shift, bistability,
and hysteresis and make a comparison with the theory.

III. EXPERIMENT

The details of the experimental apparatus have been
described elsewhere.14 SEs were accumulated on the surface
of liquid 3He placed about halfway between two circular con-
ducting plates of diameter 20 mm separated by approximately
2.6 mm and forming a parallel-plate capacitor. A positive
voltage VB was applied to the bottom electrode to create
an electric field E⊥ perpendicular to the helium surface. In
addition, a magnetic field B was applied perpendicular to
the surface using a superconducting magnet placed around
the experimental cell. Microwave radiation at fixed frequency
ωF /2π = 104.5 GHz was passed through the experimental
cell, and the inter-subband splitting ε2 − ε1 was brought in
resonance with h̄ωF by varying E⊥.

The longitudinal magnetoconductivity of electrons σxx was
measured using the capacitive-coupling method.44 For this
purpose, we used a Corbino disk with two concentric-ring
electrodes, which constituted the top plate. An ac voltage
Vin of 4 mV rms at a frequency of 100 kHz was applied to
the inner electrode of diameter 7 mm. This induced an ac
current floating through the sheet of electrons. The current
was picked up at the outer electrode and converted to a voltage
signal using a 500-pF capacitor. The in-phase and quadrature
components of an amplified signal Vout were recorded using
a dual-phase lock-in amplifier. For an electron sheet having
finite conductivity, there is a phase shift φ between Vout and
Vin. The phase shift is linearly proportional to the reciprocal
conductivity σ−1

xx for not very large φ.
The Corbino signal Vout was recorded while slowly varying

VB at a fixed microwave power and at a fixed value of the
magnetic field B. The variation of electron conductivity caused
by the radiation-induced heating of SEs allowed us to observe
resonant response from inter-subband absorption. Subtracting
the values of σ−1

xx obtained in the absence of radiation, the
relative change �σ−1

xx /σ−1
xx due to the heating was determined

and plotted vs VB. The measurements reported here were done
in the temperature range from 0.2 K to 0.4 K.

For each curve �σ−1
xx /σ−1

xx vs VB, the electron temperature
Te was calculated from the previously discussed dependence
on Te of the quasielastic electron transport time τ .10,14 For
magnetic fields B used in the experiment, the many-electron
conductivity σxx follows the Drude law,20

σ−1
xx = (1 + μ2B2)/σ0, (21)

where σ0 = nseμ is the conductivity in zero magnetic field
and μ = eτ/m is the electron mobility. For μB � 1, σ−1

xx

is proportional to τ . To find the proportionality coefficient,
which depends on the electron density ns , the Corbino signal
was recorded without radiation while SEs were slowly cooled
down until they formed a Wigner crystal. The crystallization
could be easily detected as an abrupt change in σxx .45 The
value of ns was found from the crystallization temperature
and the well established critical value of the plasma parameter
� = e2(πns)1/2/kBT ≈ 130.

The experimental procedure for microwave absorption
measurements was similar to that described in Ref. 7. The

power of the microwave radiation that passed through the
cell was measured with an InSb bolometer mounted inside
the cryostat. Resonant absorption could be observed as the
variation of the bolometer signal at T = 0.4 K as electrons
were driven through resonance by sweeping the bottom plate
voltage VB. Simultaneously, this voltage was modulated with a
small sinusoidal signal at frequency 10 kHz, and the in-phase
and quadrature components of the demodulated bolometer
signal were obtained using a dual-phase lock-in amplifier.
With such an arrangement, in the limit of small modulation
amplitude the in-phase component of the obtained signal is
proportional to the derivative of the power absorbed by SEs
with respect to VB. Normally, the quadrature component of the
signal should be zero. The absorption line shape was obtained
by numerical integration of the signal with respect to VB.

