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All-optical control of quantized momenta on a polariton staircase
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A. Löffler, S. Höfling, M. Kamp, and A. Forchel
Technische Physik, Physikalisches Institut, Wilhelm Conrad Röntgen Research Center for Complex Material Systems,
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Here we demonstrate a simple and reconfigurable way to create a polariton condensate in well defined discrete
momentum states, allowing us to manipulate the local polariton flow. To this end, we created a spatially varying
potential formed in the presence of noncondensed carriers by subjecting a microcavity to spatially modulated
nonresonant optical excitation. The choice of the spatial shape of this potential allows us to tailor the properties
of the polariton condensate in momentum space. Our results demonstrate a way to prepare a polariton condensate
in an adjustable momentum state and provide a first step toward the creation of functional all-optical elements
for polaritonic logic circuits on demand by projecting circuits onto an unprocessed planar sample.
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I. INTRODUCTION

All-optical logic circuits are promising alternatives to
electronic circuits,1 and their advantages and drawbacks are
heavily discussed.2,3 Recently much research has been devoted
especially to exciton-polariton based designs due to their effi-
cient coupling to external light fields and possible applications
of polariton condensates in terms of opto-spintronics.4–6 The
problems that need to be considered in realizing polariton-
based circuits are efficient designs for gates and switches,7,8

transistors9,10 and other functional elements, linking of several
logic elements,11,12 and preparation of the system in well
defined states.

Polaritons are composite bosons, and it has been shown that
a system of a macroscopic number of polaritons in a single
state shows several signatures of Bose-Einstein condensates
(BECs)13 and related features such as superfluidity14 and
persistent currents,15 which can be maintained at elevated
temperatures. Due to their short lifetime, polaritons form a
kind of dynamical BEC. It has been suggested to exploit these
special characteristics to build polaritonic logic circuits. Such
circuits need two main prerequisites: long coherence lengths
to create extended condensates and the possibility to create
arbitrary potentials to form functional elements and devices.16

While long coherence lengths have already been demonstrated
elsewhere,17 potentials have so far mostly been realized using
lithographic means such as using patterned microcavities18

or depositing thin metal films on top of them.19,20 These
techniques are able to create well defined potentials, but they
are necessarily static and determined at the time of processing
the sample. Further techniques include strain21 and acoustic
lattices22 which, however, do not allow for reconfigurable cir-
cuits. Recently, all-optical techniques, introducing potentials
by exploiting either the repulsive interaction of polaritons of
different spin23,24 to create barriers for flowing polaritons or
the repulsive interaction with carriers created by nonresonant
optical pumping,17,25 have been realized for simple, typically
Gaussian geometries. Using all-optical techniques, one of the
great advantages of polaritonic circuitry lies in the opportunity
to create arbitrary potentials and therefore also optically

projected circuits, which can be tailored by changing the shape
of the excitation on demand optically.

II. EXPERIMENTAL SETUP

In this work, we use nontrivial potential landscapes to
directly tailor the externally accessible momentum space
properties of a polariton condensate. We demonstrate the
capabilities of this approach by realizing a polariton BEC
populating several discrete linear momentum states in a given
direction. Under nonresonant excitation the presence of non-
condensed particles produces a mean-field repulsive potential,
much larger than those created when using resonant excitation
schemes, that matches the shape of the excitation spot.26 If
this potential varies in space, two scenarios are possible. Either
desynchronized condensates at different energies form27 or one
single condensate forms and the energy difference at different
spatial positions vanishes either due to polariton Josephson
currents28 or due to modulation of the local condensate
wave vector �kc(�r).26 We use the latter effect to tailor the
momentum-space distribution of a polariton condensate. A
sensible mean-field description of the condensate dynamics
can be obtained from a generalized Gross-Pitaevskii equation
in the local density approximation.26 For simple Gaussian ge-
ometries one finds the result that repulsive interactions create
an antitrapping potential that causes ballistic acceleration of
the condensate polaritons towards the edge of the condensate.
Under steady-state conditions the condensate state is given by
the following state equation:

h̄(ωc − ωLP ) = h̄2k2
c (�r)

2m
+ �E(�r). (1)

