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Shape of polygonal quantum dots and ground-state instability in the spin polarization
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We theoretically investigate the ground-state electronic structure and the spin polarization of four electrons
confined in two-dimensional (2D) polygonal quantum dots. We employ standard mean-field theory approaches
using unrestricted Hartree–Fock (UHF) and density functional theory (DFT) calculations. Resonant UHF
configuration interaction (res-UHF CI) calculations were also performed to incorporate the electron correlation
more intuitively. Odd polygons (trigons and pentagons) preferentially generate the ground-state triplet as predicted
by Hund’s rule, whereas even polygons (tetragons, hexagons, and octagons) promote ground-state instability in
the spin multiplicity and tend to produce an anti-Hund state of the ground-state singlet with strengthening of the
interelectron interaction. The circle, a limited polygon having an infinite number of apexes, divides these odd
and even polygons, and the ground-state instability can be well classified by the area of the polygon apexes that
protrudes from an equisized circle.
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I. INTRODUCTION

Since the first fabrication of quantum dots (QDs),1,2

advances in semiconductor nanotechnology have enabled QDs
with diverse morphologies to be fabricated. By artificially
controlling the electronic shell structures of these QDs,
experimentalists have found several novel and important
phenomena caused by the interelectron interaction.3,4 The-
oreticians have carried out their “gedankenexperiments” to
reveal the inherent nature of many-electron system. Synergy
between these experiments and theories further accelerates
the research development in these areas. The two-dimensional
(2D) QD system is particulary important for theoretical
study because this system serves as a theoretical model to
deepen our understandings on the complicated many-electron
state system.5,6 Bryant was first to calculate the ground-state
electronic structure of the square QD (SQD) system, including
the electron correlation via the configuration interaction (CI)
technique.7 Since then, several crucial works have been carried
out (see Reimann and Manninen8 for a comprehensive review).

The relationship between the spin state and the inter-
electron interaction is one of the fundamental problems in
the ground state of these 2D QD systems. Koskinen et al.9

studied the electronic structures and spin states of a QD
system with a 2D harmonic potential by varying the number
of confined electrons (N = 2–46). They performed density
functional theory (DFT) calculations using the local spin-
density approximation (LSDA) and found that the resulting
total spin S agrees with that predicted by Hund’s rule when
the system has a small confinement area. They also found a
few spin isomers with total spin of zero (S = 0) that have
slightly higher energies than the ground-state configuration.
Intriguingly, they discovered that one of these completely
unpolarized states has an even lower energy than the Hund
state (S = 2, N = 24, 34). Thus they conjectured that an
anti-Hund state of the ground-state singlet (N = 24 and 34)
may exist, whose space-dependent spin polarization exhibits
spatial oscillations similar to spin-density waves (SDWs) in

bulk systems.10 Yannouleas and Landman11 also confirmed
the existence of the same SDW ground states by performing
spin-and-space unrestricted Hartree-Fock (UHF) calculations.
They conjectured that these SDW ground states result from
spontaneous symmetry breaking. In contrast, Hirose and
Wingreen12 used exact diagonalization to demonstrate that the
SDW ground states result from an unphysical mixture between
states with different total spins. They concluded that these
anti-Hund states are artifacts of broken spin symmetry due to
mean-field theory (MFT). However, Hirose and Wingreen12

further suggested that Hund’s rule may be violated based
on their observation of the spin-unpolarized ground state of
S = 0, Lz = 0 when they varied the confinement potential to
give a larger splitting in the single-particle energies at higher
angular momentum.

Similar studies for the 2D square QD system have been
carried out by Austing et al.,13 who considered the effect
of ellipsoidal deformation on the electronic level structure
and magnetism of QDs both theoretically and experimentally.
They predicted a spin triplet-singlet transition in accordance
with the deformation of the circular QD. Creffield et al.14

