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Stability analysis of a viscoelastic model for ion-irradiated silicon
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Recently, elastic stress has been among several mechanisms hypothesized to induce the formation of ordered
structures in Si irradiated at normal incidence by energetic ions. To test this hypothesis, we model the thin
amorphous film atop ion-irradiated Si as a viscoelastic continuum into which the ion beam continually injects
biaxial compressive stress. We find that at normal incidence, the model predicts a steady compressive stress of a
magnitude comparable to experiment and molecular dynamics simulation. However, linear stability analysis at
normal incidence reveals that this mechanism of stress generation is unconditionally stabilizing due to a purely
kinematic material flow, depending on none of the material parameters. Thus, despite plausible conjectures
in the literature as to its potential role in pattern formation, we conclude that compressive stress induced by
normal-incidence ion bombardment is unlikely to be a source of instability at any energy. In fact, with this
result, all hypothesized mechanisms suggested to explain structures on pure materials under normal incidence
irradiation have now been overturned, supporting recent theories attributing hexagonal ordered dots to the effects
of composition. In addition to this result, we find that the elastic moduli appear in neither the steady film stress nor
the leading-order smoothening, suggesting that the primary effects of stress can be captured even if elasticity is
neglected. This supports the basic framework recently adopted by other authors and should allow future analytical
studies of highly nonplanar surface evolution, in which the beam-injected stress is considered to be an important
effect.
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I. INTRODUCTION

Pattern formation resulting from uniform ion irradiation
of solid surfaces represents a promising potential route to
controlled nanoscale surface modification. In particular, the
low-energy regime (typically 102–104 eV), where the energy
loss is dominated by nuclear collision cascades, has been the
topic of continued experimental and theoretical investigations.
Due to its simplicity, noble-gas ion irradiation of silicon has
been extensively studied as a very promising system for ex-
perimental tests of theory: it is a monatomic system amenable
to molecular dynamics simulation, and its near-surface region
is amorphous under ion bombardment, thereby minimizing
the potentially confounding effects of disproportionation and
crystallographic singularities.1,2

Despite its attractive attributes, the noble-gas/silicon system
has proven remarkably finicky, confounding researchers via
interlaboratory irreproducibilities. In particular, for normal-
incidence ion irradiation, researchers in various groups at
various times have observed either hexagonal arrays of
dots,3 disordered ripple structures,4 combinations of dots
and ripples,5 or featureless flat surfaces.6 However, the
most current physical models of pure materials,7–9 coupling
erosion,10 mass redistribution,11,12 and ion-enhanced viscous
flow,13,14 have been shown to be maximally stable at normal
incidence,9 suggesting that flat surfaces should be generically
observed. This disconnect between theory and experiment
has led to speculation that additional physical effects may be
generating the observed structures, such as long-range atomic
redeposition,15 or elastic stress,4 under a hypothesized mech-
anism analogous to the well-known Asaro-Tiller-Grinfeld
(ATG) instability16–18 in solid films subjected to a mismatch
strain with the underlying substrate.

More recently, however, there has been growing evidence
that structures observed on Si under normal-incidence ion

irradiation are due to neither of these effects, but rather to
experimental contaminants.19 On the one hand, it has been
shown that after the careful removal of contaminants4,20

and other experimental artifacts,6 formerly patterned surfaces
become flat. On the other hand, the controlled addition of
contaminants to pure surfaces causes patterns to emerge.19,21,22

Finally, a recent model of concentration effects does admit an
instability at normal incidence.23

Although the experimental evidence for contaminants is
compelling, it is desirable to achieve closure by ruling out
previously proposed candidates, which are still discussed
frequently within the community. Very recently, Bradley has
shown that redeposition is a nonlinear effect and therefore
cannot contribute to linear stability,24 thus rejecting the
redeposition hypothesis. In this paper, we investigate whether
or not an instability similar to ATG could be present in
irradiated solids. Modeling the amorphous layer as a general,
viscoelastic film into which a normal-incidence ion beam is
continually injecting biaxial stress, we find that the film is
unconditionally stable against topographical perturbations of
all wavelengths. It therefore provides an analytical foundation
for rejecting the elastic stress hypothesis. Together, the rejec-
tion of these alternate hypotheses provides additional support
for the concentration dependence of observed structures. In
addition, we also find that the leading-order film dynamics
due to beam-injected stress are independent of the elastic
constants of the film, suggesting that elastic effects may be
safely neglected to first approximation.