IV. RESULTS

A. Resistivity measurements

In Fig. 3 we show the relative radiation-induced conduc-
tivity change −�σ−1

xx /σ−1
xx as a function of the voltage that

presses the electrons to the helium surface VB. All plots
were obtained from the data taken at T = 0.4 K and electron
density ns = 4 × 107 cm−2. A part of the data was reported
earlier.38 The radiation power was measured at the output of
the microwave source; shown in Fig. 3 is the ratio of the
applied power (in decibels) to the maximum power, which
was approximately 1 mW. Experimental traces were obtained
by increasing VB slowly to drive SEs through resonance. A
conversion of the increase of VB to the increase of the transition
frequency ω21 by ≈25 MHz is discussed in Sec. V A.

At T = 0.4 K, electron scattering is mostly determined
by collisions with helium vapor atoms. As we showed
previously,10,14 in this case radiation-induced heating leads
to a decrease of the relaxation time τ . Therefore, σ−1

xx should
decrease at resonance.

The resistivity curves in Fig. 3 show a pronounced resonant
peak. The height of the peak monotonically increases with
the input power. At small power levels, the resistivity shows

FIG. 3. Relative change of the reciprocal conductivity
−�σ−1

xx /σ−1
xx vs the voltage applied to the bottom electrode VB

obtained for SEs on liquid 3He at T = 0.4 K, ns = 4 × 107 cm−2

and several values of the input power of radiation. The lines a to k
correspond to −17.5, −14.0, −11.4, −8.8, −6.2, −4.2, −2.3, and
−0.6 dB of the input power expressed as a fraction (in decibels) of
the maximum power ∼1 mW.
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FIG. 4. Relative change of the reciprocal conductivity
−�σ−1

xx /σ−1
xx vs VB obtained at T = 0.4 K, ns = 4 × 107 cm−2, and

at the maximum input power (0 dB). The dashed and solid lines
correspond to sweeping through the resonance from the low and high
sides of VB, respectively, as indicated by the arrows.

a slight increase on the sides of the resonance (respectively,
−�σ−1

xx becomes negative). This effect is attributed to the
contribution of ripplon scattering to the momentum relaxation
rate.14 As the power increases, the resonance shifts toward
lower values of VB, which corresponds to the increase in the
transition frequency. Also, the line shape becomes asymmetric.
We believe the shift is due to the many-electron effect
described by Eq. (12) and is associated with thermal population
of the excited subbands as the effective electron temperature
increases.

At high power levels, when the voltage is swept through
the resonance from the low-VB side, the resistivity jumps
abruptly to a lower value; respectively, −�σ−1

xx /σ−1
xx jumps

up. This unusual behavior is demonstrated in Fig. 4. The
data used for this plot were taken at similar conditions to
those in Fig. 3, except that the sweeping rate was slower by a
factor of two. The jump always occurs on the low-field side of
the resonance and is well reproducible. When the sweeping
direction is reversed, the resistivity curve first follows the
forward-sweeping curve as it passes through the resonance.
However, on the low-field side it does not show any jump
but slowly goes to zero with decreasing VB. This behavior is
also well reproducible. Therefore, overall the system displays
a well-pronounced hysteresis.

The resistivity jump becomes more prominent and the width
of the hysteresis loop increases at lower temperatures. In Fig. 5
we plot �σ−1

xx /σ−1
xx vs VB for the data taken at T = 0.2 K,

ns = 4.2 × 107 cm−2, and at three different input power levels.
At this temperature, the relaxation rate is determined by the
interaction of the electrons with ripplons, and electron heating
leads to an increase of the relaxation time τ . Therefore, σ−1

xx

increases at resonance.14 In addition to the abrupt jump and
hysteresis observed at T = 0.4 K, the line shape shows an
interesting structure. It seems to be a superposition of a broad
peak centered at VB ≈ 11.9 V and a high peak located on
the low-VB side of the broad peak. While this latter peak
grows and shifts with the increasing input power, the position
of the broader peak does not change and the height of the
peak slightly decreases with the increasing power. We identify
the high peak as being due to resonant transitions from the
ground state to the first excited state. The broader peak remains
unexplained at this time.