Here h̄ωc and h̄ωLP give the energies of the condensate and
the minimum of the lower polariton band, respectively, m

represents the lower polariton mass, and kc is the local conden-
sate wave vector. �E denotes the spatially varying blueshift
the condensed polaritons experience due to interactions. This
blueshift arises due to polariton-polariton interactions, local
modulations of the the ground state energy due to disorder,
and interactions with the reservoir of carriers created by
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pumping like electrons, holes, or excitons. The latter is usually
the dominant contribution to the blueshift for nonresonant
excitation. The magnitude of the blueshift is proportional to
the locally varying pump intensity under continuous pumping.
If the condensate forms a single state, the condensate responds
to the local variation in �E(�r) by acquiring a local change in kc

such that Eq. (1) is fulfilled. Given the boundary condition that
kc vanishes at the position of maximum pump intensity, Eq. (1)
already determines the condensate energy and wave-vector
modulus for a given pump geometry:

|kc(�r)| =
√

2m[h̄(ωc − ωLP ) − �E(�r)]

h̄2 . (2)

In our experiments the sample is held at 8 K and consists
comprehensively of 12 GaAs/AlAs quantum wells embedded
in a planar microcavity with 16 (20) AlGaAs/AlAs mirror
pairs in the top (bottom) distributed Bragg reflector. To study
the spatially, spectrally, and time resolved emission a liquid
crystal tunable filter with spectral resolution of 0.75 nm,
a liquid-nitrogen-cooled CCD and a synchroscan streak
camera with temporal resolution of ≈2–3 ps were used. For
calculations the polariton mass was assumed to be 5×10−5me,
where me gives the free-electron mass. We used nonresonant
pulsed excitation using a Ti:Sa laser with a pulse duration of
2 ps and a spatial light modulator (Holoeye-Pluto) to create
a quasi-one-dimensional wire staircase potential consisting of
16 steps of 1 μm length each. The experiments were carried
out at zero detuning. More detailed information on the sample
and a detailed characterization of the emission properties in
the uncondensed, condensed, and lasing regimes can be found
in Refs. 29 and 30. Each step of the imprinted potential defines
a plateau of constant pump intensity and the intensity at the
nth plateau is given by a fraction (1 − n

16 )I0 of the maximum
intensity I0, where n = 0, . . . ,15 in our case. At the position
of the highest intensity also the highest blueshift E0 is found.
In the direction orthogonal to the potential staircase, the width
of the pumping spot is ≈2 μm. While there is no trapping
potential that keeps the condensate from extending beyond
this region, the limited pump spot and polariton lifetime
cause it to become gain-trapped.31 For this geometry Eq. (2)
becomes

|kc(�rn)| =
√

2m
[
E0 − (

1 − n
16

)
E0

)]
h̄2 =

√
2mE0

16h̄2

√
n, (3)

so that the modulus of the wave vector is expected to be the
same at each position on a plateau. The shape we imprinted
on the excitation spot is shown in Fig. 1. The corresponding
energy-integrated real-space emission pattern and the intensity
profile along the staircase gradient direction can be seen
in Fig. 1. Due to diffraction, the emission pattern shows
some deviations from the ideal shape. The consequences and
perspectives for improvement will be discussed later. There is
still a significant amount of emission at distances up to 20 μm
away from the pump spot, which indicates expansion of the
polaritons.

Within the range of experimental parameters applied here
a single condensate state forms (see Sec. III). Its shape in
momentum space is determined by the local shape of the
pump spot as suggested by Eq. (3). The momentum-space

FIG. 1. (Color online) (a) Real-space shape of the excitation spot
used. (b) Intensity profile integrated along the y axis. The red line
gives a three-point-smoothed guide to the eye. The blue line gives
the target spatial shape of the excitation spot used as the input for the
SLM. (c) Normalized real-space intensity profile integrated along the
y axis on a logarithmic scale. There is still a significant amount of
emission up to 20 μm away from the steep edge of the staircase
potential, indicating polariton expansion away from the pump spot.

distribution of the condensate density at a detection energy
centered around 7.3 meV above the lower polariton energy
of 1.6060 eV is shown in the upper right panel of Fig. 2
for an excitation density of roughly four times the threshold
density Pthr. The polariton density is peaked along several
discrete values in the direction of kx , which corresponds to
wave vectors oriented along the polariton staircase potential.
These maxima form spontaneously as the condensate forms as
can be seen in the momentum-space distribution of the lower
polariton shown in the upper left panel of Fig. 2.