II. MODEL

We consider a crystalline silicon target under normal-
incidence irradiation by argon ions in the eV to low-keV
range of energies. Under this irradiation, a ∼3–10-nm film
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of silicon becomes amorphous; this film is the object of
our study, and we model it as a homogeneous viscoelastic
medium. For simplicity, we neglect erosion, so as to focus
purely on the effect of stress. We choose a coordinate system
(x,y,z) pinned to the the film/substrate interface z = 0, with
the film occupying the region 0 � z � h and the semi-infinite
crystal occupying z < 0. In what follows, u = (u1,u2,u3)T

and v = (v1,v2,v3)T denote the displacements and velocities,
respectively, E and T denote the strain and stress tensors,
respectively, and ED and TD are their deviatoric components:

ED = E − 1
3 tr (E) I, TD = T − 1

3 tr (T) I.

Because we are studying infinitesimal perturbations to a
stationary film, we will employ the small-strain approximation

E ≈ 1
2 (∇u + ∇uT),

DE
Dt

≈ 1
2 (∇v + ∇vT). (1)

As with any continuous mechanical medium, the governing
equations within the interior of the film are simply Newton’s
second law and the conservation of mass. Assuming that the
former simplifies to Stokes flow in a limit of low Reynolds
number, we thus have in the bulk

∇ · T = 0, (2)

∇ · (ρv) = 0, (3)

where ρ is the density. At the boundaries of the film, we have

v = 0 (at z = 0) , (4)

vn = v · n̂ [at z = h (x,y)], (5)

T · n̂ = −γ κn̂ [at z = h (x,y)]. (6)

Here (4) is the no-slip condition at the film/crystal interface
z = 0 (the crystal is treated as a rigid body). At the free inter-
face z = h (x,y), n̂ is the surface normal, and the kinematic
condition (5) relates the velocity vn of the free surface, normal
to itself, to the bulk material velocity field v. Finally, condition
(6) gives the surface stress in terms of the surface energy γ

and surface curvature κ .
It remains to relate the stress and the strain via a constitutive

relationship and to describe the effect of the beam within the
film. Recently, a model has been advanced in which the film
obeys the Navier-Stokes equations, and the effect of the beam
is modeled as an “effective body force”:14,25

b = ∇ · TS = fE� (θ − γ ) , (7)

which acts on the entirety of the amorphous film. Although the
incoming ions undoubtedly exert a force on the film as they
are slowed down by the film, that force is vanishingly small,
and Eq. (7) is not interpreted as representing any physical
force. Instead, fE is proposed to represent “the coarse-grained
information about the effect of the residual stress created in
the target”14 and � (θ − γ ) is proposed to encode dependence
upon the local angle of incidence θ − γ . Though unusual in
the sense that a “body force” acting throughout the film would
traditionally be completely independent of the configuration
of the nearest patch of surface (surface dependencies normally
appearing as boundary conditions), this is an interesting effort

to encompass the many complexities of the ion irradiation
process within a simple, intuitive form.

We shall here adopt different models for both the film and
the action of beam therein. Because we wish to investigate
the relative importance of elastic and viscous effects and
specifically to test whether elastic effects could cause an
instability, we require a more general constitutive law, and we
use as a starting point a linear Maxwell viscoelastic relation
to describe the film itself. As for the effect of the beam, we
prefer to use a model more closely, if still loosely, tied to
the microscopic picture associated with single-ion impacts.
At this scale, molecular dynamics simulation has shown that
each impact significantly redistributes the target silicon atoms
to new locations,9,12,26 gradually increasing the magnitude
of a compressive stress to a saturated state,27 which is also
observed experimentally.28 Each impact thus induces a direct
deformation of the material, suggesting that the effect of the
beam be incorporated directly into the constitutive relationship
between stress and strain in a way that depends linearly on the
total fluence.

A model with exactly these properties has already been
developed to describe high-energy ion irradiation in the
regime of electronic stopping, where the stress is generated
by a rapid thermal cycling.29–32 This physical mechanism
is, of course, not directly applicable in the nuclear stopping
regime. However, anisotropic plastic flow has been observed
experimentally even in the nuclear-stopping regime,33 and
the mathematical form of the governing equations has been
successfully applied to describe various phenomena at low
energies.34,35 In addition, we will here demonstrate that,
without specifying a mechanism at all, simple symmetry
arguments allow the derivation of this form, suggesting it is,
in fact, generic. Thus, we adapt from Ref. 32 the constitutive
relation
D

Dt
[E] = 1

2η
TD + 1

2G

D

Dt
[TD] + 1

9B

D

Dt
[tr(T)]I + f AD.

