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So far there has been no reliable method to calculate the Casimir force at separations comparable to the
root-mean square of the height fluctuations of the surfaces. Statistical analysis of rough gold samples has
revealed the presence of peaks considerably higher than the root-mean-square roughness. These peaks redefine
the minimum separation distance between the bodies and can be described by extreme value statistics. Here we
show that the contribution of the high peaks to the Casimir force can be calculated with the proximity force
approximation, while the contribution of asperities with normal height can be evaluated perturbatively. This
method provides a reliable estimate of the Casimir force at short distances, and it solves the significant, so far
unexplained discrepancy between measurements of the Casimir force between rough surfaces and the results
of perturbation theory. Furthermore, we illustrate the importance of our results in a technologically relevant
situation.
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I. INTRODUCTION

The Casimir force is an electromagnetic dispersion force
of quantum mechanical origin between neutral bodies without
permanent dipoles. It was introduced as the effect of retar-
dation on van der Waals forces.1,2 Later, it was generalized
to arbitrary dielectric plates at finite temperatures, which
revealed how this force depends on the frequency depen-
dent permittivities ε(ω) of the interacting materials.3,4 Early
measurements5,6 hinted at the existence of the Casimir force,
whereas the first high accuracy measurements were performed
only decades later with the use of a torsion pendulum.7 Other
techniques, such as atomic force microscopy (AFM) and
micro-oscillator devices were employed later in a plate-sphere
geometry8,9(Fig. 1). Other configurations were also investi-
gated, for example, parallel plates10 and crossed cylinders.11

Nowadays, electromechanical engineering is being con-
ducted at the micron scale, and has regenerated interest in the
Casimir force because of its significance in the distance range
of nanometers up to microns. Microelectromechanical systems
(MEMS) have the right size for the Casimir force to play a role:
their surface areas are large enough, but their gaps are small
enough for the force to draw components together and possibly
lock them together.12 This effect, known as stiction, in addition
to capillary adhesion due to the water layer present on almost
all surfaces, is a common cause of malfunction in MEMS
devices.13–15 Moreover, the development of increasingly com-
plex MEMS will attract more attention to scaling issues as
this technology evolves toward nanoelectromechanical (NEM)
systems. The issue of Casimir interactions between surfaces in
close proximity will inevitably need to be faced, with particular
attention paid to stiction due to Casimir and other surface
forces. Besides stiction and associated pull-in instabilities in
MEM actuation dynamics, the Casimir force can be utilized16

to control actuation dynamics in smart ways, leading to
development of ultrasensitive force and torque sensors that

can even levitate objects above surfaces without disturbing
electromagnetic interactions and without friction to translation
or rotation.17 Finally, from a more fundamental viewpoint,
the Casimir force plays an important role in the search for
hypothetical new forces.18

There are three effects that must be accounted for when
calculating the Casimir force between real interacting surfaces:
The influence of optical properties of the materials, surface
roughness, and temperature contributions. Temperature has
been shown to have a significant effect only at separations
larger than 1 μm, because at shorter separations the thermal
modes do not fit between the surfaces at room temperature.19

However, at separations less than 1 μm, especially in the range
below 100 nm, the influence of optical properties and surface
roughness should be carefully taken into consideration.

Scattering on rough surfaces is a stochastic process: in
general there is insufficient information to derive an exact
roughness correction to the Casimir force. A possible way to
cope with this is a perturbative approach:20–22 it is assumed that
a rough surface is a small deviation from a smooth surface.
Moreover, the slopes of the surface profiles must be small.
Such assumptions provide enough constraints to come to an
analytical expression for the Casimir force between rough
bodies. This approximation is valid at separations d much
larger than the root-mean-square (rms) roughness w: d � w.
For d ∼ w there is no analytical solution to the problem. This
is why there is no (analytical) method beyond perturbation
theory. Another method to estimate dispersion forces is the so
called proximity force approximation (PFA).23 When applied
to rough surfaces24 it assumes that the force between rough
surfaces can be presented as the sum of forces between
opposing flat surfaces. This method is valid in the case of small
separations in comparison to the correlation length ξ : ξ � d,
because it assumes the contribution of different patches to be
independent of each other.
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FIG. 1. Sketch of the plate-sphere setup considered here (not to
scale). R denotes the radius of the sphere and d is the distance of
closest approach between the sphere and the plate. In this case R � d

so that the PFA can be used to neglect the curvature of the sphere.

Statistical analysis of rough gold samples has demonstrated
the presence of peaks considerably higher than w.25 In this
paper we will show that the contribution of these peaks can be
calculated with the PFA, and that the contribution of the height
values closer to the average can be evaluated perturbatively.
This distinction gives a reliable estimate of the Casimir force
at short separations. It was introduced in a recent letter,26

where it was shown to reproduce experimental results27 for
one gold sample. In the present paper, the method will be
discussed in more detail, and results for multiple gold samples
will be shown. Moreover, this paper includes an estimate of
the influence of the shapes of the peaks, and a prediction of
the Casimir force in a technologically relevant situation.

The paper is organized as follows: after the introduction
it will provide the starting points of this approach: Lifshitz
theory and the statistics of rough surfaces. This is followed by
an outline of the model with derivations of the main formulas.
Section IV will specifically address the role of the shape
of the peaks. In Sec. V we will present a prediction for a
relatively smooth sample. In such a case, force measurements
are hindered by jump to contact, but force predictions are
useful for applications in direct bonding technology.28 Just
before the final section with the conclusions, we will evaluate
the results and compare them to experimental data from
Ref. 27.