have carried out the first EDM study of the electronic
structure for the polygonal QD system of triangle, square, and
hexagon. They examined the behavior of the lowest-energy
levels of two electrons confined to 2D polygonal QDs, and
found the quasicrystalline structure in the ground-state charge
distribution for sufficiently large QDs. They also discussed
the magnetic field dependence of the low-energy spectrum
of the two-electron square QD system.15 Nieminen’s group
studied the electronic structures and related properties of
these 2D QD systems extensively and systematically. Räsänen
et al.16 have studied the square and rectangular QD systems
intensively by using the spin-density-functional theory (SDFT)
and quantum Monte Carlo methods, demonstrating that the
electronic structure is very sensitive to the shape of the QD
and that the S = 1 state in rectangular QDs is bracketed by
SDW-like solutions. They also discussed the effect of an
external magnetic field for 2D rectangular QDs having a
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hard-wall potential.17 Their DFT study has been further
extended on the formation of Wigner molecules in the
polygonal QDs of triangle, square, pentagon, and hexagon,
where they have carefully investigated the two-electron singlet
state by comparing the symmetry-broken SDFT ground state
with the symmetry-preserved DFT solutions.6,18 The problem
of broken symmetry in the DFT approach has also been studied
by Harju et al.5 of the Nieminen group by performing the
exact diagonalization computations alongside with the DFT
calculations.

These theoretical studies indicate that the electron correla-
tion needs to be considered in order to determine quantitative
details of the ground-state electronic structure and spin state
when the interelectron interaction is strengthened. Neverthe-
less, in the present study, we carry out the UHF and DFT
calculations of the MFT approach, because our current purpose
is not to reveal quantitative details of the electronic structures
but rather to investigate the relationship between the spin
multiplicity of the ground state and the morphology of 2D
QDs systematically. The MFT approach can give “consistent”
results in terms of crude estimates only for the energetic
stabilities of the Hund and anti-Hund states.8,26 Accordingly,
we focus on 2D polygonal QDs, whose apexes (M) equal
to 3 (trigon), 4 (tetragon), 5 (pentagon), 6 (hexagon), and
8 (octagon).19 We also consider a circle, which is a limited
polygon having an infinite number of apexes. We seek to
clarify the differences resulting from the apex shapes of these
polygons. Consequently, we surround the polygons with an
infinite potential barrier (a hard wall) rather than the harmonic
potential, as the wave function confined by the latter penetrates
the harmonic wall. This will accurately model the detailed
differences of the morphologies and apex shapes of polygons.
We here discuss the four-electron system of N (= Nα + Nβ) =
4. This number is the minimum confined electrons required
to represent all Coulomb interactions (including all direct
and exchange terms), because 2D polygonal and circular
QDs generate the nondegenerate single-electron ground state
(n,l) = (0,0), whereas the first excited one is doubly degener-
ate (n,l) = (0,±1).20 Thus the straightforward application of
Hund’s rule predicts a triplet ground state for the four electrons
confined in the above-mentioned 2D polygons irrespective of
the apex number M . As such, the present study qualitatively
(but systematically) discusses the applicability of Hund’s first
rule to polygons. To numerically determine the ground state,
we examine the energetics of a four-electron system by varying
the spin configuration between the fully spin-unpolarized
(|Nα − Nβ | = 0; singlet, S) and spin-polarized (|Nα − Nβ | =
2; triplet, T) states and by changing the polygon size.

II. CALCULATIONAL METHODOLOGY

Both the coupled UHF and Kohn-Sham21,22 DFT/LSDA
equations are solved numerically by the finite difference
method in which the wave function is discretized into real
space grid points. A Cartesian (x and y) mesh is employed
for the systematic execution of the finite difference method.
However, we vary the number of mesh divisions based on
the polygon. We adopted a real-space grid method with
32 × 32 mesh points for most polygons (M > 4; including
circles) because this mesh well represents the apex shapes

and the single-electron wave functions confined within the
polygon. However, regular and modified trigons require finer
meshes; for example, in Kubota trigons we employed a
90 × 90 mesh to reproduce their extremely narrow apexes.
We also assume that the present SQDs are fabricated by GaAs
and have an effective mass of m∗ = 0.067me and a relative
permittivity ε∗ = 12.52, resulting in an effective Bohr radius
of a∗

B = 9.90 nm. Accordingly, the energy is scaled by the
effective atomic unit (a.u.), 2Ry∗ = m∗e4/h̄2ε = 11.61 meV.
The details of the calculations have been reported elsewhere.23