Here, the distribution is broad and no peaks are visible at
all. In order to demonstrate that it is indeed the presence of
the antitrapping background potential that causes momentum
quantization of the polariton condensate in the x direction,
we extracted the positions of the polariton density maxima in
momentum space and plotted them against the index number
of the corresponding maximum. The result is shown in the
lower right panel of Fig. 2. The dependence matches nicely
the square-root dependence that is expected for a staircase
potential with linear step size. The solid line gives a power-law
fit to the function

kx(n) = a(n − n0)p. (4)

The resulting fit parameters are shown in the figure. Parameter
a directly allows us to estimate the blueshift of the condensate
compared to the LP to 7.4 meV with higher precision than
just by using our tunable spectral filter, which has a spectral
width of 0.75 nm (≈1.2 meV). It should be noted that an
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FIG. 2. (Color online) (a) Polariton momentum-space pattern of
the uncondensed lower polariton branch. (b) Polariton momentum-
space pattern in the condensed regime. Discrete momentum states
occur in the kx direction. (c) Intensity distribution along ky for three
values of kx in the condensed regime. The line at kx = 0.45 μm−1

shows a double-peaked shape and differs significantly from the
other lines. (d) Center positions of the maxima in momentum space
seen in the condensed regime. The solid line gives a power-law fit
unambiguously showing the square-root dependence.

additional emission maximum is visible at kx ≈ 0.45 μm. Its
momentum-space intensity distribution differs strongly from
the other lines, as shown in the lower left panel of Fig. 2, and it
can most probably be traced back to momentum redistribution
of polaritons belonging to the first line (see Sec. V).

To demonstrate the tunability of our design we also
measured the time-integrated momentum-space polariton dis-
tribution at a different sample position and higher excitation
density of ten times Pthr for different emission energies. Results
are shown in the upper panel of Fig. 3 for (from left to
right) energy windows centered around 1.61021, 1.61230,
and 1.61440 eV. The stripe pattern in momentum space is
comparable to the one seen for lower excitation density at
the lowest energy. At higher energies two differences are
evident: The stripe distance increases for higher energies and
the polariton density is redistributed from ky = 0 toward larger
values of ky . The first effect can be seen in more detail in the
lower panels of Fig. 3, which show cuts through the intensity
distributions along ky = 0 and the positions of the maxima
in momentum space versus their index number, respectively.
While the maxima at kx = 0 coincide for all three energies,
the maxima with higher index number tend to shift to higher
momentum values for larger step sizes as shown by dashed

FIG. 3. (Color online) (a)–(c) Polariton momentum-space dis-
tributions in the condensed regime at central energies of 4.2, 6.3,
and 8.4 meV above the lower polariton ground state. (d) Polariton
momentum-space distributions corresponding to (a) (black), (b) (red)
and (c) (blue) integrated along ky . Green-dashed lines indicate the
maxima with index numbers 1, 4, and 6, respectively. (e), Center
positions of the maxima in momentum space. The solid lines represent
power-law fits.

green lines for the maxima with index numbers 1, 4, and
6, respectively. The solid lines in the lower right panel are
power-law fits to the positions of the maxima which give the
fit parameters indicated in the plot. All three curves show
only small deviations from ideal square-root behavior. The
shift of the positions of the maxima can be explained when
taking into account that the background carrier population will
be highest after the excitation pulse and decrease afterwards.
Accordingly the emission energy shifts toward smaller values
as the background carrier number decreases. The momenta
the condensed polaritons acquire at each of the steps of the
staircase potential also decreases, which demonstrates nicely
that the momentum-space distribution is indeed tunable by
varying the imprinted potential. The fit values correspond to
blueshifts of 4.7, 5.9, and 7.9 meV from the LP energy of
1.6060 eV, respectively. The emission energies are therefore
identified as 1.6107, 1.6119, and 1.6139 eV, which is in good
agreement with the central energies investigated.