FIG. 5. Relative change of the reciprocal conductivity �σ−1
xx /σ−1

xx

vs VB obtained at T = 0.2 K, ns = 4.2 × 107 cm−2 and three different
values of the input power: −6.2, −5.4, and −4.2 dB (lines a, b, and c,
respectively). The dashed and solid lines correspond to the sweeping
through the resonance from the low- and high-VB sides, respectively.
A satellite peak that appears on the low-field side of the resonance is
indicated by the full triangle.

In addition to the peaks described above, a small satellite
peak appears on the low-field side of the resonance. This peak
becomes visible only at very high power levels. It was reported
in our previous work9 and was attributed to the excitation of
collective in-plane electron vibrations.46 At extremely high
radiation intensities, we observe a number of satellite peaks
on the both sides of the resonance. Some of them can be due
to resonant transitions between higher excited subbands and
emerge through self-sustained absorption, which was recently
discovered in our experiments.47 The origin of other peaks is
not clear at the moment. A detailed description of the satellite
structure of the resonance will be given elsewhere.

The signal strongly changes at lower electron density. In
Fig. 6 we plot �σ−1

xx /σ−1
xx vs VB for the data taken at the

same temperature as in Fig. 5 but at ns = 8.0 × 106 cm−2.
Here, the intensity (area) of the broad peak is significantly
smaller, while the higher peak is much narrower. Interestingly,
for lower electron density the signal shows abrupt jumps for
both sweeping directions. It has a characteristic sawtooth shape

FIG. 6. �σ−1
xx /σ−1

xx vs VB for T = 0.2 K, ns = 8.0 × 106 cm−2,
and −2.3 dB of the input power. The dashed and solid lines correspond
to the sweeping through the resonance from the low and high VB sides,
respectively, as indicated by arrows. (Inset) Plots obtained under
the same conditions, but with the slower by a factor of two rate
of sweeping from the lower (opened squares) and the higher (solid
squares) VB side.
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expected for switching between two stable states. The abrupt
switching for sweeping the voltage up and down is highlighted
in the inset of Fig. 6.

B. Absorption measurements

We have also studied absorption by measuring the power of
the microwave radiation passed through the electron system.
It is difficult to observe the variation of power directly because
the fraction of radiation energy absorbed by electrons is
very small. In order to increase sensitivity of the detection
method, the experiment was done by sinusoidally modulating
the potential VB and sweeping the central point V̄B about
which the modulation was performed. The measured trans-
mitted power was then Fourier-transformed using a lock-in
amplifier. Unexpectedly we found that, in the absorbed power,
along with the standard in-phase component I (V̄B), for high
radiation power the signal displayed a quadrature component
Q(V̄B). The data were obtained for the modulation frequency
ωm/2π = 10 kHz and the modulation amplitude Vm = 10 mV,
which corresponds to the modulation amplitude ≈25 MHz
of the transition frequency ω21 (see below). For modulation
∝cos ωmt we define, following the standard notations, the
quadrature component as a coefficient at − sin ωmt .

In Fig. 7 we show functions

I(VB) =
∫ VB

dV ′
BI (V ′

B), Q(VB) =
∫ VB

dV ′
BQ(V ′

B),

(22)

sometimes called integrated line shapes. They were obtained
by sweeping V̄B upward for T = 0.4 K and ns = 4 × 107 cm−2

at different power levels. The lower limits of the integrals
in Eq. (22) were chosen at a value of V̄B well below the
resonance; the result weakly depended on this limit, as is
clear from Fig. 7. For T = 0.4K the intrinsic linewidth of
the absorption spectrum is rather small and the observed line
shape is determined by the inhomogeneous broadening due to

(a)

(b)

FIG. 7. Integrated line shape of the absorption signal measured
with SEs on liquid 3He for T = 0.4 K, ns = 4 × 107 cm−2, at different
power levels. The graph shows the in-phase (A) and the quadrature
(B) components of the measured signal. The lines a to e correspond
to −27.7, −20.6, −17.5, −14.4, and −11.4 dB of the input power
attenuation.