III. TETRAGON AND TRIGON

We begin our discussion with the four electrons confined in
the 2D regular tetragon, which is surrounded by an infinite hard
wall and has a point group symmetry of D4h. We compare the
total energies of the lowest spin-singlet (ES) and spin-triplet
(ET) states in Fig. 1(a),24 where we plot the difference �EST =
ES − ET against the confinement length L. Accordingly, a
positive value in Fig. 1(a) indicates the triplet stable and a
negative value indicates the singlet stable (S/T profile). The
UHF approach (red line) demonstrates that the four electrons
confined in the regular tetragon produce the ground-state triplet
(spin polarized, |Nα − Nβ | = 2) when the confinement length
is sufficiently small (L = 2 a.u., for example). This feature
is well consistent with Hund’s rule, because the geometrical
symmetry of D4h conserves the degeneracy in the first excited
(single-electron) states (eu). However, Fig. 1(a) indicates that
the total-energy difference �EST drops to almost zero at L ∼ 3
indicating instability between the singlet and triplet states (S/T
instability). Furthermore, one finds a negative value of �EST

when L > 4. This means that in this range the ground state
singlet is energetically preferable (spin unpolarized, |Nα −
Nβ | = 0) and Hund’s rule is violated. Figure 1(a) also indicates
that this UHF ground-state singlet is most stable around L ∼ 4
and becomes less favorable as L increases. Also, apparent is
the spin-singlet and spin-triplet states become energetically
degenerate when L is infinite. Quite similar results are also
obtained from the DFT/LSDA calculation [green line in
Fig. 1(a)]. The partial inclusion of the electron correlation via
the DFT “exchange-correlation” term extends the Hund state
of the ground-state triplet until L = 6.25 However, the energy
difference �EST likewise crosses the zero line, indicating the
anti-Hund state of the ground-state singlet. Thus both MFT
approaches (UHF and DFT) demonstrate that the four-electron
system confined in the regular tetragon changes its ground
state spin-polarization from ferromagnetic (spin-triplet, |Nα −
Nβ | = 2) to antiferromagnetic (spin-singlet, |Nα − Nβ | = 0)
as the interelectron Coulomb interaction grows stronger.24

Ignoring the commonly known drawbacks of the UHF
method (namely, spin contamination and lack of electron
correlation), we qualitatively analyze the resulting spin-
polarization distribution. Figure 1(b) gives the calculated
spin density for the spin singlet (|Nα − Nβ | = 0) and triplet
(|Nα − Nβ | = 2), respectively. One should note that the UHF
ground-state singlet generates an alternating spatial oscillation
in accordance with the spin direction (at L = 6, for example).
Thus spin-up and spin-down states result locally while the
system is completely unpolarized (|Nα − Nβ | = 0, S = 0).
Accordingly, the fourfold rotational axis C4 found in the
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FIG. 1. (Color online) Comparison of the total energies of four electrons confined in a regular tetragon (D4h) with an area of L × L(a).24

To calculate the total energy, we considered two spin states: singlet (unpolarized; |Nα − Nβ | = 0) and triplet (polarized; |Nα − Nβ | = 2), and
employed the MFT approaches of UHF (red) and DFT (green). We also give the S/T profile calculated by the res-UHF CI method (blue).
However, in the hatched region of L < 5, the present res-UHF CI method gives rather inconsistent results due to the poor basis sets of
scf(self-consistent)-UHF Slater solutions because the strong confinement allows the scf solutions to be the same. The figure shows the resulting
UHF spin densities (L = 6) for the unpolarized and polarized states calculated by the (b) UHF and (c) res-UHF CI methods. The res-UHF CI
calculation demonstrates that the resulting zero spin is uniformly distributed with no spatial oscillations in the spin up and spin down (see inset),
whereas the apparent SDWs are given by the UHF results. The calculated expectation value for the angular moment is exactly 〈Lz〉 = 0.000.

total electron density now becomes the twofold one in the
spin density. In contrast, the lowest UHF triplet state is no
longer the ground state [L = 6, Fig. 1(b)], so it does not lead
to any rotational symmetries in the spin density. The DFT
results exhibit similar characteristics. The strong confinement
(L = 2) causes the Hund state of the ground-state triplet,
where the spins are polarized. In this, the fourfold rotational
symmetry in the D4h Hamiltonian is well preserved both in the
spin and total electron densities [see Fig. 1(a)]. However, the
spin density oscillates spatially in the DFT ground-state singlet
(at L = 14, for example) as shown in the inset of Fig. 1(a).