Further interesting questions are why the momentum
quantization occurs on discrete lines in momentum space and
not on discrete momenta and why the polariton expansion
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FIG. 4. (Color online) Real (a) and
momentum-space (b) emission pattern of a
polariton condensate created by an ideal
staircase-shaped pumping spot taking only ge-
ometrical broadening into account. Real- (c)
and momentum-space (d) emission pattern of
a polariton condensate created by an imperfect
staircase-shaped pumping spot taking only geo-
metrical broadening into account. The smoothed
edge along the y axis causes a large broadening
in momentum space.

is anisotropic with more polariton flow into the ky direction
from the topmost step of the staircase as compared to the
−kx direction. To explain this behavior it is necessary to take
the small size of each potential step into account, which is
only 2 μm2. The small spot size in the direction perpendicular
to the staircase potential may introduce two effects that can
lead to significant broadening of the polariton distribution
in momentum space: the fundamental broadening caused by
position-momentum uncertainty and a broadening caused by
imperfections of the shape of the potential due to diffraction.
We will call the latter geometrical broadening in the following.
In order to distinguish which component is dominant here, we
calculated polariton distributions from a phenomenological
model that only takes geometrical broadening into account.
The results are shown in Fig. 4 (see Sec. IV). Here the upper
panels show an ideal staircase potential and the momentum
space distribution associated with it, while the lower panel
gives the real-space and momentum-space distributions for a
potential with blurred edges. The results shown in the lower
panel are in good qualitative accordance with the experimental
results in Fig. 2. Now we check whether the broadening
is geometry or uncertainty limited. The 2 μm full-width-at-
half-maximum step width corresponds to a standard deviation
of the underlying real-space polariton distribution in the y

direction of roughly σx ≈ 0.85 μm for rectangular, sigmoidal,
or Gaussian spot shapes. This allows us to determine the
lower bound of the polariton wave-vector uncertainty in the
y direction as σk � 0.59 μm−1. For the simulated data in the
lower panel of Fig. 4 and the experimental data the standard
deviation of the polariton wave vector is at least 0.7 μm−1 or
even larger, which shows that the broadening is larger than
the limit imposed by uncertainty, and therefore geometrical
broadening plays a role. For high pump densities, the effective
spot slope in y direction tends to look like a Gaussian instead of
a step, and polaritons are accelerated ballistically to the region
outside the pump spot potential. This causes the intensity
redistribution in the ky direction observed in Fig. 3.26 But
it is also clear that the momentum broadening seen is close to

the uncertainty limit and therefore the quality of the imprinted
potential is sufficient. Nevertheless it should be noted that the
estimate of the lower bound is a pessimistic one for the limit
of very short polariton lifetimes. As the polaritons may move
away from the pump beam the real spatial polariton distribution
will be broader than the bare step width.

It is also interesting to estimate the step width one should
aim for to reach the uncertainty limit for a perfectly imprinted
potential, as shown in the upper panels of Fig. 4. In that
case the typical geometrical broadening can be almost as
small as 0.1 μm−1, which already requires a spatial extent
of roughly 10 μm (full width at half maximum) to reduce the
uncertainty-limited broadening to a magnitude comparable to
the geometrical broadening.

III. SYNCHRONIZATION

To check whether a polariton condensate at a single energy
forms when a staircase-shaped spot is used or condensation
occurs in several energy states at once, we performed a spa-
tially, spectrally, and time-resolved analysis of the condensate
emission. As can be seen in Fig. 5, at high excitation powers
and earlier times when the blueshift is quite large several
condensate modes can be present simultaneously (upper right
panel). After an initial relaxation phase one common ground
state develops for lower excitation densities (upper left panel).
The energy of this state slowly decreases with time as the
background carrier density decreases too (lower panels).
For very high excitation densities the condensate may stay
fragmented even at late times (lower right panel). This behavior
arises most probably due to the system transiting into the
weak coupling regime accompanied by the onset of lasing.
While the background carriers need to relax spontaneously
towards the polariton branches in the strong coupling regime,
they can directly couple efficiently to the light field in
the lasing regime. In the first case the background carrier
population will decay with a constant rate everywhere, while
in the latter case stimulated emission may cause spatial hole

