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Valley filtering in graphene with a Dirac gap
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We explore valley filtering in a two-terminal graphene system with a Dirac gap. For such a system with a
constant Dirac gap, it is found that the presence of a valley-polarized output current requires both a magnetic
barrier and an electric potential. For the magnetic-electric barrier generated by a single ferromagnetic stripe, a
remarkable valley polarization can be achieved and is tunable by gate voltages. The generated valley polarization
can be detected from the Hall measurement in the outgoing region [Phys. Rev. Lett. 99, 236809 (2007)].
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I. INTRODUCTION

Since its discovery,1 graphene, a two-dimensional hon-
eycomb lattice made of carbon atoms, has attracted a great
interest2,3 as a promising candidate material for the post-
silicon nanoelectronics. Most fascinating electronic properties
of graphene arise from its Dirac-like, massless excitations
around the K and K ′ valleys of the Brillouin zone. Klein
tunneling is a typical consequence of this peculiar band
structure. It allows carriers to transmit any electrostatic barrier
at normal incidence and thus may limit the performance of
graphene-based conventional electronic devices like diodes
and transistors. A natural approach to suppress Klein tunneling
is to open a Dirac gap, i.e, a bulk gap near the Dirac points.
The Dirac gap has been created by means of the sublattice-
dependent graphene-substrate interaction.4–9 Its size depends
on the experimental details and ranges from a few to hundreds
of meV. A spatially-varying Dirac gap has been reported in
Ref. 6, which may be utilized to form a graphene quantum
dot10 without the application of external electric and magnetic
fields.

The twofold valley degeneracy in graphene’s band structure
suggests another routine of carbon-based electronics, dubbed
valleytronics.11–18 The independent valley states are related
by the time-reversal symmetry. Due to the large momentum
separation of two valleys, valley information is immune to the
disturbance of slowly varying potentials and magnetic fields.
It could be preserved over a long distance.19 A prerequisite
for valleytronic applications is to create and detect valley-
polarized currents. The seminal proposal of valley filters11

relies on perfect zigzag nanoribbons, which would harden
its experimental realization. Several valley filtering schemes
based on bulk graphene have been put forward, utilizing valley-
dependent trigonal warping of the carrier dispersion,13,14

strain-induced pseudomagnetic fields,15–17 and line defects.18

For these proposed devices, the detection of the generated
valley polarization requires additional elaborate setup.

In this work, we investigate valley-resolved transport
properties of a graphene membrane with a Dirac gap. We find
that under the modulation of proper magnetic-electric barriers,
electrons from K and K ′ valley exhibit distinct transmission
features, resulting in a remarkable valley polarization of output

current. It has been shown theoretically that in graphene with
broken inversion symmetry, the injection of valley-polarized
current will generate a transverse voltage,20 in a similar way
as inverse spin-Hall effect.21 Therefore, the valley polarization
produced by our proposed device can be detected directly from
the Hall measurement in the outgoing region [see Fig. 1(a)].

II. MODEL AND FORMALISM

We consider a graphene membrane in the (x, y) plane
covered by a thin dielectric layer, as illustrated in Fig. 1(a).
By means of substrate engineering, a Dirac gap 2� is created
and may be position dependent,4–9 i.e., � = �(r). The Dirac
electrons therein are subject to the modulations of a local
perpendicular magnetic field B and electrostatic potential U .
The magnetic field is assumed to vary only along the x axis,
which can be generated by depositing ferromagnetic metal
(FM) or superconducting (S) materials on top of the dielectric
layer, as is the way in semiconductor heterostructures.22,23 The
magnetic vector potential will be taken in the Landau gauge,
A = Ay(x)ey with dAy/dx = Bz(x). The scalar potential U =
U (x) is induced by the FM or S gate(s) and perhaps additional
normal metal gates. In the incident and outgoing regions
(α = i,o), all potentials are uniform: � = �α , U = Uα , and
Ay = Ayα .

The low-energy effective Hamiltonian reads2

H =
∑

τ

∫
dr�+

τ [vF σ · (p + eA) + τ�σz + Uσ0]�τ , (1)

where τ = ±1 labels the K and K ′ valleys, the valley-
resolved spinor �+ = (�A,�B)T and �− = (−� ′

B ,� ′
A)T

contain electron fields in two carbon sublattices A and B,
vF is the Fermi velocity, σ = (σx , σy) together with σz are
Pauli matrices, σ0 is a unit matrix, and p = −ih̄(∂x,∂y) is the
in-plane momentum of electrons. For convenience, hereafter
all quantities will be expressed in dimensionless units by
means of the length scale lB = [h̄/(eB0)]1/2 and energy scale
E0 = h̄vF / lB . For a typical magnetic field B0 = 0.1 T, the
reduced units are lB = 81.1 nm and E0 = 7.0 meV.