These characteristics are highly consistent with those found
by Koskinen et al.,9 and Yannouleas and Landman.11 However,
as Hirose and Wingreen12 concluded, the anti-Hund state of the
ground-state singlet, which has the SDW, is an artifact of the
broken spin symmetry due to the mean-field theory, being an
unphysical mixture of states of different total spin. We have,
therefore, included the electron correlation to improve this
symmetry breaking and to find the correct ground state. For this
subject, we have carried out the multireference configuration
interaction (CI) treatment by employing the resonant UHF
configuration interaction (res-UHF CI) method,27–29 which
approximates a many-body wave function by the superposition
of nonorthogonal Slater determinants. Figure 1(c) illustrates
the spin density for the lowest spin-singlet and spin-triplet
states obtained by the res-UHF CI calculations. The unpo-
larized spin-zero state extends uniformly to cause the spin
singlet whereas the fourfold rotation is found in the spin triplet
[see Fig. 1(c)]. Thus the inclusion of the electron correlation
through the res-UHF CI treatment removes the symmetry
breaking and restores the symmetry of the Hamiltionian for

both the spin-singlet and spin-triplet states. Nevertheless,
what one should note is that the spin-unpolarized anti-Hund
state (|Nα − Nβ | = 0) is still more energetically stable than
the spin-polarized Hund state (|Nα − Nβ | = 2) when the
confinement is weakened [blue line in Fig. 1(a)]. Thus the
crude estimates given by the MFT approaches (UHF and DFT
calculations) still give empirically consistent results in terms
of the relative energetic stabilities of the Hund and anti-Hund
states.8,26

What ground state do the four electrons cause when they
are confined in the 2D trigonal QD? Figure 2(a) shows the
corresponding UHF S/T profile when the four electrons are
confined in the regular trigon (M = 3) having a point group
symmetry of D3h as a function of the confinement area A =
(L∗)2. The resulting positive value of �EST [see Fig. 2(a)]
indicates that the four electrons always prefer the ground-state
triplet and their spins are polarized to be ferromagnetic. This
finding is well consistent with the Hund rule, but it differs from
the above-mentioned result for a square QD.

Figure 2(b) gives the resulting spin density for the spin-
singlet (|Nα − Nβ | = 0) and spin-triplet (|Nα − Nβ | = 2)
states. For the trigonal confinement, three peaks appear at the
apex edges in larger trigons, irrespective to the spin-singlet
and spin-triplet states. For the singlet state, the remaining
one electron causes a peak at the space, but destroys the
geometrical symmetry of the trigonal Hamiltonian. Accord-
ingly, the spin-singlet distribution is unnatural, and the lowest
spin-singlet state of Nα − Nβ = 0 is no longer the ground state
although an “SDW-like” distribution might appear. Contrary,
the triplet state places the remaining electron (having the
opposite spin) at the center as shown in Fig. 2(b). This
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FIG. 2. (Color online) (a) UHF S/T profile for four electrons confined in a regular triangle (D3h) as a function of the effective confinement

length L∗ = 4√3
2 L, where L is the base line of the regular triangle. (b) The resulting spin density for the spin-singlet (unpolarized; |Nα − Nβ | = 0)

and spin-triplet (polarized; |Nα − Nβ | = 2) states with the corresponding scf-MOs of these four electrons (see also Appendix A).

distribution is natural to maintain the geometrical symmetry of
the trigonal Hamiltonian. Consequently, the ground state of the
trigon is the Hund state of |Nα − Nβ | = 2 (triplet) with having
the “reasonable” space-dependent spin polarization shown in
Fig. 2(b); α (β) spins localize at the three apex edges while
a β (α) spin localizes at the center. This feature is consistent
with the state suggested by the Ising spin model.30 Therefore
it can be simply said that these characteristics are caused by
the difference/agreement in the number of confined electrons
(N = 4) and the number of apexes (M). The difference of
N = 4 and M = 3 in trigon prefers the ground-state triplet
due to the rational spin distribution, whereas the agreement of
N = 4 and M = 4 in tetragon causes the ground S/T instability
in tetragon (see Appendix B). However, the resulting zero
approach in �EST both in trigon and tetragon consistently
demonstrate the energetical degeneracy between these spin-
singlet and spin-triplet states in the finite length (L = ∞).

IV. POLYGONS

Four electrons confined in a trigon (M = 3) generate
the Hund state of the ground-state triplet (|Nα − Nβ | = 2),
whereas four electrons confined in a tetragon (M = 4) can
change the ground state from a spin-polarized (Hund) state to
a spin-unpolarized (anti-Hund) state (|Nα − Nβ | = 0) with
increasing interelectron interaction strength. These results
raise the possibility that odd polygons (with an odd number
of apexes) generate the Hund ground state, whereas even
polygons (with an even number of apexes) prefer the anti-Hund
ground state. To explore this, we extended our calculations
to other polygons (namely, pentagon, hexagon, octagon, and
circle).31 Figure 3 shows the S/T profiles of these 2D polygons
as functions of their confinement areas A = (L∗)2.