(8)

The first three terms on the right-hand side of Eq. (8)
constitute a standard Maxwell model of viscoelasticity for
a two-dimensional material with viscosity η, shear modulus
G, and bulk modulus B; these provide the minimal framework
required to investigate the relative importance of viscous to
elastic effects. The fourth term describes the imposition of a
stress-free rate of strain by the beam depending linearly on the
ion flux f , with A being a measure of strain imparted per ion
and the tensor D describing the nature of that strain. Hence,
this way of describing stress is compatible both with the direct
imposition of strain by ion impacts and with the linear growth
of that strain in the fluence.

Starting merely from the observation of a steady stress
during low-energy irradiation28,34–37 and without directly ap-
pealing to any particular physical mechanism, we now proceed
to make three reasonable restrictions on the form of D. First,
for normal-incidence irradiation, we expect translational,
reflective, rotational, and chiral symmetry in x and y. The
translational symmetry rules out any dependence on these
variables, the reflective and chiral symmetries require that
the off-diagonal members of D vanish, and the rotational
symmetry requires that Dxx = Dyy . Second, because the
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number of implanted argon atoms saturates at very early times,
we expect D to be traceless in any steady state. Third, merely
for convenience, we take D to be uniform throughout the film
(i.e., without a dependence on z). These considerations alone
are sufficient to produce a strain tensor of the form

D =
⎡
⎣ ν 0 0

0 ν 0
0 0 −2ν

⎤
⎦ ; (9)

then, because D is already multiplied by the parameter A

measuring induced strain per ion, we take ν = 1 without loss
of generality. We thus arrive at a constitutive law identical to
that employed for high-energy irradiation, without invoking
any of the physics of that regime (which do not apply here).
Indeed, the nature of the arguments used to obtain Eq. (9)
suggest that it is, in fact, generic.

III. ANALYSIS

A. Steady solution

We first look for a steady state (∂/∂t → 0) consisting of a
flat film. Using translational and reflective symmetry in x and
y, we can limit the steady velocity field v0 to the form

v0 (z) = (0, 0, w0 (z) )T . (10)

Then, conservation of mass in the steady state requires that
w0 (z) = 0, and so the film is stationary, as we expect.
However, the strain and stress associated with this steady
state are not determined by the above considerations. These
can be obtained as follows. First, from the steady version of
the constitutive relation (8), we can write the steady deviatoric
stress as

TD,0 = −2ηf A

⎡
⎣ 1 0 0

0 1 0
0 0 −2

⎤
⎦ . (11)

Hence, the steady stress tensor is

T0 = −2ηf A

⎡
⎣ 1 0 0

0 1 0
0 0 −2

⎤
⎦ + 1

3
tr (T0) I, (12)

where the trace of the stress tensor (the negative pressure) is
unknown. Second, we apply the surface stress condition (6)
for a flat surface to obtain a single equation,

tr (T0) = −12ηf A, (13)

which solves for the steady stress. Third, the by taking the
trace of Eq. (8) and integrating in time, we obtain from the
isotropic part of the constitutive relation

tr (E0) = 1

3B
tr (T0) = −4

η

B
f A. (14)

Finally, the form (10) for the steady velocity limits the steady
strain tensor to the form

E0 =
⎡
⎣ 0 0 0

0 0 0
0 0 ∂w0

∂z

⎤
⎦ , (15)

implying that ∂w0
∂z

= tr (E0) = −4 η

B
f A. Collecting all of this

information, we can express the steady strain and stress as

E0 = 4
η

B
f A

⎡
⎣ 0 0 0

0 0 0
0 0 −1

⎤
⎦ ,

(16)

T0 = 6ηf A

⎡
⎣−1 0 0

0 −1 0
0 0 0

⎤
⎦ ;

hence, in the steady state the material is compressively strained
vertically by the beam and compressively stressed laterally. It
is notable that the steady stress does not depend on the elastic
moduli of the film, only the viscosity.