The translational invariance along the y direction enables
us to write the wave functions as �τ (r) = exp(ikyy)ψτ (x),
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FIG. 1. (Color online) (a) Schematic of the proposed graphene
valley filter. The motion of electrons therein is modulated by
both the substrate-induced sublattice potential and the magnetic-
electric barrier provided by a single FM gate. The generated valley
polarization can be detected by the inverse valley-Hall effect. (b)
and (c) Profiles of the magnetic vector potential and scalar potential,
which are generated by the FM gate (black thick lines) or for a
simplified square magnetic-electric barrier (thin solid lines in red).

where ky is the conserved transverse wave vector, and ψτ =
(ψτ+,ψτ−)T obeys Hτ (ky)ψτ = Eψτ with

Hτ (ky) = −i∂xσx + (ky + Ay)σy + τ�σz + Uσ0. (2)

For an electron in τ valley with energy E and transverse wave
vector ky , we denote the transmission probability as Tτ (E,ky).
The scattering matrix method24 is adopted to calculate Tτ . For
a given Fermi energy EF , the valley-related zero-temperature
conductance is calculated from

Gτ = G0

∫ ky+

ky−
Tτ (EF ,ky)dky , (3)

where G0 = e2Ly/(πh) is the conductance unit with Ly

the dimensionless sample size along the y direction, and

ky± = ±
√

(EF − Ui)2 − �2
i − Ayi . Once Gτ is obtained, it

is straightforward to calculate the total conductance G =
G+ + G− and valley polarization P = (G+ − G−)/G.

III. NECESSARY CONDITIONS FOR VALLEY FILTERING

We begin with the symmetry analysis25 on the Hamiltonian
(2). When the magnetic barrier is absent or replaced by
the strain-induced pseudomagnetic field,3 this Hamiltonian
satisfies

σxHτ (ky)σ−1
x = H−τ (−ky), (4)

which indicates Tτ (E,ky) = T−τ (E, − ky). This together with
Eq. (3) results in a vanishing valley polarization P . Thus the
presence of a magnetic barrier is necessary to obtain a valley-
polarized current from the considered system.

For a constant Dirac gap, a finite valley polarization requires
not only magnetic barriers but also electric barriers. This can
be readily seen from the equation that the two components of
the spinor ψτ satisfy:

[
∂2
x + F±

0 + F±
τ (±ky ± Ay − ∂x)

]
ψτ± = 0. (5)

Here

F±
τ = (E − U ± τ�)−1(±τ∂x� − ∂xU ), (6)

F±
0 = (E − U )2 − �2 − (ky + Ay)2 ∓ ∂xAy. (7)

In the case that ∂x� = 0 and ∂xU = 0, Fτ vanishes and then
no valley polarization can be created.

For the potential profiles with certain experimentally real-
izable symmetries, the valley polarization may also disappear.
We consider two typical situations in which the vector potential
can be chosen to be either symmetric or antisymmetric with
respect to a central line x = xc, i.e., RxAy = ±Ay , while
the Dirac gap and the electric potential have a symmetrical
distribution (Rx� = � and RxU = U ). Here Rx is the
reflection operation x → 2xc − x. For the case that the vector
potential is symmetric, it can be checked that

(σyRx)Hτ (ky)(σyRx)−1 = H−τ (ky). (8)

This observation leads to Tτ (E,ky) = T−τ (E,ky) and then P =
0. For the case of an antisymmetric Ay , the operation σzRx

transforms Hτ (ky) into Hτ (−ky), which implies Tτ (E,ky) =
Tτ (E, − ky). We will show that P can be finite in this case.