When the four electrons are confined in the even poly-
gons [hexagon (M = 6), octagon (M = 8), and the previ-
ously shown tetragon (M = 4)], they energetically prefer the

ground-state triplet (|Nα − Nβ | = 2) under strong confine-
ment, consistent with Hund’s rule. However, with an expansion
of the confinement area A (increase in L∗), the total-energy
difference �EST becomes almost zero at the critical length LST

(where �EST = 0) and the singlet/triplet (S/T) instability is
generated. A further increase in L∗ changes the value of �EST

to negative. Consequently, the four-electron system in the even
polygons has the potential to cause the ground-state singlet

FIG. 3. (Color online) S/T profiles for tetragon, hexagon, and
octagon (even polygons) and for trigon and pentagon (odd polygons)
obtained by the UHF calculation. L∗ indicates the effective confine-
ment length defined by L∗ = A, where A represents the confinement
areas of these 2D polygons. For the tetragon, we compared the
scf solutions by employing two sets of the initial states; one from
the single-electron eigenstates (broken line) and the other is those
obtained by the two-electrons scf eigenstates (solid line).
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(|Nα − Nβ | = 0). One should further note that the preference
for the anti-Hund ground state in even polygons decreases
with increasing apex number M . Accordingly, the critical
confinement length LST increases with an increase in M . As a
result, the S/T profiles for the even polygons approaches that
of the circular system as the number of apexes M increases
(demonstrated in Fig. 3).

In contrast, four electrons confined in odd polygons
(namely, trigon M = 3 and pentagon M = 5) have a greater
preference for the Hund state of the ground-state triplet
than four electrons confined in even polygons with the same
confinement area A (L∗). Figure 3 shows that the Hund state
of the ground-state triplet exists until L∗ = 6 for a pentagon. It
also shows that the S/T profiles for odd polygons approaches
that of a circle with increasing number of apexes M . In
other words, the critical confinement length LST for odd
polygons decreases with increasing M . Thus odd polygons
(trigon, pentagon) prefer to generate the ground state triplet
as predicted by Hund’s rule, whereas even polygons (tetragon,
hexagon, octagon) cause ground-state instability in the spin
multiplicity and tend to produce the anti-Hund state of the
ground-state singlet with strengthening of the interelectron
interaction. The circle, which has an infinite number of apexes
(M = ∞), is intermediate between these two cases.

V. MODIFIED TRIGONS

Figure 3 shows that the spin multiplicity for the four-
electron ground state strongly depends on the number of
apexes M , i.e., it depends on the shape of the polygon (M)
as well as its size A = (L∗)2. Here, we discuss the shape
and size of the confinement area by studying a regular trigon
and its derivatives, because the four electrons confined in the

regular trigon uniformly generate the consistent Hund state
of the ground-state triplet (|Nα − Nβ | = 2) (see Fig. 2). The
modified trigons considered are formed by curves of constant
width whose diameters d are the same for any point on
the opposite side [see Fig. 4(a)]. There are two well-known
modified trigons: the Reuleaux trigon and Kubota trigon [see
Fig. 4(a)]. The Reuleaux trigon has convex sides; whereas the
Kubota trigon has concave sides. Consequently, the apexes of
a Reuleaux trigon have larger angles than those of a regular
trigon, whereas the apexes of Kubota trigon are narrower.
Both of these modified trigons, though, have the same point
group symmetry (D3h) as a regular trigon. Their S/T profiles
[see Fig. 4(b)] indicate that four electrons confined in both
Reuleaux and Kubota trigons give the Hund state of the
ground-state triplet, similar to that for a regular trigon. One
should note that a Kubota trigon enhances the preference for
the Hund ground state, whereas a Reuleaux trigon weakens
it. A regular trigon is intermediate between the two modi-
fied trigons, provided the confinement area A remains the
same.