II. STARTING POINTS AND ASSUMPTIONS FOR FORCE
CALCULATIONS

A. Lifshitz theory

Since this paper focuses on the calculation of the Casimir
force at separations below 100 nm, where surface roughness
and optical properties play important roles, its temperature
dependence can be ignored.19 The starting point of our
calculations is the macroscopic Casimir-Lifshitz energy per
unit area between parallel dielectric plates separated by a
vacuum gap of width d in the low temperature limit where
kbT � h̄c/2d:4

E(d) = − h̄

16π2d2

∑
μ=s,p

∫ ∞

0
dζ

∫ ∞

ζ/ζc

x2dx ln(1 − Rμe−x),

(1)

where x = 2k0d, k0 =
√

ζ 2/c2 + q2, q denotes the radial
wave number, ζ is the imaginary part of the frequency, and
ζc ≡ c/2d is the characteristic frequency. Finally, Rμ = r1μr2μ
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FIG. 2. (Color online) Ellipsometry data of a gold sample. The
main panel shows the imaginary part of the dielectric function.
The (blue) circles represent ellipsometry measurements, and the
continuous (orange) line is a smoothed fit, which was used in the
calculations. The inset is a plot of the permittivity at imaginary
frequencies ε(iζ ) as obtained from the Kramers-Kronig relations.
The latter function enters the Lifshitz formula for the Casimir force
calculations between smooth surfaces.

denotes the product of the Fresnel reflection coefficients for
plate 1 (r1μ) and plate 2 (r2μ) given by

rjs = k0 − kj

k0 + kj

, rjp = εj (iζ )k0 − kj

εj (iζ )k0 + kj

, (2)

where the subscript μ = s,p denotes the polarization and
the index j = 1,2 labels the bodies. The permittivities at
imaginary frequencies can be obtained from the ones at real
frequencies via the Kramers-Kronig relations:

ε(iζ ) = 1 + 2

π

∫ ∞

0
dω

ωIm[ε(ω)]

ω2 + ζ 2
. (3)

Calculation of the Casimir force requires knowledge of the
imaginary parts of the permittivities in a broad frequency
range. For this purpose we used ellipsometry data for the
frequency dependent permittivities of Au surfaces in the range
of 0.038 to 9.85 eV (see Fig. 2). We have extrapolated to
frequencies below 0.038 eV with the Drude model:

ε(ω) = 1 − ω2
p

ω(ω + iωτ )
, (4)

where the values of the plasma frequency ωp and the relaxation
parameter ωτ were29 ωp = 7.8 eV and ωτ = 49 meV.

Finally, in order to compare to experimental results, we give
the corresponding expression for the force. Experiments are
commonly performed in a sphere-plate configuration to avoid
problems with the alignment between parallel plates (Fig. 1).
If the radius of the sphere R is much larger than the separation
d, the PFA can be used to neglect the effect of the sphere’s
curvature on the Casimir force via

F (d) = 2πRE(d), R � d, (5)

where E(d) is given by Eq. (1). In a plate-plate configuration
this approximation is not necessary and the Lifshitz formula4

provides an explicit expression for the force F (d) = −E′(d)A,
where A is the surface of each plate.
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FIG. 3. (Color online) AFM scans of the samples used in the calculations. An area of 1 μm×1μm is shown in each picture. The parameters
for the actual calculations were: For the sphere [shown in (a)] an area of 8 μm×8 μm was scanned at a resolution of 2048×2048 pixels. For
the 1600 nm sample [shown in (b)] this area was 40 μm×40 μm at a 2944×2944 resolution. The scan size for the 1200 nm sample [(c)]
was 10 μm×10 μm at a 2048×2048 resolution. The area and resolution used for the 800 nm sample [(d)] are, respectively, 40×40 μm2 and
4096×4096 pixels. The color bar indicates the vertical scale in nanometers.

B. Extreme value statistics and contact distance

Assessing the influence of random surface roughness on
the Casimir force requires knowledge of the proper probability
distributions of the height fluctuations of the surfaces. These
were obtained from AFM scans of each film with lateral
resolutions varying from 4 to 10 nm, for areas up to 40 ×
40μm2. (See Fig. 3 for detailed parameters.) This information
enables us to perform a detailed roughness analysis of the
samples. By counting the number of features smaller than
some value z and normalizing this number, the cumulative
probability P (z) to find a feature smaller than z is obtained. It
turns out that this probability approaches 1 very fast at z → ∞
and 0 z → −∞. This is why, for a proper analysis of the AFM
data, it is convenient to write P (z) as

P (z) = 1 − e−φ(z), (6)

where the “phase” φ(z) is a positive, monotonically increasing
function of z, defined as

φ(z) ≡ − ln[1 − P (z)]. (7)

The derivative of P (z),

f (z) ≡ P ′(z) = [1 − P (z)]φ′(z), (8)

is the probability density function. It was established25 that
φ(z) could not be fitted to any known distribution for all z

and that for large |z| a generalized extreme value distribution
is needed. Figure 4 shows the natural logarithm of the phase
φ(z), collected from the AFM images. It is clear that this
function behaves linearly in the asymptotic regimes:

ln φ(z) = A+z + B+ (9)

for large positive z and similarly,

ln φ(z) = A−z + B− (10)

for large negative z. The values of the coefficients A± and B±
are listed in Table I. This linear behavior in the asymptotic
regimes implies that the probability to find a feature larger
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FIG. 4. (Color online) Statistics of the topography of the surfaces. The logarithm of the “phase” is plotted as a function of the height with
respect to the mean plane z = 0. The open circles represent the data from AFM topography scans: (a) is for the 1600 nm thick film and (b) is
the 800 nm thick one. The solid (orange) lines represent linear fits for |z| � 1. This implies that the probability to find a large feature behaves
as a Gumbel distribution. For intermediate values of z the data are fit with polynomials, indicated by the dashed (yellow) curves. The inset is a
semilogarithmic plot of the probability density function f (z). It shows significant deviation from a normal distribution for the 1600 nm sample.
The distribution of the 800 nm sample deviates less from a normal distribution, but it is still clearly asymmetric.
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TABLE I. Values of the relevant parameters for the investigated gold samples. The parameters A± and B± are defined by Eqs. (9) and (10).
The subscripts + and − refer to the positive and negative asymptote, respectively. The other parameters are the rms roughness w of the sample,
the correlation length ξ , the size of the effective interaction area L, the contact distance d0, and the average distance between the high peaks l.