the nonuniformity of the electric field at the helium surface as
well as the nonuniformity of the microwave field.7,23

As expected, for low radiation power the quadrature
component of the absorption signal is zero. However, at higher
powers hysteresis occurs within each modulation cycle itself.
This gives a distinctive quadrature component in the modulated
output. A theory of this effect is discussed in Sec. V C. The
effective line shape which is obtained from the integrated
modulation signal then has a quadrature component and an
offset in both components. Note that the quadrature component
itself is not hysteretic; it is the same sweeping the voltage up
or down. However, this component gives a sensitive indication
of local hysteresis in each modulation cycle. The features of
the integrated line shape become more prominent with the
increasing power. For lower T , the quadrature component is
seen for lower power levels.

V. DISCUSSION

A. The many-electron frequency shift

The resonance condition for exciting an electron from the
ground to the first excited level of motion normal to the
helium surface is determined by the many-electron frequency
shift, ωF − ω21 = �ω21 with �ω21(Te) given by Eq. (12). The
position of the resonance depends on the electron temperature
Te. In turn, Te depends on the absorbed power and for fixed
incident power is expected to be maximal at resonance. In
the parameter ranges used in our experiment σ−1

xx varies
monotonically with Te. Therefore, we assume that the maxima
of the resistivity curves plotted in Fig. 3 correspond to exact
resonance. Then, for each power level, the frequency shift
�ω21 can be found from the shift of the maximum of the
corresponding curve with respect to the resonant absorption
curve measured at very low power using the InSb bolometer.
For this curve one can assume Te = T , and then in Eq. (12)
for �ω21 one can set ραα = δα,1. Generally, the parameters zαβ

in Eq. (12) depend on the pressing field E⊥ and thus on VB;
however, this dependence is smooth, and in the narrow range
of VB that we studied it could be disregarded.

To find the shift in frequency units, the frequency of the
microwave source was changed by a known amount and the
corresponding shift in VB was recorded. Such measurements
were done at low power so that the many-electron shift
remained constant. This procedure allowed us to establish the
relationship between ω21 and VB. The conversion factor, that is,
the slope of ω21/2π vs VB, was found to be 2.5 ± 0.1 GHz/V.

In Fig. 8 we plot the many-electron frequency shift and
the electron temperature determined for the maximum of each
curve in Fig. 3. We remind the reader that Te was obtained
by comparing the measured σ−1

xx with its theoretical value
for given ns and T . The frequency shift is counted off from
its value for Te = T . It monotonically increases with Te and
reaches the value of about 1 GHz for the highest-power curve
in Fig. 3. For comparison, we also show in Fig. 8 the frequency
shift calculated from Eq. (12) for ne = 4 × 107 cm−2. In this
calculation we limited the number of the states of out of plane
motion to 20, which was sufficient for the studied range of Te.
At high Te, the shift observed in the experiment is about 20%
larger than our theoretical estimate. This discrepancy might
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FIG. 8. Many-electron frequency shift �ω21 vs electron temper-
ature Te obtained from the data shown in Fig. 3 (squares); �ω21 is
counted off from its value for Te = T = 0.4 K. The solid line shows
the result of calculations using Eq. (12) for ns = 4 × 107 cm−2. The
dashed line shows the calculation that excludes the term proportional
to |z12|2 in Eq. (12).

be attributed to the nonuniformity of the electron density and
the microwave power across the electron layer and also to the
corrections to the approximations used to obtain Eq. (12) and
to evaluate Te.

B. Nonlinear absorption and bistability

The experimental results on the bistability and hysteresis
of nonlinear response discussed in Sec. IV (see Figs. 4–6)
are in qualitative agreement with the theory presented in
Sec. II. The data clearly demonstrate hysteresis: the state
of the system depends on the direction of sweeping VB or,
equivalently, the single-electron transition frequency ω21. The
abrupt jump in �σ−1

xx /σ−1
xx observed in the experiment is due to

switching between different states of the electron system that
coexist in a limited parameter range. Switching occurs once
the corresponding state disappears with the varying parameter.