In Fig. 4(c), we replot the S/T profiles for Reuleaux and
Kubota trigons against the diameter d. When Reuleaux and
Kubota trigons have the same diameter d, they will have the
same interelectron Coulomb energy because the Coulomb
interaction is determined by the interelectron distances of
the confined electrons (if the extensions of the apexes and
the difference between the convex and concave sides are
neglected). Accordingly, the replotted S/T profiles might
be expected to coincide. However, as shown in Fig. 4(c),
they have different profiles even when their diameters are
the same. Thus Reuleaux and Kubota trigons do not have
the same energy difference �EST even when they have the
same confinement area A [see Fig. 4(b)] or the same diameter

FIG. 4. (Color online) (a) Comparison of regular, Reuleaux, and Kubota trigons. Modified trigons proposed by Reuleaux and Kubota are
formed by a trace of constant width distance d , but they have the same point group symmetry (D3h) as a regular trigon. Kubota and Reuleaux
trigons have the following relations between the confinement area A and width distance d: A = π

8 d2 (Kubota) and A = 1
2 (π − √

3)d2

(Reuleaux). Accordingly, when these modified trigons have the same base length of, for example, L = 6, they will have different confinement
areas and effective confinement lengths L∗ of 5.037 (Reuleaux), 3.948 (regular), and 2.400 (Kubota). The UHF S/T profiles of these three
modified trigons are shown as functions of (b) confinement area and (c) diameter d .
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d [see Fig. 4(c)]. This feature indicates that the apex shape (i.e.,
the apex angle) is crucial for energetic stabilization because
the quantum eigenstates are determined by the coherency of
the wave functions confined inside.

VI. DISCUSSION

The result shown in Fig. 5 suggests an even-odd (parity)
effect in the edge number. The total energy difference �EST =
ES − ET between the lowest singlet state and the lowest triplet
state changes its value and sign depending on the polygon
shape. Figure 5 further demonstrates that the sign is determined
by the parity of the apex number: the odd polygonal QDs have
stable triplet ground states so that �EST > 0, whereas �EST

for the even polygonal QDs becomes negative, showing the
anti-Hund rule. To understand the meaning of this interesting
result, we need to consider necessary conditions required for
this clear even-odd effect. At first, the value of L∗ = 4.968 has
to be chosen. This value is the critical confinement length LST,
at which �EST = 0 is found for the circular QD of the limiting
polygon. Another important point is that the result is obtained
by the UHF calculation. To derive complete interpretation, we
need to study L∗ dependence of the ground-state multiplicity
within and beyond UHF.

With an increase in L∗, the QD system changes from
a weak-coupling regime to a strong-coupling regime. QDs
having a large L∗ approach to the classical limit, where the
Coulomb energy is dominant. Let us review Fig. 3. Along the
horizontal axis, the regime changes from the weak-coupling
limit to the strong-coupling one. The UHF solutions shown in
this figure indicate us general tendency on the singlet-triplet
instability, but the detailed understanding would request much
accurate description of the electronic state like the res-UHF
CI method. In this discussion, instead, we give a qualitative
argument. For this purpose, the strong-coupling regime, which
starts from the classical limit, is convenient. The steps of

FIG. 5. (Color online) Relationship between the energy differ-
ence �EST = ES − ET and the protruding area of the apexes Ã for
trigons (regular, Kubota, Reuleaux), tetragon, pentagon, hexagon,
octagon, and circle. The area of the apex protrusion Ã is defined as
the area of a polygon protruding from the equisized circle (see inset).
�EST at L∗ = 4.968 is used to clarify the influence of the number of
apexes and the parity on the total energy difference (signs of Ã and
�EST are positive for odd polygons and negative for even polygons).
The value L∗ = 4.968 is the critical confinement length LST of the
2D circle [�EST(circle) = 0] in Fig. 3.

our argument are composed of (1) energetics in the classical
limit, (2) evaluation of the magnetic instability at this limit,
(3) consideration of the quantum fluctuation effects in the
strong-coupling regime, and (4) interpretation of the results in
the intermediate-coupling regime.

A. Classical limit

In the classical limit of L∗ → ∞, electrons behave as
classical particles. Accordingly, the energy is determined only
by configuration of electrons, i.e., positions of electrons in
the polygonal QD. Here, we consider the hexagon as the
representative example and derive qualitative discussion. The
detailed discussion is given in Appendix C. Let us consider
large, yet finite, L∗. In this limit, classical configuration of
four electrons is determined so that they keep apart from each
other in the dot as far as possible. Symmetry consideration
allows us to reduce the number of possible configurations in
D2h, D2h′ , or D3h representations of the point group D6h. The
highly symmetric configuration can appear as a special case
of these configurations, as D4h that is a special case of D2h as
shown in Fig. 6. We summarize the Coulomb energy of four
typical symmetric configurations. The lowest one is given by
D2h′ , in which two electrons locate at two opposite apices and
the other two are at the centers of two edges. This configuration
has the largest surrounding area among the other symmetric
configurations. In contrast, we should note that the triangular
configuration with the central point with the D3h symmetry is
energetically unstable in the hexagon.