Thickness (nm) A+ (nm−1) B+ A− (nm−1) B− w (nm) ξ (nm) L (nm) d0 (nm) l (nm)

800 0.0333 0.704 0.542 6.34 7.5 30.6 1560 34.5 ± 1.7 238
1200 0.0188 0.888 0.648 8.34 9.0 38 1980 41.0 ± 1.7 256
1600 0.0192 0.885 0.62 7.32 10.1 42.0 2100 50.8 ± 1.3 380

than z behaves as a “double exponential”:

1 − P (z) ∼ exp

[
− exp

(
z − μ

β

)]
, (11)

where β is the scale parameter and μ is the location parameter.
This type of behavior is a characteristic of Gumbel distribu-
tions, which is an example of extreme value statistics.30 We
will see that this strong dependence will have a considerable
impact on the roughness correction to the Casimir force. In this
paper we have analyzed only gold samples and we cannot draw
conclusions for other materials. However, the generality of the
Gumbel distribution allows us to hope that similar behavior
can be found in the roughness statistics of other materials.

The distance upon contact for gold films was discussed in
detail in Ref. 25. The thicknesses of the investigated gold films
are associated with different rms roughnesses due to the kinetic
roughening process. We denote the height fluctuations from
the mean surface level by hj (x,y) for each body (j = 1,2).
The local separation distance is dlocal(x,y) = d − h1(,x,y) −
h2(x,y). The averages over a large surface of each profile is
zero by definition: 〈hj (x,y)〉 = 0. Another assumption is that
the surfaces are statistically independent, that is, the surface
heights are uncorrelated:

〈h1(x1,y1)h2(x2,y2)〉 = 0, (12)

which is a condition for a perturbative treatment.21,22 Conse-
quently, the profiles can be combined so that effectively one
rough body with topography h(x,y) = h1(x,y) + h2(x,y) is
considered, interacting with a flat surface (see Fig. 5). In the
plate-sphere configuration, the contact distance is defined as25

the maximum average separation d for which the local distance

FIG. 5. (Color online) Schematic of a rough surface to clarify the
meaning of the parameters l and d0. Similar to l, l′ represents the
distance between the deep troughs, and d ′

0 represents the depth of
the deepest pit. h(x,y) = h1(x,y) + h2(x,y) is the combined surface
profile, so that effectively only one rough surface is considered.

becomes zero, so that

d0(L) ≡ max
x,y

[h(x,y) − (x2 + y2)/2R], (13)

where L denotes the size of the effective interaction area.
The contact distance is the local maximum within the
horizontal scale L. In a plate-plate geometry R → ∞ and
d0 = max [h(x,y)]. Throughout this paper it is assumed
that the sphere is fixed laterally with respect to the plate
and that it does not rotate during force measurements (in
reality it is rigidly attached to a cantilever). In other words,
we distinguish the experimental uncertainty in d0 from its
statistical uncertainty. Indeed, if the sphere is allowed to move
laterally, the uncertainty in the value of d0, and therefore in the
Casimir force, will be considerably larger.25

In this paper it is assumed that the size of the effective
interaction area between the sphere and the plate L is much
larger than the correlation length L � ξ . This ensures that
one interaction area contains many independent realizations
of a rough surface and hence spatial averages are equivalent to
statistical averages. Our approach requires a large size of the
plate also on the scale of the separation d: the condition L � d

ensures that edge effects can be ignored. These conditions for
L are realistic: L is in the order of a few microns, while d and
ξ are a few tens of nanometers (see Table I).

III. MODEL OUTLINE

A rough surface can be regarded as a large number of
asperities of different heights typically ∼w and lateral sizes
ξ with a few occasional high peaks. Here w is the total
root-mean-square roughness defined as

√
w2

sphere + w2
sample.

The asperities with the heights ∼w can be well described
by a normal distribution. This is clear from the insets in Fig. 4:
the function ln f (z) can be approximated by a parabola nearby
its maximum. However, the tails of the distribution, which
correspond to high peaks or deep troughs, cannot be described
by the normal law. Let us define the parameter d1 in such a
way that asperities with normal heights are smaller than d1,
h < d1, but the high peaks are larger than d1, h > d1. The
value of d1 belongs to the interval w < d1 < d0. Its precise
value is somewhat up to convention but it can be chosen around
d1 ∼ 3w. An additional condition on d1 will be discussed later
in this section.

The number of high peaks with the lateral size ξ and the
height h > d1 on the area L2 can be expressed via the “phase”
φ(z) determined from the roughness topography as

N = L2

ξ 2
e−φ(d1). (14)
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The average distance between these peaks (Fig. 5) is

l = L√
N

= ξeφ(d1)/2. (15)

Similarly we say that the deep troughs are those having depths
larger than d ′

1, h < −d ′
1. The number of these troughs on the

area L2 is

N ′ = L2

ξ 2
φ(−d ′

1) (16)

and the average distance between them is

l′ = L√
N ′ = ξ√

φ(−d1)
. (17)

Consider first the roughness contribution to the Casimir
force in the case of large correlation length ξ � d. In this limit
PFA is a good approximation21 in the sense that each asperity
can be taken into account independently (additively). Then
we can calculate the Casimir force FCas(d) via the standard
definition of the statistically averaged function

FCas(d) =
∫ ∞

−∞
dzf (z)F (d − z). (18)

Here we defined f (z) = 0 outside the interval −d ′
0 < z < d0.