155320-4



ALL-OPTICAL CONTROL OF QUANTIZED MOMENTA ON A . . . PHYSICAL REVIEW B 85, 155320 (2012)

FIG. 5. (Color online) Spatially resolved real-space emission
pattern emitted from the microcavity for pump densities below (left
panel) and above (right panel) the transition to the weak coupling
regime. The upper row shows the emission pattern at large blueshifts
early in the pulse. The lower row gives the emission patterns at smaller
blueshifts 90 ps (left side) or 120 ps (right side) later.

burning in the background carrier population, which actually
strongly reshapes the potential. The formation of binding and
antibinding states might also occur and change the emission.
However, reliable identification of those might require cw
pumping.

It should be further noted that the occurring blueshifts can
be quite large, and it is interesting to consider the effects
of the system transiting into the weak coupling regime.
The system is expected to transit into the weak coupling
regime approximately when the blueshift due to interactions
becomes comparable to the energy difference between the
lower polariton and the bare cavity mode. A more detailed
study of the transition into the weak coupling regime under
comparable experimental conditions on the same sample can
be found in Ref. 29, where it has been shown that the transition
occurs at a blueshift of roughly 7.7 meV under the conditions
present in this experiment. While the results shown in Fig. 2
are taken at smaller blueshifts, the results shown in Fig. 3
are already more complicated. Here, the largest blueshift is
roughly 8 meV. However, it is apparent that there is no emission
from states with small k, but the emission comes from states
with k �= 0. Around k = 0 the major part of the blueshift
arises due to Coulomb interactions, while for increasing k

the kinetic energy also needs to be taken into account. At this
point it is important to consider that only the blueshift due
to Coulomb interactions is responsible for screening effects
that reduce the exciton oscillator strength and in turn lead
to breaking of the strong coupling regime, but not the kinetic
energy. Therefore, the existence of a region without condensate
emission in momentum space as seen most prominently in
Fig. 3(c) is indeed expected, as the strong coupling regime
would be broken near k = 0. Instead, the emission comes
mainly from regions in momentum space where |k| is at
least 1 μm−1. In this region, the kinetic energy gained by
the polaritons already amounts to roughly 1 meV, which in
turn means that Coulomb interactions cause a blueshift around

7 meV, which is still below the transition to the weak coupling
regime.

IV. THEORETICAL MODEL

We implemented a simple and phenomenological model to
calculate the results for the geometrical broadening shown in
Fig. 4. Starting from the state equation (1), it was first assumed
that the contributions to the blueshift that are caused by the
pump beam are dominant, and polariton-polariton interactions
and disorder can be neglected or incorporated by slightly
changing the shape of the assumed pump beam. Next, it was
assumed that a local density approximation can be applied,
which basically means that the system can be considered
similar to a homogeneous system with a locally varying pump
rate. Under such conditions the locally acquired wave vector
depends solely on the local pump rate, and quantum pressure
terms can be neglected. This approximation is not necessarily
justified for a staircase potential, but effects beyond these
approximations can be treated in terms of a modified pump
spot. For calculating the momentum space distribution, we now
assumed that the x and y components of the wave vector can
be separated. The pump spot is divided into stripes along the y

direction at fixed x positions. The value of kx is assumed to be
the same for each position inside the stripe and is determined by
the difference between the highest pump density of the whole
pump spot and the highest pump density inside the stripe. The
value of ky is then determined by the difference between the
pump density at a given position and the highest pump intensity
within its stripe. In the calculations for the momentum-space
emission patterns shown in Fig. 4, sigmoidals have been used
to model the plateaus. To simulate the imperfections in imaging
the staircase, the edge steepness of these sigmoidals has been
varied.

However, the maxima in momentum space are broader in
the experiment compared to the calculations, which is caused
by two main effects. First, the calculations neglect disorder in
the sample, which is supposed to add some random value to the
local wave vectors. Second, the spectral width of the tunable
liquid crystal filter is above 1 meV. For pulsed excitation
the condensate energy will slowly decrease with time and
so will the distance between the lines in momentum space.
Accordingly, the measured momentum-space distribution will
give an average over all those distributions that correspond
to condensate energies within the transmission window of the
filter used, which also broadens the spectra. Also, diffusion
of the background carriers which will also smooth the edges
might have some effect. These effects could be reproduced by
varying the edge steepness of the sigmoidals in the direction
of the staircase independently of the edge steepness in the
perpendicular direction. However, there is no fundamental
physical insight that could be gained by doing so.