Let us discuss the results on the Coulomb energy for
allowable configurations in the other polygons. In Table I,
the Coulomb energy and the area size are given for trigon,
tetragon, pentagon, and hexagon. We see that trigon is the
exceptional case, where the triangular configuration has lower
Coulomb energy than the square configuration. The area size
is also larger for the triangle than the square. In the other
polygons tested, we always have the lowest Coulomb energy
for the square configuration. Thus the trigon is the exceptional
and we cannot find an even-odd effect in this limit.

B. Interelectron interaction and magnetic interaction

In the classical limit, the degrees of freedom in the charge
distribution only determine the energetics. The magnetic
multiplets should degenerate with each other as long as the
charge distribution is the same. The lowest-order perturbation
should appear as the magnetic interaction between localized
electrons. A perturbative argument allows us to determine
the lowest spin state as follows. We have typically two
configurations for four-electron states. One is the square and
the other is the triangle. When the square configuration is
selected, the rectangle configuration allows antiferromagnetic
spin alignment. Neighboring two spins align to cause an
antiparallel spin configuration with two up spins and two down
spins totally. Thus we can have the stable singlet configuration.
When the triangle configuration causes, three electrons are
located at the apices and the last electron should be at the
center of the triangle arrangement. In this configuration,
antiferromagnetic spin alignment for each pair of neighboring
spins is allowed to have the triplet spin state. This is because
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FIG. 6. (Color online) Classically possible configurations for four electrons in hexagon. Symbol d is the distance from the center to the
edge.

only the center electron has a down spin opposite to the other
up spins, so that residual Sz = 3/2 − 1/2 = 1 remains. When
the electron system possesses the SU(2) rotational symmetry,
the Sz = 1 state should appear as a highest weight state of
a triplet. Thus we can say that the triplet state appears as
the lowest state. Following this naive but natural argument,
we conclude that the ground-state triplet appears only for the
trigon, and the other polygons should show the stable singlet
ground state.

Now we compare this conclusion with results in Figs. 5
and 7 to find consistency. In Fig. 3, all polygons and the circle
except for the trigon go into the singlet stable phase, when
L∗ becomes large enough. The UHF calculation counts the
Hartree energy accurately. Therefore, if we can find the square
electron configuration in the singlet solution as the stable state
in the large L∗ limit, we can say that the picture in the classical
limit holds as well. For the singlet solutions in Fig. 7(c), we
indeed see the square charge distribution as the four peaks in
the spin density profile of the singlet state. Furthermore, the
D2h′ configuration is found in the singlet state of the hexagon.
When L∗ becomes enough large, we can find the stable singlet
state as the lowest scf solution of the UHF calculation.

C. Kinetic and Coulomb energies

When L∗ becomes marginal, the quantum fluctuation
determines the stable state to gain the kinetic energy, too. The
total balance between the Coulomb interaction and the kinetic
energies is maintained by creating a correlated wave function
extending over the quantum dot. Let us see the spin density of

the triplet states in Fig. 7(c). In the hexagon, the distribution of
up electrons becomes broadened like a ring around the down
electron at the center. The delocalized nature makes the kinetic
energy of the triplet rather low compared to the singlet [see
Fig. 7(b)].

For the evaluation of energy reduction driven by the kinetic
energy, the self-consistent determination of the wave function
is demanded. In this sense, the primary important step is
determination of UHF solutions providing good represen-
tations of the point group symmetry. To determine energy
balance between the multiplets further requires us to utilize
a beyond-UHF calculation. In this sense, finding of various
representations in the triplet and the singlet states shown in
Fig. 7 poses a question whether the energy difference between
singlet and triplet states is monotonic in L∗ or not. This
is exemplified by finding of the spin density of triplets in
pentagon and hexagon. We have a center peak of the down
spin in these polygons. The resulting charge density is not
the square charge distribution, which should be energetically
lower than the other configurations in the classical limit.