Writing the force as an integral over the entire real axis is
useful to obtain a result in terms of statistical parameters, such
as w. If additionally the distance between bodies is large in
comparison with the roughness d � w, we can expand the
force between flat plates around z = 0 as F (d − z) = F (d) −
F ′(d)z + F ′′(d)z2/2 + · · · and find the roughness correction:

FCas(d) = F (d) + F ′′(d)

2!
w2 + · · · , w � d. (19)

which is the second term in Eq. (19). The error due to
omitted terms can be estimated via the approximate power
law dependence of F (d) on d in Eq. (5).31

Let us separate three different integration intervals in
Eq. (18):

FCas(d) =
∫ −d ′

1

−∞
dzf (z)F (d − z) +

∫ d1

−d ′
1

· · · +
∫ ∞

d1

· · · , (20)

where · · · stands for dzf (z)F (d − z). The first term here
represents the contribution of deep troughs, the second one
is responsible for the contribution of normal peaks, and the
third term is the contribution of high peaks. An important ob-
servation of this work is that the contribution of normal peaks
with the height ∼w can be taken into account perturbatively
even if the bodies are already in contact. It follows from the
fact25 that upon the contact the bodies are still separated by the
distance d0, which increases with the area of nominal contact
and is in the range 3w � d0 � 5w. In this case the Taylor
expansion for F (d − z) in the second term is justified.26

Now let us relax the condition ξ � d. In this case we cannot
consider different asperities as independent. The method
to calculate the roughness correction beyond the PFA was
proposed in the series of papers.21,22 In this approach the
roughness is treated perturbatively. We can apply this method

only to the second term in Eq. (20)∫ d1

−d ′
1

dzf (z)F (d − z) =
∫ ∞

−∞
· · · +

∫ −d ′
1

−∞
· · · +

∫ ∞

d1

· · · , (21)

where we have to understand the function F (d − z) as the
Taylor expansion. According to Refs. 21 and 22 the first term
on the right has to be generalized in the following way:

FPT(d) ≡
∫ ∞

−∞
dzf (z)

[
F (d) − F ′(d)z + F ′′(d)

2!
z2

]

→ F (d) + F ′′(d)

2!

∫
d2k

(2π )2
ρ(kd)σ (k), (22)

where σ (k) = 〈h(k)h(0)〉 is the correlator of the surface profile
in k space. The sensitivity function ρ(kd) is defined as the ratio
between the response functions at arbitrary and at zero wave
number: ρ(k) ≡ G(k)/G(0). It measures the deviation from
the PFA. The proximity force approximation is restored when
small wave numbers kd � 1 are important (large ξ ). In this
case the sensitivity function is ρ(kd) → 1 and we reproduce
Eq. (19). The expression for the function ρ(kd) is given in
Refs. 21 and 22. It has to be noted that ρ � 1, thus the PFA
underestimates the Casimir force.

When the condition ξ � d is broken we are able to calculate
the second term in Eq. (20) by using the perturbation theory, but
we definitely cannot use the perturbation theory for the third
term. This is because at z = d0 the integrand diverges [for
z > d0 we defined f (z) = 0]. This is a physical divergence
appearing due to the contact between the highest asperity
and the opposite body. However, it can be noted that the
high peaks accounted for by the third term in Eq. (20) are
rare and the average distance between them (15) is large.
If this distance is large in comparison with the separation
between bodies (l � d) we can calculate the contribution of
each peak independently of each other (additively). We can
always choose d1 to fulfill the condition l � d but in reality
d1 = 3w is an appropriate value in all respects. As one can see
from Table I for all the investigated films the values of l are
sufficiently large and the values of d1 are always smaller than
d0. It is also important that our results are not sensitive to the
precise value of d1 as long as d1 is around 3w. This is clear
from the insets in Fig. 4 there is no sharp point in the function
f (z) where the normal distribution becomes inapplicable.

The precise value d ′
1 for the deep troughs is not important

at all. Any value in the interval w < d ′
1 < d ′

0 is equally good.
This is mainly because the contribution of the deep troughs is
small and never dominates, but also due to the fact that ln φ(z)
decreases more sharply at large negative z than it increases at
large positive z.

The discussion above shows that the high peaks and deep
troughs can be calculated additively even in the case when
applicability of the PFA is unjustified. In this case instead of
(20) we can write

FCas(d) = FPT(d)

+
∫ ∞

d1

dzf (z)

[
F (d − z) − F (d) + F ′(d)z − F ′′(d)

2!
z2

]

+
∫ −d ′

1

−∞
dzf (z)

[
F (d − z) − F (d) + F ′(d)z − F ′′(d)

2!
z2

]
.
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where the remnants from FPT(d) in Eq. (21) are included in the
terms responsible for high peaks and deep troughs. The final
expression for the force is split into three terms:

FCas(d) = FPT(d) + FPFA(d) + F ′
PFA(d). (23)

The first term

FPT(d) = F (d) + F ′′(d)

2!

∫
d2k

(2π )2
ρ(kd)σ (k) (24)

does not rely on the PFA but is instead based on the perturbation
theory21,22 as indicated by the index PT. It represents the
contribution of asperities with typical heights ∼w. The second
term

FPFA(d) =
∫ d0

d1

dzf (z)

[
F (d − z) − F (d)

+F ′(d)z − F ′′(d)

2!
z2

]
(25)

is the contribution of high peaks. In this term the perturbation
theory cannot be used to calculate F (d − z) because d

and z are comparable. FPFA(d) diverges at d = d0. As was
already mentioned this is because the local separation distance
becomes zero at d = d0. In this way the model accounts for
the case of contact between the bodies. This will turn out to
be an important aspect of our approach. The condition L � ξ

ensures that the interaction area contains enough realizations
of a rough surface to approximate an ensemble. Since the
high peaks are statistically rare events they should be far
apart, l � ξ , so that they can be calculated independently
of each other. Previously we assumed26 that the high peaks
have flat tips, so that one can use the PFA to calculate the
interaction between an individual peak and a flat surface. This
approximation is reasonable (see Ref. 26) but it is not necessary
and we relax it in Sec. IV.