Sharp jumps in Figs. 4–6 were observed with increasing
ω21 for switching from the states with comparatively small
absorption and low-Te to high-Te states. Such switching is
expected from the theory and can be inferred from Fig. 2. If one
thinks of moving curve a in Fig. 2 to the left, which corresponds
to decreasing ωF − ω21, one can see that the low-Te state will
disappear. For data taken at T = 0.4 K (see Fig. 4), Te jumps
from about 0.4 K to about 3.1 K. For data taken at T = 0.2 K
and with similar electron density (see Fig. 5), the jump is from
about 0.3 K to about 2.6 K.

For the reversed sweeping direction, from higher to lower
ω21, the response displays an abrupt jump only for low electron
densities (see Fig. 6). For higher densities a sharp switching
to the small-absorption state was not observed; instead the
response smoothly varied with the parameters in the range
of hysteresis. This indicates that the dynamics of the system
is more complicated than the model of Sec. II suggests. In
particular, the spatial inhomogeneity of the electron density
and the microwave field should play a role.

The inhomogeneity would favor a sharper upward jump of
the absorption. One can think that, with the increasing VB,
there is formed a “critical nucleus” of high absorption and
high Te, which then quickly expands throughout the system.

On the other hand, with the decreasing VB, the areas that exist
only in the low Te state gradually increase in size. Regrettably,
these processes are hard to characterize quantitatively without
a detailed picture of the radiation power distribution. Another
indication of a more complicated nature of the system is the
broad peak of �σ−1

xx /σ−1
xx vs VB in Figs. 5 and 6, which the

model of Sec. II does not explain. We note that the narrowing
of the hysteresis loop for lower density in Fig. 6 compared to
Fig. 5 can be understood by noticing that �ω21 scales with the
electron density as n

3/2
s for the same Te. This gives a factor of

12 difference between the values of �ω21 for the densities in
Figs. 5 and 6.

C. Absorption signal for modulation across the hysteresis loop

The theory of Sec. II also explains the complicated behavior
of the microwave power absorption described in Sec. IV B,
see Fig. 7. This type of behavior was also reported by
Glasson et al. for SEs on liquid 4He and was attributed
to hysteresis of microwave absorption.23 In the absorption
experiment, the transition frequency ω21(t) is swept up and
down with a modulation period T0. Within a modulation
period, the absorption for increasing and decreasing ω21(t)
can be different. This happens if the modulation amplitude
is large enough, so that ω21(t) goes across the whole region
where the two stable states of the electron system coexist, that
is, across the hysteresis region.

We now show that hysteresis leads to the behavior seen
in Fig. 7. Suppose the frequency is modulated sinusoidally,
ω21(t) − ω̄21 = A cos(ωmt), where the overline means period
average. In the experiment, ω̄21 is determined by the value
of the potential V̄B about which the modulation is performed,
ω̄21 ≡ ω̄21(V̄B). For the chosen modulation phase, ω21(t) is
swept down during the first half of the modulation period
π/ωm and up during the second half.

If ω21(t) goes across the hysteresis region, the absorbed mi-
crowave power S[ω21(t)] takes on different values, S−[ω21(t)]
and S+[ω21(t)] on the down and up sweeps, respectively; note
that functions S± have discontinuities where the absorption
switches between the high- and low-absorption branches,
which we denote by S>(ω21) and S<(ω21), respectively. Where
ω21(t) goes across the hysteresis region, function S− first
evolves along the branch S> and then switches to S<, whereas
function S+ evolves along S< and then switches to S>.

The in-phase and quadrature components of the absorbed
power detected with a lock-in amplifier, I ≡ I (V̄B) and Q ≡
Q(V̄B), are

I = ωm

π

∫ π/ωm

0
cos(ωmt){S−[ω21(t)] + S+[ω21(t)]}dt,

(23)

Q = ωm

π

∫ π/ωm

0
sin(ωmt){S+[ω21(t)] − S−[ω21(t)]}dt.