We here pause briefly to compare the steady-state pre-
dictions (16) to experiment. For Si irradiated with Ar+ at
250 eV with a flux of f = 3.5 × 1015 ions/(cm2 s), a steady
stress of 1.4 GPa is observed.28 At this energy and flux, we
have previously estimated η ≈ 6.2 × 108 Pa s (Ref. 9), and
although measurements of A are rare, at 3 keV there has been
an estimate of A ≈ 5 × 10−17 cm2/ion.35 Using this value of A

directly, we obtain a prediction of T0,xx = T0,yy ≈ 0.65 GPa,
which is within about a factor of 2 of the observed value.
Without an estimate of A at 250 eV, it is impossible to make
a better prediction, but the mechanism gives a reasonable
estimate of the observed stress.

B. Linear stability

We now study the linear stability of this system under a
small perturbation to the film/vapor interface by an infinites-
imal normal mode; because of the symmetries in the system
we may, without loss of generality, orient this mode in the x

direction:

h (x) = h0 + ε exp (ikx + σ t) . (17)

Because of the infinite extent of the film in the y direction, it is
appropriate to consider the plane-strain limit of the governing
equations and to assume that in the linear regime, the velocity
and stress fields will share the same sinusoidal dependence on
x and t ; we therefore write for the displacements and velocities

[
u
v

]
=

[
u0

v0

]
+ ε

[
ũ (z)
ṽ (z)

]
exp (ikx + σ t) . (18)

From the ansatz (18), the the perturbed strain field E =
E0 + Ẽ (z) is obtained from the definitions (1), whereupon
the perturbed stress field T = T0 + T̃ (z) is obtained from the
constitutive relation (8). Finally, upon inserting this expression
for the stress into the governing equations (2) and (3) and
keeping only terms to leading order in the infinitesimal
parameter ε, we find that the perturbation ṽ = (ṽ1, 0, ṽ3)T to
the velocity field is governed by the pair of ordinary differential
equations

ṽ′′
1 − Nṽ′

3 − Kṽ1 = 0, ṽ′′
3 − Mṽ′

1 − Lṽ3 = 0, (19)
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where

K = 4α + 6β

3α
k2, M = −i

α + 6β

4α + 6β
k,

(20)

L = 3α

4α + 6β
k2, N = −i

α + 6β

3α
k,

and

α = 2η

1 + ησ

G

, β = B

σ
. (21)

In the Appendix we show that Eqs. (19) can be rewritten
as a linear system and solved using eigenvalue analysis; a
convenient form for the general solution is[

ũ

w̃

]
=

[
a

c

]
cosh (kz) +

[
b

d

]
sinh (kz) + α + 6β

7α + 6β
kz

×
[

(b − ic) cosh (kz) + (a − id) sinh (kz)
(−ia − d) cosh (kz) + (−ib − c) sinh (kz)

]
.

(22)

To obtain the four unknowns {a, b, c, d}, we must apply
the linearized boundary conditions. From Eq. (4) at z = 0, we
immediately find that a = c = 0. Turning next to Eq. (6) at
z = h, we find that its linearization is

T̃xz = α

2
(ikw̃ + ũ′) = −6f Aηik,

(23)
T̃zz = α

3
(−ikũ + 2w̃′) + β(ikũ + w̃′) = −γ k2.

Because a = c = 0, Eq. (23) represents a matrix equation for
b and d; solution of this equation yields

b = − iak

�
{6f Aηk[V cosh(Q) − UQ sinh(Q)]

+ γ k2[−(V − U ) sinh(Q) + UQ cosh(Q)]},
d = −ak

�
{6f Aηk[−(V − U ) sinh(Q) − UQ cosh(Q)]

+ γ k2[V cosh(Q) + UQ sinh(Q)]}, (24)

where

Q = kh, U = α + 6β

7α + 6β
, V = 4α + 6β

7α + 6β

are common dimensionless groups, and

� = (αk)2[V 2 + U sinh2(Q) + U 2Q2] (25)

is the determinant of the matrix associated with Eq. (23).
Finally, inserting the coefficients (24) into (22), we apply the
linearized version of the kinematic condition (5),

σ = w̃(h), (26)

which provides the implicit dispersion relation between the
growth rate σ and wave number k:

2R

1 + R
[V 2 + U 2Q2 + U sinh2(Q)]

+D[U 2Q2 − (V − U ) sinh2(Q)]

+CV Q[sinh(2Q) − 2UQ] = 0. (27)

Here we have converted to the dimensionless parameters
{R,Q,D,C} given by

R = η

G
σ (growth rate),

Q = hk (wave number),

D = 6f Aη

G
(Deborah number), (28)

C = γ

2Gh
(capillary number).