Finally, the term

F ′
PFA(d) =

∫ −d ′
1

−d ′
0

dzf (z)

[
F (d − z) − F (d)

+F ′(d)z − F ′′(d)

2!
z2

]
(26)

represents the contribution of the deep troughs. By the same
token, the distance between them is large, so that their
contributions are also independent of each other. These troughs
do not dominate the force because they correspond to negative
z, where the leading term F (d − z) is much smaller than the
other contributions.

IV. THE INFLUENCE OF THE SHAPE OF THE PEAKS

In order determine the effect of the shape of the peaks one
must first establish what geometry approximates the shape
of the real peaks best. We note that the rough surface in the
schematic of Fig. 5 is a cross section of a real rough gold
surface based on an AFM scan of the 1600 nm sample. At
present it does not seem feasible to determine the shape of the
peaks directly from this image since the size of the tip of the
AFM cantilever beam is comparable to the size of the tips of
the peaks.

The information in Fig. 5 shows that the peaks can be
modeled in at least two different ways:

1. As half ellipsoids with height d0, or more specifically,
as spheroids: ellipses revolved around the axis perpendicular
to the plate.

2. As cones with height d0.
These geometries could produce significantly different

results but they are still consistent with Fig. 5. Strictly
speaking, one should account for the shape of the troughs
as well, but since their contribution is negligible this can be
ignored.

First we should obtain an estimate of the lateral sizes of the
peaks to make a consistency check: in the model of Sec. III
each asperity is considered to have a lateral size ξ . In the next
two paragraphs we will determine which choice of geometry is
most consistent with this assumption. The information about
the lateral sizes of the peaks can be extracted from the AFM
scans. We have computed the contour of each surface sample
at height d1, defined as d1 ≡ 3w, which is 30.3 nm for the
1600 nm sample. See Fig. 6(a). From the polygon segments
of each closed contour the circumferences of the peaks were
determined. The associated radii were obtained by assuming
circularly shaped bases of the peaks. Typically, high peaks
are surrounded by lower peaks, which makes it difficult to
distinguish what belongs to the “peak,” and what can be
considered “normal” roughness. Figure 6(a) shows that the
contours at height z = 0 cannot be considered circles, whereas
the ones at height z = d1 can. For the spheroidal case we can
reconstruct their radii at height z = 0 via the relation

r0 = d0r1√
d2

0 − d2
1

, (27)

where r1 represents the (horizontal) radius at z = d1.
With this information we can come to a probability

distribution for the radii in the same way as it was done for the
heights of the peaks. The probability density function for the
radii is shown in Fig. 6(b). Negative values of r are not allowed,
which makes the width distribution f (r) slightly asymmetric,
with a skewness of 0.23. Still, f (r) is to good approximation a
normal distribution, unlike the height distributions in Sec. II B,
where significant deviations from normal distributions were
found.

This distribution provides an estimate of the range of values
of the lateral sizes of the peaks. The average of this distribution
is 44 nm (≈0.9d0), which corresponds to the correlation length,
and its standard deviation is 24 nm (≈0.5d0) (see Table I).
Therefore the choice of (half) spheroidal peaks is in this sense a
suitable geometry to represent high asperities in this roughness
model.

Similarly the radii for the case of conically shaped peaks at
z = 0 are obtained from the data in Fig. 6(a) as follows:

r0 = d0r1

d0 − d1
, (28)

which means that the distribution in Fig. 6(b) can still
be used, but the variable r must be replaced by r →√

(d0 + d1)/(d0 − d1)r. Consequently, this distribution is
much broader than the one for the spheroidal case [Fig. 6(b)]:
the standard deviation is 49.9 nm ∼d0. The mean radius is
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FIG. 6. (Color online) (a) Contour plot of subsurface of size L2 for the 1600 nm sample, extracted from AFM data. The color bar indicates
the vertical scale in nanometers. At height z = d1 = 30.3 nm, the polygons can be considered circular by approximation. (b) Semilogarithmic
plot of probability density function f (r) of the radii of the peaks. The open circles represent data from the AFM topography scan, the (orange)
line is a polynomial fit. This information is used to estimate the range of the horizontal sizes of the peaks.

90 nm in this setup, which deviates considerably from the
value of the correlation length listed in Table I. This means
that a cone is not a proper geometry to represent a peak in this
model. Modeling the peaks as half spheroids seems preferable
in this sense. However, we will still investigate the effect of a
conical shape on the Casimir force, so that we might compare
it to experimental results in Sec. VI.

The Casimir force between a plate and an ellipsoid or
cone was calculated numerically. This was done with a finite-
difference time-domain (FDTD)32 program called Meep.33

Recently it was established that FDTD can be used to
calculate the Casimir force in arbitrary geometries.34–36 FDTD
is a method to numerically solve Maxwell’s equations, and
its approach for obtaining the Casimir force is similar to
that of Ref. 3. The main difference, of course, is that the
Green function tensor is obtained numerically in an arbitrary
configuration instead of analytically in the parallel plate
geometry.

We start by separating a conductivity correction factor C(d)
from the Lifshitz formula (5):

F (d) = C(d)Fpc(d), (29)

where Fpc(d) = h̄cπ3R/360d3 is the Casimir force between
a perfectly conducting plate and sphere in the PFA. Generally
there is also a temperature correction factor, but this depen-
dence can be ignored in this separation range.19 Note that
we have already established the correction factor C(d) from
permittivity data obtained via ellipsometry measurements (see
Fig. 2). We now perform the calculation of the curvature effect
for perfectly conducting bodies and apply the correction C(d)
afterwards, as it was done, for example, in Ref. 37. Note that
it is assumed here that the effects of the material properties
and the shape are independent of each other. Generally, this
is not true.38 However, at the short separations considered
here, the effect of this correlation appears to be small.39

This approximation should suffice to estimate the error due
to neglecting the shape of the peaks. In this approximation
the Casimir force between a dielectric plate and a dielectric

spheroid is determined as follows:

FEP(d) ≈ C(d)FEP,PC(d), (30)

and similarly for the cone-plate geometry

FCP(d) ≈ C(d)FCP,PC(d), (31)

where FEP, PC(d) and FCP, PC(d) represent the outputs of the
FDTD simulation with perfectly conducting bodies. The fact
that the bodies are perfect conductors and the rotational
symmetry of the geometry both reduce the computation time
considerably.36

The result of the FDTD simulations are shown in Fig. 7.
They are compared to the force between peaks with flat tips,
which is calculated as follows:

Fpp(d) = −E′(d)ξ 2, (32)

where E′(d) is determined from the Lifshitz formula Eq. (1).
This represents the contribution of a single peak in the PFA
according to the model outlined in Sec. III. The FDTD
calculations were done at separations d > d0 + 2 nm. This
is because the FDTD approach requires a surface over which
the Maxwell stress tensor is integrated, which in turn requires
a buffer between the bodies.35,36 In the case of curved peaks
there is no need to get any closer since the PFA is recovered at
short distances. Moreover, the uncertainty in the value of d0 is
comparable to 2 nm (see Table I). It is clear from Fig. 7(a) that,
at short separations, the calculation for the spheroidal case is
closer to the one for a flat tip than the force between a conically
shaped peak and a plate. Figure 7(b) shows that this is also true
in a sense relative to the total force of Eq. (23): the maximum
effect is almost 5percnt; in the spheroidal case and about 15%
in the cone-plate geometry. In Sec. VI the relative effects of the
shapes of the peaks will be compared to experimental results.

The calculations in this section were performed for the
1600 nm sample only. This sample has the highest value of the
contact distance d0 (see Table I). The experimental uncertainty
in the Casimir force decreases with d (see Sec. VI). The effect
of the shape of the peaks is most likely to be significant in
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FIG. 7. (Color online) Effect of the shape of the peaks for three different geometries. The case of flat peaks was calculated via the Lifshitz
formula. The other two geometries were accounted for by FDTD. In each case, the lateral size is assumed to equal the correlation length ξ , and
the height was d0. (a) shows the absolute force and (b) shows the difference �F between the FDTD outputs [Eqs. (30) and (31)] and the result
for flat peaks [Eq. (32)], relative to the total Casimir force FCas(d) [from Eq. (23)]

this case, because the highest value of d0 will not allow lower
values of d. Moreover, in the approximation of Eqs. (30) and
(31) C(d) is a monotonically increasing function, so that the
total effect will be smaller for samples with a smaller value
of d0. In the case of perfect conductors Maxwell’s equations
are scale invariant40 and one can use the FDTD outputs for
smaller values of d0 as well.

V. DIRECT BONDING AND SURFACE ROUGHNESS

Since we have established the basics of our approach,
we can demonstrate a prediction of the Casimir force in a
technologically relevant case: that of relatively low (<2 nm)
rms roughness. In this case the contact distance is also low
(<10 nm) which allows the bodies to move closer to each
other, which in turn can give rise to a higher Casimir force.

Our studies of the influence of roughness on the Casimir
force at close surface proximity, that is, at separations
comparable to d0, are also important for direct bonding
technologies.28,41 Indeed, direct bonding has also become
known as van der Waals bonding: Bonding without glue is
performed under ambient conditions. Such a bond can only
be achieved under strict conditions28,41: the geometrical shape
of the elements must be optimally congruous; the smoothness
of the mechanically finished surface (rms roughness) must be
within the subnanometer range; in most cases, the chemical
treatment of the surface must be optimum; the physical state
of the surface must be defect free; and the subsurface damage
must usually be as small as possible. After annealing and
other procedures,28,41 the direct bond must become monolithic
to guarantee a long life without decohesion of the bonded
surfaces.

To be more specific: in order to achieve direct bonding
the rms roughness w must be <2 nm and preferably even
<0.5 nm.28,41 Such roughness parameter values, at least for
the upper roughness limit, have also been obtained for gold
films deposited by electron beam evaporation.42 In this case,
force measurements were only possible down to 12 nm

separations due to jump to contact because of capillary
forces, while the estimated distance upon contact via height
histogram analysis from AFM images (Fig. 8) was determined
to be d0 = 7.5 ± 1 nm.42 In this case of low roughness

FIG. 8. (Color online) AFM image used for the calculation of the
Casimir force in Sec. V. Same conventions as in Fig. 3. (a) shows the
profile of the sphere and (b) that of the plate. Both were scanned at a
resolution of 512×512 pixels.
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FIG. 9. (Color online) Calculation of the Casimir force between
a 100 nm thick sample with rms roughness w = 1.3 nm and a sphere
with wsph = 1.8 nm. The three curves in the inset are the three
contributions to the solid curve in the main graph: curve 1 (black)
is force without roughness from Eq. (5), curve 2 (red) is the peaks’
contribution [Eq. (25)], and curve 3 (blue) is the perturbative part
[second term of Eq. (24)]. The contribution of the troughs is always
negligible. The dotted line gives the result without roughness effects.
The red circles denote experimental points. Measurements could not
be performed below d = 12 nm due to jump to contact.

the Casimir force starts to feel the roughness effect only
at separations below 20 nm, as estimations from scattering
theory indicated. However, proper analysis of the roughness
effect must take into account the contributions of high peaks,
especially below 10 nm separations as d ∼ d0. These results
can be relevant for understanding stiction phenomena under
dry conditions (excluding capillary bridge formation) of device
components with nanoscale surface roughness, as well as for
exploring possibilities of direct bonding phenomena between
real surfaces with known optical properties.