From Eq. (23), where the modulation cycle goes across the
hysteresis loop the signal has a nonzero quadrature component,

Q = 1

πA

∫ A

−A

[S+(ω̄21 + x) − S−(ω̄21 + x)]dx. (24)
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The value of Q does not depend on what part of the modulation
cycle is covered beyond the hysteresis region, as outside this
region S+ = S−.

We now explain the behavior of the experimentally mea-
sured parameters I and Q in Fig. 7, where, as ω̄12 is increased,
it goes through the hysteresis region in such a way that
the system switches from the lower- to a higher-absorption
branch. We start with the quadrature component Q. Let us
assume that hysteresis occurs in the region ωL < ω21 < ωH .
If the modulation amplitude A < (ωH − ωL)/2, then as the
voltage V̄B is swept up, the absorption will instantaneously
switch from the low to the high branch. In this case the
quadrature component Q = 0. However, if A > (ωH − ωL)/2,
the hysteresis loop will occur in each modulation cycle, in the
appropriate range of ω̄21(V̄B). Then

Q ≡ Q(V̄B)

= (πA)−1
∫ ωH

ωL

dx[S<(x) − S>(x)]

× [θ (ω̄21 − ωH + A) − θ (ω̄21 − ωL − A)], (25)

where θ (x) is the Heaviside step function and ω̄21 ≡ ω̄21(V̄B);
we used that S+(ω) = S<(ω) and S−(ω) = S>(ω) for ωL <

ω < ωH .
From Eq. (25), Q(V̄B) remains constant for ωH − A <

ω̄21 < ωL + A. This constant is negative and is equal to
−S�/πA, where S� is the area of the hysteresis loop on
the plane (ω21,S). Respectively, the integrated quadrature
Q(V̄B) linearly decreases with increasing V̄B in this range and
becomes constant once ω̄21(V̄B) reaches ωL + A, in agreement
with Fig. 7. This constant, which is the offset of the integrated
quadrature �Q on the high-VB side, is given by

�Q = −(2CV /π )S�[1 − (ωH − ωL)/2A], (26)

where CV = (dω21/dVB)−1 is the reciprocal slope of transition
frequency vs voltage.

The offset of the integrated quadrature component is a
clear indication of hysteresis in the system, which thus can
be revealed by studying the response for a finite modulation
amplitude. The increase of the slope of the curves in Fig. 7
with increasing power corresponds to the increase of the area
of the hysteresis loop S�.

We now consider the in-phase component. If function S(ω)
were single-valued and smooth, S(ω) = S−(ω) = S+(ω), in
the limit of small modulation amplitude A → 0 we would
have I (VB) ≈ A∂ωS, which gives I(VB) ≈ ACV S[ω21(VB)].
Then I(VB) goes to zero on the both sides of the absorption
peak.

The behavior of I becomes different in the presence of
the hysteresis loop. We assume that the direction of sweeping
VB is such that we move along the low-absorption branch
and jump to the high-absorption branch; that is, in our
system, we increase VB. In the limit A → 0 (in particular,
A � ωH − ωL), we have I(VB) ≈ ACV S<[ω21(VB)] on the
low-absorption branch S<(ω21), that is, for ω21 < ωH . After
the jump to the high-absorption branch S>(ω21) we have, as
before, I (VB) ≈ A[∂ωS>]ω21 . Then, for ω21 > ωH , I(VB) ≈
ACV {S>[ω21(VB)] − �S}, where �S = S>(ωH ) − S<(ωH −
0) is the height of the jump of S at ωH . This shows
that, as VB will have gone over the resonant absorption

peak, where S>[ω21(VB)] → 0, I will become negative.
Hence, a discontinuous jump, as seen in a direct measure-
ment of the microwave absorption or the conductivity in
Figs. 4–6, becomes an offset in the integrated line shape using
a modulation measurement as in Fig. 7.