C. Interpretation

Equation (27) is our central theoretical result, but being
highly implicit, it requires some further examination. Although
an explicit dispersion relation is not available, we can perform
neutral stability analysis on Eq. (27) by setting σ → 0 and
solving the resulting expression for D, which value of D we
name D∗. In this limit one can show that U → 1, V → 1,
R → 1, and the resulting expression for D∗ is

D∗(Q) = 2C

[
1 − sinh(2Q)

2Q

]
; (29)

this value of D establishes the neutral stability boundary. For
values of D∗ in the domain of this function, both stable and
unstable wave numbers Q exist; hence, the extremal values of
D serve as boundaries between stable and unstable regions of
parameter space. As observed in Fig. 1, D∗ (Q) is a strictly
negative function of Q, with a global maximum of D = 0
at Q = 0, and so the stability of the film depends upon the
sign of D. By implicitly differentiating (27) in R and D, we
find that ∂R

∂D
is negative at R = D = Q = 0, so that positive

D implies negative R. Because D is a physical constant and
positive by definition, we conclude that the film is stable at
all wavelengths. Hence, even though the strain (9) places the
film in a state of compressive stress, the film is unconditionally
stable to perturbations. Our stability result may be understood
intuitively by noting that even though the beam stresses the
bulk material below the valleys of a perturbation, the effect on

FIG. 1. (Color online) Neutral stability curve D∗(Q), from
Eq. (29).
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the hilltops of a small perturbation is for them to shorten and
widen under the stress-free strain.

Further quantitative understanding is available for the
commonly observed situation in which the film thickness
is much smaller than the perturbation wavelength; i.e., that
Q = hk � 1. In the limit of long wavelengths and slow
evolution (Q � 1 and R � 1), the dispersion relation (27)
reduces, keeping the lowest order of Q in each of the
coefficients, to

R ≈ − 1
2D Q2 − 2

3C Q4 (30)

or, reverting to dimensional form,

σ = −3f A (hk)2 − γ

3ηh
(hk)4 . (31)

Hence, for the common case of long-wavelength perturbations,
the leading-order contribution of the induced strain (9) at nor-
mal incidence is a second-order smoothing of perturbations.
A very important property of this smoothing is that it depends
on none of the bulk material properties of the film; it is a
purely kinematic response to the biaxial stress injected by the
beam. Hence, especially for problems exhibiting the limiting
behavior hk � 1, it is reasonable to consider neglecting
elasticity entirely and treating the film as a purely viscous
material.

IV. SUMMARY

As a model for amorphous ion-irradiated solids, we have
studied the dynamics of a thin viscoelastic film subject to
continual injection of biaxial stress and obtained two primary
results.

(i) First, we have shown that biaxial compressive stress
injected into an amorphous film by the ion beam is uncon-
ditionally stabilizing at normal incidence; hence, no analog
of the Asaro-Tiller-Grinfeld mechanism is present in stressed
viscoelastic films. Together with recent results showing that
long-range redeposition has been shown to be a purely
nonlinear effect24 and that the net effect of erosion and
redistribution in the “prompt regime” is stable at normal
incidence,9 there now remain no hypothesized mechanisms
predicting instability at normal incidence, suggesting that
smooth surfaces at low angles should be generic for pure
amorphous materials under energetic particle irradiation.
Together with growing experimental consensus that normal-
incidence patterns only appear when contaminants are present
and Bradley’s recent demonstration that a simple model of
concentration effects does admit an instability at normal
incidence,23 this strengthens the case that these structures are
due entirely to concentration effects.

(ii) Second, we have shown that the leading-order contri-
butions to film dynamics in the small-curvature limit of this
model are independent of the elastic constants. Rather than
being due to elasticity, the steady stress observed in this model
is due to viscous resistance to the stress-free strain induced by
the beam. This result suggests that elasticity may be safely
neglected in future analytical efforts, supporting the basic
framework behind recent contributions from other authors.14

In fact, a version of our constitutive law (8), with elastic terms

neglected entirely, could in fact provide a physical origin for
the “effective body force” proposed therein.