As jump to contact due to capillary adhesion prevented
measurements at separations below d = 12 nm, this calcula-
tion is a prediction for this range and not a direct comparison to
measurements. The experimental data at separations >12 nm
can be reproduced by scattering theory.42

The radius of the sphere was 50 μm, and its rms wsph =
1.8 nm, while the rms of the plate was w = 1.3 nm. The AFM
scans of the sphere and the plate both had scan sizes of 6 ×
6 μm2 and 5×5 μm2, respectively.

The results are shown in Fig. 9. Near contact, where d ≈ d0,
there are considerable roughness effects: the Lifshitz formula,
the “zeroth order” perturbative contribution, the black curve
1 in the inset, dominates at these short separations, but the
contribution of the high peaks (the red curve 2 in the inset)
is of the same order of magnitude there. The perturbative part
(the blue curve 3 in the inset) is the smallest contribution, but
it cannot be ignored further away from contact where the force
was measured. The total Casimir force becomes approximately
46 nN near contact, which is an order of magnitude larger than
what has been found for the rougher samples.27 However,
this estimate still needs experimental verification, because

presently it is not trivial to measure the force at separations
below 10 nm.

VI. RESULTS AND DISCUSSION

An important question now is: how accurately can we
calculate the roughness corrections? The third order term in
the Taylor expansion around z = 0 starting from Eq. (19),
−F ′′′(d)z3/3!, was neglected. In the separation range of
interest (20 to 100 nm) the force between smooth surfaces
F (d) shows an approximate power law dependence of d:31

F (d) ∼ C/dα , where C is a constant and the value of the
power α depends on the geometry: in the parallel plate setup
α ≈ 3.5; in the plate-sphere setup α ≈ 2.5 if R � d. Therefore
the estimate of the error due to the use of perturbation theory
is given by

�FPT(d) ≈ γ
α(α + 1)(α + 2)

3!

(
w

d

)3

F (d), (33)

where γ denotes the skewness of the probability distribution,
defined by

γ ≡ 1

w3

∫ ∞

−∞
z3f (z)dz.

The maximum value of γ is 1.285 for the 1600 nm sample
(see Fig. 4). In a parallel plate configuration, this leads to
�FPT ≈ 18.55(w/d)3F (d). This means that the perturbative
contribution has meaning if d > 4w. The minimum separation
distance d0 depends on the scale L. It has turned out that
even for small L ≈ 1μm this condition is usually met.25

Therefore it is justified to make the important statement that
the perturbative contribution has physical meaning up to the
point of contact between the interacting bodies.

The relative error due to the assumption that each peak
contributes independently is determined by the condition of
its applicability; the distance between the peaks must be
sufficiently large, l(d1) � d. This error is

�FPFA ≈ (d/l)FPFA. (34)

As we mentioned before, d1 must be chosen in such a way that
l � d. One way to do this is d1 ≡ 3w. This definition leads
to the values of l listed in Table I. Similarly, we could define
d ′

1 as 3w. However, the contribution of the troughs F ′
PFA(d) is

always small. It is included only for the sake of generality.
In Fig. 10 the result of our approach [Eq. (23), the contin-

uous (blue) line] is compared to measured force data [from
Ref. 27, the open (red) circles], which were obtained with an
AFM setup. The same figure includes the result for a smooth
surface [Eq. (5), the dashed (purple) lines] and that of the PFA
for the roughness correction. The latter is given simply by

FPFA(d) =
∫ d0

−d ′
0

dzf (z)F (d − z), (35)

the results of which are indicated by the dashed (green) lines
in Fig. 10. Note that this expression is also singular at d = d0.

In order to clarify the comparison between measured force
data with errors and theoretical predictions as shown in Fig. 10,
we would like to re-emphasize the distinction between the
experimental and statistical error in d0. The values �d shown
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FIG. 10. (Color online) Results of the roughness model [Eq. (23), the solid (blue) line] compared to experimental data [from Ref. 27, the
(red) circles] for three different gold samples. The (orange) crosses denote the errors in some of the data points. The dashed line is the result
of naive application of the PFA via Eq. (35). The dotted line is the force without roughness correction. For the insets, the same conventions as
in Fig. 9 apply.

in Fig. 10 are the experimental uncertainties which account
only for a fixed lateral position of the surface profiles with
respect to each other. This is important because the error in d0

dominates the error in the separation distance d, and at short
separations it also dominates the uncertainty in the Casimir
force. This is estimated from the relation

�FCas(d) ≈ FCas

√
2.5

(
�d0

d

)2

+
(

�k

k

)2

. (36)

The approximate factor 2.5 can be understood from the fact that
E(d) scales approximately as E(d) ∝ d−2.5.31 The Casimir
force was measured with an AFM setup.27 The relative error
in the spring constant k of the cantilever beam is approximately
�k/k ≈ 3%. The values for d0 and their respective uncertain-
ties have been established from electrostatic calibration and
were taken from Ref. 25. These uncertainties are denoted by
error bars through some of the measurements in Fig. 10.

The insets of Fig. 10 show the different contributions
to the solid lines in the main graphs: curve 1 (black) is
force without roughness from Eq. (5) (the “zeroth order”

perturbative contribution), curve 2 (red) is the peaks’ contri-
bution [Eq. (25)], and curve 3 (blue) is the second perturbative
contribution [Eq. (24)]. The contribution of the troughs
F ′

PFA(d) [Eq. (26)] is always several orders of magnitude
smaller than the second smallest contribution, the second order
term in FPT(d) in Eq. (24). Therefore it is not included in these
plots.