The offset �I on the high-VB side is given by the height of
the jump of the absorption coefficient, �I = −ACV �S. Such
offset is a characteristic feature of the hysteresis. It sensitively
depends on the interrelation between the modulation amplitude
and the width of the hysteresis loop.23

We now discuss the case where the modulation range
2A exceeds the width of the hysteresis region and assume
that this region is narrow. To the leading order in ωH − ωL

and in A, for ωL + A > ω̄21 > ωH − A we have I (V̄B) ≈
π−1�S[sin ωmtL + sin ωmtH ], where the values of tL,H are
given by equations ω̄21 + A cos ωmtL,H = ωL,H with 0 <

ωmtL,H < π . This order of magnitude estimate is obtained by
disregarding the change of S>,S< within the hysteresis loop.

The positive value of I reduces the negative offset of I.
Integrating the above expression for I (V̄B) over V̄B in the
range where ωL + A > ω̄21(V̄B) > ωH − A, we obtain for the
offset

�I ≈ π−1ACV �S[ℵ(1 − ℵ2)1/2 − arccos ℵ],
(27)

ℵ = 1 − A−1(ωH − ωL).

For a narrow hysteresis loop, (ωH − ωL)/A � 1, the offset is
small, it scales as [(ωH − ωL)/A]3/2. In the central part of the
region 0 < ωH − ωL < 2A the offset weakly depends on A

and is almost linear in ωH − ωL. As ωH − ωL approaches 2A

the offset smoothly approaches the small-A value −ACV �S,
which applies to the leading order in A for ωH − ωL > 2A.
Both theoretically and experimentally, the overall negative
offset increases with increasing microwave power, as both
the height of the absorption jump �S and the width of the
hysteresis loop increase.

VI. CONCLUSIONS

This paper describes the theory and the experimental
observation of the long-sought intrinsic optical bistability
and hysteresis in a quasi-2D electron system. The effect is
a result of strong electron correlations and the hierarchy of
the relaxation times, where the electron-electron momentum
and energy exchange is the fastest process, followed by a
much slower momentum relaxation due to scattering by the
random short-range potential of ripplons or helium vapor
atoms, followed by still much slower energy relaxation due
to electron energy exchange with the environment. As a result
of this hierarchy, a moderately strong resonant excitation of the
transitions |1〉 → |2〉 between the lowest subbands of motion
normal to the surface leads to redistribution of the electrons
over the subbands. This causes absorption bleaching due to
depletion of the lowest electron subband. It occurs for much
smaller power than that required for absorption saturation.

Because of the electron-electron interaction, the redistribu-
tion of the electrons over the subbands leads to a change of
the frequency ω21 of the |1〉 → |2〉 transition. This causes
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bistability of the irradiated system. For a given radiation
frequency ωF the frequency ω21 can be “tuned” close to
ωF as a result of relatively strong electron population of
excited subbands. Then absorption is indeed strong and the
excited subband population is self-consistently significant.
Alternatively, the resonance can be not that good, with the
electron absorption not that strong, the electrons mostly
staying in the lowest subband, and ω21 self-consistently
detuned from ωF . The developed microscopic theory of
the many-electron system provides a full account of this
behavior.

Experimentally, for electrons on 3He we observed hystere-
sis of microwave absorption. The observation was made by
measuring the magnetoconductivity in the Corbino geometry.
The data refer to the regime of strong electron correlations.
Different temperatures were studied, which made it possible
to investigate the scattering primarily by the helium vapor
atoms and by ripplons. The data for different radiation power
show the increase of the hysteresis loop with the power. A
quantitative agreement is obtained between the data and the

theory of the electron-electron interaction induced change of
ω21 as function of the electron temperature.

We have also observed absorption hysteresis by directly
measuring the transmitted microwave power near the resonant
frequency ω21, which is modulated by the applied holding
field. The hysteresis is manifested as a characteristic offset
of the integrated line shape in the in-phase component of the
modulated response and by a distinctive quadrature component
at finite modulation amplitude.

The results of this paper provide insight into the role of
the electron-electron interaction in strongly correlated systems
and present types of resonant nonlinear phenomena in quasi-
2D electron systems.
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