V. OPTIMIZATION

It is worthwhile to discuss how the performance of
imprinting the spatially varying potential can be improved.
The width of the maxima in momentum space could be
reduced drastically by using continuous-wave instead of
pulsed excitation, which would in turn require a microcavity
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with a higher quality factor and lower threshold excitation
density. The broadening could be further reduced for enlarged
steps of equal intensity, as both the influence of diffraction on
the edges and the influence of position-momentum uncertainty
would be reduced. Also, using a two-dimensional staircase
or pyramid potential would significantly improve the results.
However, both approaches need higher coherence lengths and
minimal disorder over a large area of the sample. While long
coherence lengths have already been demonstrated,17 disorder
poses a serious problem because, even in samples with reduced
disorder, cooling the sample to cryogenic temperatures already
changes the disorder profile in an unpredictable manner.
However, recently developed strategies to cancel the disorder
potential32 might solve this problem.

Along these lines it is also worthwhile to discuss the
origin of the additional maximum visible in momentum space
between the maxima with index numbers 0 and 1. However,
this maximum differs significantly from the others as can be
seen from the intensity distribution in ky direction shown in
the middle panel of Fig. 2. While the central maximum (kx =
0 μm−1) and those following the square-root dependence
(e.g., kx = 1.2 μm−1) are symmetric around ky = 0 μm−1,
the additional line shows a structure consisting of two peaks
at finite values of ky . These two peaks correspond to a
total condensate wave vector of |kc(�r)| ≈ 0.7 μm−1, which
is exactly the wave vector evidenced at the discrete line of
index number 1. Therefore, this additional line most probably
may be attributed to the maximum with index number 1, but
has a momentum not completely aligned along the x axis.
The additional line might also arise due to diffraction effects
at the steep edge of the highest step of the polariton staircase.
Diffraction-induced imperfections of the spot shape may create
some additional small plateau. If such a plateau occurs, it
will introduce emission on another line in momentum space.
It is also possible that this maximum is created by elastic
scattering of polaritons from the first plateau on a symmetric

circle around k = 0. Further studies using cw excitation will
be needed to clear this point up.

VI. CONCLUSION AND OUTLOOK

In conclusion, we show the potential of an all-optical
scheme allowing one to tailor the momentum-space distribu-
tion of a polariton condensate by spatially varying nonresonant
excitation. Discrete steps occur in momentum space, whose
position can be tuned by adjusting the local excitation density.
Our results provide a first step toward studies of momentum-
sensitive all-optical switches and gates under well defined
conditions. In this respect it is especially interesting that we are
able to create directed asymmetric polariton flow. While it is
easy to create directed polariton flow using resonant excitation,
we have shown that control of the flow direction is also possible
by means of nonresonant excitation. This directionality could,
for example, be utilized for spatially selective switching by
placing a staircase potential in between two regions pumped
below the condensation threshold. Finally, we would like to
point out that the potentials we used are also of major interest in
experiments on polariton condensate flow in wire structures,17

where they could be used to induce all-optical functional
elements. Here it would be very interesting to place a staircase
potential obstacle in the path of flowing polaritons. As the
polaritons might traverse the obstacle differently depending on
whether they arrive from the low-potential or the high-potential
side, a tailored asymmetric potential might provide means to
create a diode for flowing polaritons.
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A. Forchel, and Y. Yamamoto, Nature Phys. 4, 700 (2008).

21R. Balili, V. Hartwell, D. Snoke, L. Pfeiffer, and K. West, Science
316, 1007 (2007).

22E. A. Cerda-Méndez, D. N. Krizhanovskii, M. Wouters, R. Bradley,
K. Biermann, K. Guda, R. Hey, P. V. Santos, D. Sarkar, and M. S.
Skolnick, Phys. Rev. Lett. 105, 116402 (2010).

23A. Amo, S. Pigeon, C. Adrados, R. Houdré, E. Giacobino, C. Ciuti,
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