In each of the three samples in Fig. 10, the dashed and
the solid line overlap near contact (d ∼ d0), because the
contribution of the peaks is evaluated with the PFA. This
contribution decreases very fast with d, as the (red) curve
labeled as 2 in the inset indicates. This is due to their small
area of interaction. This is the dominant contribution near
contact for the two roughest samples in Figs. 10(a) and 10(b).
For the other sample, the lower value of d0 allowed the Lifshitz
formula to dominate the other contributions. Still, also in this
case the peaks contribute considerably near d = d0. A few
nanometers away from contact, the second order perturbative
correction [represented by the (blue) curve labeled 3 in the
inset] starts to become significant. The PFA corresponds to
the low wave number limit in this contribution.21,22 Therefore
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FIG. 11. (Color online) Relative difference between theoretical and experimental results. The solid (green) line represents the relative
experimental error from Eq. (36). It is assumed that the sphere in the AFM setup has a fixed lateral position with respect to the plate. The (red)
open circles are comparisons to the naive PFA of Eq. (35), and the (blue) asterisks show the difference with the model of Eq. (23).

it should always dominate the PFA at separations where the
contribution of the peaks is negligible. It clearly does for the
rougher samples: the solid (blue) line lies above the dashed
(green) line in Figs. 10(a) and 10(b). For the 800 nm sample
[Fig. 10(c)] the contribution from beyond the small wave num-
ber limit is the smallest; it is barely discernible on the graph.

The results of this model are in agreement with measure-
ments for gold samples, unlike perturbation theory, which
failed to explain the data.27 On the other hand, naive appli-
cation of the PFA via Eq. (35) also reproduces the the data
from Ref. 27 within error. Scattering theory accounts for the
nonadditivity of the Casimir force and the PFA assumes that it
is additive. This indicates that the experiment in Ref. 27 was
not sensitive to the effect of the nonadditivity. This is not to say
that nonadditivity effects are insignificant in general. Indeed,
recently significant nonadditivity effects have been reported in
different contexts (see, e.g., Ref. 43).

The theoretical and experimental results can also be
presented in a different way: the absolute value of the relative
difference is plotted in Fig. 11 and compared to the error. The
open (red) circles represent the difference with the “naive PFA”
of Eq. (35), and the blue asterisks show the difference with the
model of Eq. (23). The solid (green) line represents the relative
error from Eq. (36). In Fig. 11(a), which shows the results
for the 1600 nm sample, the result of our model [Eq. (23)]
seems closer to the experimental data than the naive PFA.
However, the difference is less than two standard deviations.
This difference is even less pronounced for the 800 nm sample,
displayed in Fig. 11(b). In both cases there is a difference
of about 15% at short distances (d ≈ d0) which exceeds the
vertical error. The apparent discrepancy can be accounted for
by the horizontal error in Fig 10, �d0. It should be kept in
mind that the force decreases rapidly near contact, so that a
small horizontal shift can give rise to a fairly large difference
in the vertical direction.

If the peaks are modeled as half spheroids, the effect of this
shape (∼5%) is still within the experimental error (see Sec. IV).
For conically shaped peaks the effect is 15%, which is not

within the vertical error. This effect is compared to calculations
in other geometries, where the value of d0 is exactly the same
in each case. Therefore it is independent of the experimental
uncertainty in d0, and most likely not responsible for the 15%
difference in Fig. 11(a). Moreover, as we found in Sec. IV,
conically shaped peaks cannot be reconciled with both the
AFM data and the known value of the correlation length. For
this reason, cones can be ruled out as a geometry to describe
peaks on gold surfaces. However, due to the uncertainty in d0,
the measurements of Ref. 27 by themselves do not entirely
rule out a 15% effect due to the shape of the peaks.

VII. CONCLUSIONS

We have developed a reliable method to include roughness
effects in estimations of the Casimir force at short separations,
where perturbation theory fails. Statistical analysis of AFM
topography scans has taught us that the surface’s height fluc-
tuations can be asymptotically fitted to a Gumbel distribution.
We have shown that the contribution of high peaks on a rough
surface can be taken into account with the PFA. On the other
hand, asperities of height ∼w can be evaluated perturbatively.
Because the peaks are sufficiently far apart on the scale of
the separation, their contributions to the Casimir force are
statistically independent.

It has been established that the peaks contribute signifi-
cantly to the Casimir force, particularly near contact where
d ≈ d0. The high peaks not only dominate the force, but
they also shift the minimum separation distance from 0 to
d0. To a large extent this gives rise to the scaling of the
force observed experimentally: the shift of the singularity in
the Lifshitz formula makes both experimental and theoretical
curves singular at d ≈ d0 and unphysical below d0. The
inclusion of contact between the bodies appears to be a crucial
aspect of the roughness correction to the Casimir force.

We have presented detailed calculations of the influence of
the curvature of the peaks by modeling them as half spheroids,
but this has a marginal effect on the force as a whole. The
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reason for this is that their contribution is significant only near
contact (where d − d0 � ξ ), and decreases rapidly with d due
to their small area of interaction. In this near contact limit
the PFA is valid, so that we can neglect the curvature of the
peaks. On the other hand, modeling the peaks as cones cannot
reproduce the correlation length from the information that the
AFM data provides about the lateral sizes of the peaks. It can
be concluded that cones are not a proper geometry to describe
peaks on gold surfaces. Moreover, it produces an effect that
does not seem to be well supported by experiment, even though
it cannot be entirely ruled out either.

We have calculated the Casimir force between relatively
smooth surfaces, which is potentially useful for direct bonding
applications. It was found that the Casimir force is an order of
magnitude higher than the force between rougher surfaces,
because the lower value of the contact distance allowed
lower separations. Possibly, higher Casimir forces could be
achieved between congruous bodies. In such a case, this
approach for the roughness correction could be combined with
numerical methods (e.g., FDTD35) to account for the geometry

of the system. Such a calculation would be computationally
challenging, because it involves multiple scales.

It has also turned out that naive application of the PFA
described by Eq. (35) gives a result close to that of our approach
and hence is also in good agreement with the experiment.
Perturbation theory accounts for the nonadditivity of the
Casimir force, whereas the PFA assumes that it is additive.
Apparently, the experiment in Ref. 27 was not sensitive to the
effect of nonadditivity.

Notably, the significance of the role of the peaks in the
roughness correction can also be of interest for problems
of capillary adhesion between surfaces,44 including wet
environments.45–47
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