IV. NUMERICAL RESULTS AND DISCUSSIONS

Firstly, we derive an analytical solution of Eq. (2) for a
square magnetic-electric barrier26,27 within the stripe 0 < x <

L, i.e.,

B(r) = Bs
(x)
(L − x), (9)

U (r) = Us
(x)
(L − x). (10)

Here 
(x) is the Heaviside step function, and Bs �= 0 and Us

are constant. The value of the Dirac gap in the barrier region
and the lead region is denoted as 2�b and 2�, respectively.
The longitudinal wave vector of the incident/outgoing wave

reads kxi/o = sgn(E + τ�)
√

E2 − �2 − k2
yi/o with kyi/o =

ky ∓ BsL/2. It is useful to introduce the notations

γτ =
√

2Bs(E + τ�)/(E + τ�b − Us), (11)

ν = [
(E − Us)

2 − �2
b

]
/(2Bs), (12)

ul±
p = Dp(±ky

√
2/Bs), (13)

ur±
p = Dp[±

√
2Bs(L + ky/Bs)], (14)
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FIG. 2. (Color online) T+ and T− as a function of the transverse
wave vector for electrons traversing a square magnetic-electric barrier
under US = ±15.5 and BS = 0, 1, 2, and 3. The incident energy is
fixed at E = 7. The barrier width is L = 2.

where Dp(x) is the parabolic cylinder function of order p. The
transmission probability Tτ is given by

Tτ = 4kxikxo

(
ur+

ν−1u
r−
ν + ur−

ν−1u
r+
ν

)2

∣∣k−
i Aν

ν−1 + k+
o Aν−1

ν − iγτAν
ν + i

γτ
k−
i k+

o Aν−1
ν−1

∣∣2 , (15)

where A
q
p = ul−

p ur+
q − (−1)p−qul+

p ur−
q , k−

i = kxi − ikyi , and
k+
o = kxo + ikyo. The valley dependence of the transmission in

Eq. (15) comes only from the parameter γτ defined in Eq. (11).
Obviously, T+ = T− when both Us = 0 and �b = � are met,
in agreement with our previous analysis. Note that γ+ �= γ− in
the case of U (r) = 0, but �b �= �. This observation indicates
that a combination of a position-dependent Dirac gap and a
local magnetic field can generate a finite valley polarization
without the need of an electric barrier [see also Eq. (6)]. Details
on this respect will be reported elsewhere.

Without specification, we take a constant Dirac gap with a
moderate size 2� = 8.4–9 For electrons with a typical energy
E = 7 traversing the square magnetic-electric barrier, the
transmission probability is plotted in Fig. 2 as a function
of ky . The transmission shows a mirror symmetry about
ky = 0 and becomes valley independent at Bs = 0 [see
Fig. 2(a)], as required by the symmetry of the considered
structure. For the interband tunneling (Us > 2�), remarkable
Fabry-Pérot resonances appear due to interference of the
counterpropagating channels in the barrier region. For a small
Bs �= 0 [Fig. 2(b)], the valley degeneracy of the transmission
is lifted (γ+ �= γ−). Thus one can observe a valley splitting of
the resonances and a valley-dependent resonant enhancement
and suppression. With the increase of the magnetic barrier
height [Figs. 2(b)–2(d)], some resonant peaks move toward the
large |ky | region and disappear eventually, while the difference
between T+ and T− can be enlarged. The interband tunneling
leads to a more remarkable valley contrast of the transmission
than the intraband tunneling (Us < 0). This can be understood
from the dependence of γ± on the height of the magnetic barrier
and electric barrier. Since the conductance Gτ in Eq. (3) is
proportional to the integral of Tτ over ky , the valley dependence
of the transmission shown in Figs. 2(b)–2(d) indicates a finite
valley polarization.
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FIG. 3. (Color online) (a) Conductance and (b) valley polarization
as a function of the Fermi energy for the system depicted in Fig. 1(a).
UF = 15.

The rectangular magnetic barrier may be viewed as a
simplified magnetic field profile formed by means of the
superconducting Meisser effect.23,26 In realistic cases, the
magnetic barrier and electric potential should vary smoothly
on the scale of the graphene lattice constant. For definiteness,
we turn our attention to the magnetic-electric barrier generated
by a single FM gate. The latter has a rectangular cross section
[see Fig. 1(a)] and a magnetization M along the z axis.22

Its width, height, magnetization strength, and distance to the
graphene plane are fixed respectively at LF = 2, h = 0.6,
μ0M = 1.8 T (for cobalt material), and z0 = 0.3. The electric
potential induced by the FM gate is modeled as UF a(x), where

a(x) = {erf(2x/b − 2) + erf[2(LF − x)/b − 2]}/2, (16)

erf(x) is the error function, the parameter b (0 < b < LF /4)
determines the width of the crossover region, and UF is
the amplitude. The smooth profiles of the vector potential26

and scalar potential generated by the FM gate are shown in
Figs. 1(b) and 1(c).
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FIG. 5. (Color online) (a) Valley-dependent conductance and (b)
valley polarization as a function of the height of the electric barrier
for the system depicted in Fig. 1(a). EF = 7.