Although our analysis is restricted to one independent
spatial dimension and does not account for the advection in a
moving reference frame due to sputter erosion, we anticipate
that the conclusions drawn here will be no different from a
deeper analysis that accounts for these effects.
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APPENDIX: ADDITIONAL SOLUTION DETAILS

We here present a more detailed solution of the linear
second-order system (19), which we rewrite for convenience:

ṽ′′
1 − Nṽ′

3 − Kṽ1 = 0, ṽ′′
3 − Mṽ′

1 − Lṽ3 = 0. (A1)

We first recast Eq. (A1) as a first-order dynamical system,

dζ

dz
= Aζ, (A2)

where ζ = [ṽ1,ṽ3,ṽ
′
1,ṽ

′
3], and

A =

⎡
⎢⎣

0 0 1 0
0 0 0 1
K 0 0 N

0 L M 0

⎤
⎥⎦ . (A3)

a. Solution. A short calculation using the definitions (20)
reveals that the matrix A in Eq. (A3) has two eigenval-
ues, λ1 = −k and λ2 = k, each having multiplicity 2. We
will consider these simultaneously. Solving (A ± kI) v1,2 = 0
gives one eigenvector of Eq. (A3) for each eigenvalue and a
corresponding solution to Eq. (A2):

v1,2 =

⎡
⎢⎢⎣

±kN

(K − k2)
k2N

±k(K − k2)

⎤
⎥⎥⎦ , ζ1,2 (z) = v1,2e

∓kz. (A4)

Now, the system (A ± kI) v = 0 has only one nontrivial
solution, and hence each eigenvalue has only one eigenvector.
Nevertheless, following Ref. 38, two additional solutions
ζ3,4 (z) associated with the eigenvalues λ = ∓k may be found,
in the form

ζ3,4(z) = (v3,4 + zv1,2)e∓kz, (A5)

where v3,4 are a pair of a generalized eigenvectors of A
satisfying

(A ± kI) v3,4 = v1,2. (A6)
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However, instead of solving the 4 × 4 system (A6) for the eigenvectors v3,4 of A, we will now take a shortcut. Recalling that the
four-component system (A2) is just a means to the solution of the two-component system (A1), we first extract from Eq. (A4)
the associated pair of solutions for (ṽ1,ṽ3): [

ṽ1

ṽ3

]
1,2

=
[ ±Nk

(K − k2)

]
e∓kz.

From this first solution, appealing to Eq. (A5), we immediately look for a second solution pair of the form

[
ṽ1

ṽ3

]
3,4

=
{[

c1

c2

]
+ z

[ ±Nk

(K − k2)

]}
e∓kz.

Inserting this into (A2), we solve the resulting 2 × 2 system for c1 and c2, obtaining the second solution pair

[
ṽ1

ṽ3

]
3,4

=
{[ −N

± 2k

]
+ z

[ ±Nk

(K − k2)

]}
e∓kz.

b. Change of basis. Dropping the ± notation, the four solutions just obtained represent a general solution of the form[
ṽ1

ṽ3

]
= ã

[
Nk

K − k2

]
e−kz + b̃

[ −Nk

K − k2

]
ekz + c̃

[ −N + Nkz

2k + (K − k2)z

]
e−kz + d̃

[ −N − Nkz

−2k + (K − k2)z

]
ekz. (A7)

We convert to hyperbolic functions by introducing new constants,

â = ã + b̃, b̂ = ã − b̃, ĉ = c̃ + d̃, d̂ = c̃ − d̃;

this gives a new general solution of the form[
ṽ1

ṽ3

]
=

[
Nkb̂ − Nĉ

(K − k2)â + 2kd̂

]
cosh (kz) +

[
Nd̂ − Nkâ

−(K − k2)b̂ − 2kĉ

]
sinh (kz) + z

[
Nk(d̂ cosh (kz) − ĉ sinh (kz))

(K − k2)(ĉ cosh (kz) − d̂ sinh (kz))

]
.

Finally, replacing all entries in the top line with simple constants via

a = Nkb̂ − Nĉ, b = Nd̂ − Nkâ, c = (K − k2)â + 2kd̂, d = −(K − k2)b̂ − 2kĉ,

we solve for ĉ and d̂ to obtain the convenient form of the solution given in Eq. (22) in the main text.
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