As shown in Fig. 3, the magnetic-electric barrier generated
by the FM gate alone is sufficient to obtain a remarkable valley
polarization P under a finite conductance. In this figure, a large
value of UF = 15 > 2� is taken so that the interband tunneling
happens. The oscillation of the conductance with the Fermi
energy EF comes from the valley-dependent resonant tun-
neling. Since the adjacent conductance peaks are contributed
dominantly by different valleys, the polarity of P alternates
with EF . Note that although our calculations are made at zero
temperature, the valley polarization considered here should
survive at a finite temperature TK < 0.1E0/kB ∼ 8 K. It can
be seen that the parameter b of the electric barrier has a drastic
effect on both the conductance and the valley polarization.
With the increase of b, in general the conductance is lowered
while the valley polarization is enhanced. This indicates that
a smooth electric potential would be more helpful for valley
filtering.

These features can be understood as follows. For a
given incident energy E and all ky values, there is no
propagating mode in the classically forbidden region [x−,x+]
and [LF − x+,LF − x−]. Here x± ∈ [0,2b] satisfies a(x±) =
(E ± �)/UF . As b increases, the width of such two barrierlike
regions becomes larger and larger. Accordingly, the conduc-
tance decreases. On the other hand, the valley polarization
is determined by the valley-dependent effective potential Fτ

[Eq. (6)], which exists in a wider region for a larger b. Thus the
increase of b can enhance the valley polarization. The variation
of the conductance peaks with b can be explained in a similar
way. To get a better feeling on the b dependence of the resonant
tunneling, we plot in Fig. 4 the valley-dependent transmission
for a typical incident energy E = 7 and several b values.

The valley polarization is also tunable by gate voltages, as
shown in Fig. 5. For UF < EF − � (intraband tunneling), the
valley polarization is remarkable only when the wave-vector
filtering of the magnetic barrier26,27 plays a major role in the
transport process. For UF > EF + �, one can observe a series
of valley-splitting conductance peaks with large peak-valley
ratios. The distance between the nearest G+ peak and G−
peak is determined by the magnetic barrier. Note that the two
classically forbidden regions become thinner as UF increases
from EF + �. Thus the valley polarization shows a decaying
oscillation with UF .

Finally, we give some remarks. In Ref. 28 the bound states
of a circular quantum dot based on gapped graphene has been
studied, which shows a valley splitting under a homogeneous
perpendicular magnetic field. In our model with an electric
potential well, valley-dependent bound states may appear as
well for electrons in the conduction band. However, they are
always below the incident energy of electrons from the con-
duction band. Accordingly, the valley contrast is low, as shown
in Figs. 2 and 5. To make those valley-splitting bound states
active for valley filtering, we may design more complicated
structures such as a combination of an electrostatic double
barrier and a magnetic barrier in gapped graphene. In the
case of interband tunneling, the valley-selective transmission
resonances (in Figs. 2–5) are related to the valley-splitting
quasibound states of electrons in the valence band. In realistic
graphene ribbons, edge orientation and roughness together
with short range disorder will result in valley mixing and then
a decrease in the degree of valley polarization. The discussion
on this unwanted effect is beyond the scope of our model. We
believe that the valley polarization shown in the present work
should be not degraded substantially under the following two
sample conditions: (1) the ribbon width Ly is large enough so
that the dominant transport is through the bulk states; (2) the
sample size is within the intervalley mean-free path.

V. CONCLUSIONS

We have demonstrated theoretically the valley filtering
effect in a two-terminal graphene system with a Dirac gap. The
necessary condition to construct such a valley filter is given.
We find that a bulk graphene system with a constant Dirac gap,
when modulated by a single ferromagnetic stripe on top, can
output a remarkable valley polarization. The generated valley
polarization is tunable by gate voltages, and can be detected
directly from the Hall measurement in the outgoing region. Our
findings may shed some light on the realization of graphene
valleytronics.
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