D. Weak coupling regime

When the kinetic energy becomes dominant in a dot
with a small confinement length L∗, and if we are allowed
to utilize the perturbation argument for the Hund rule, the
triplet-stable phase appears in each quantum dot with four
electrons. Experimentally, the triplet ground state has been
often concluded for the circular quantum dot with four
confined electrons.33 Thus we can conclude existence of the

TABLE I. Singlet-triplet energetics based on the classically limited electron configuration. We evaluate the energetical stabilization of the
kinetic term by the comparison of the size in square (singlet) and triangle (triplet) inscribed maximally in polygons [see Fig. 7(a)]. We also
estimate the energetic stabilization due to the interelectron term by the sum of the inverse of the interelectron distance. We give those sizes and
sums of the inverse of the interelectron distance for the inscribed tetragons and trigons. All the values are given by the distance from the center
to the edge corners of the polygon ζ .

Trigon Tetragon Pentagon Hexagon

Square Triangle Square Triangle Square Triangle Square Triangle

Area size/kinetic 0.65ζ 2 1.30ζ 2 2.00ζ 2 0.93ζ 2 1.56ζ 2 0.94ζ 2 1.61ζ 2(D4h) 1.30ζ 2

1.73ζ 2(D2h)
∑

i/Coulomb 6.01
ζ

4.73
ζ

3.41
ζ

5.60
ζ

3.87
ζ

5.57
ζ

3.81
ζ

(D4h) 4.73
ζ

2.15
ζ

(D2h)
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FIG. 7. (Color online) Illustration of the triangles and squares inscribed maximally in polygons of trigon, tetragon, pentagon, and hexagon
(a). One should note that hexagon inscribes two types of rectangles inside; a regular square (D4h) and a rectangular one (D2h). We also show
the energy decomposition of their total energies into the kinetic and interelectron terms (b). Those differences are calculated for those polygons
having the the critical distance LST where the circle cause the S/T instability as shown in Fig. 3. Consequently, the distance from the center
of the gravity to the edge corners ζ is 4.3869 for the trigon, 3.5355 for the tetragon, 3.2426 for the pentagon, and 3.1020 for the hexagon,
respectively. We further show the calculated spin density of the spin singlet and triplet states for these polygons in (c). One should note that
four electrons of hexagon distribute not squarely but rectangularly in the spin-singlet state, as predicted in Table I.

weak coupling regime. When we could realize larger L∗ in
experiment, the singlet stable phase should appear in a 2D

circular dot, as the above argument suggested. The energy
diagram should be much rich in the low energy owing to

155316-8



SHAPE OF POLYGONAL QUANTUM DOTS AND GROUND- . . . PHYSICAL REVIEW B 85, 155316 (2012)

near degeneracy between possible configurations. We need,
however, to create a perfect 2D circular dot to realize the same
physics as the simulation.

In Fig. 3, we actually see the triplet stable phase for all
polygons as well as circle, when L∗ is small enough. This
is realization of the weak coupling regime. The stabilization
energy counted in the UHF calculation is shown in this figure.
However, the list of polygons in an order by the stabilization
energy of the triplet ground state relative to the lowest singlet
solution is trigon, octagon, pentagon, hexagon, and tetragon.
This sequence is different from the order in Fig. 5 found as the
even-odd effect. Thus the explanation of the even-odd effect
is not easy starting from the weak-coupling regime given by
UHF.

E. Intermediate regime

In the intermediate regime, we have another change in the
sequence of polygons in Fig. 3. When L∗ 
 8 a.u., we have
trigon as the exception. Tetragon and pentagon has almost
the same value of energy difference. Then, below circle,
hexagon and octagon appears in Fig. 3. In addition, we have
a chance to obtain several scf solutions. In the tetragon, there
appear two different scf solutions for singlet states, when
L∗ becomes greater than 4 a.u. Appearance of multiple scf
solutions suggests that it is not trivial to have a special rule
for the stability of the ground state even within the UHF
scheme. Therefore a clear even-odd effect found in Fig. 5
is prominent. Confirmation of the rule should be taken by
experiments and simulations. If we can create a real 2D circular
QD with degenerate singlet and triplet ground states, we would
be allowed to confirm the rule in real experiments. Another
good trial is to find res-UHF CI solutions for all the polygons.
For this simulation, the solutions found in this paper would
provide an informative starting point.34

VII. CONCLUSION

We have qualitatively (but systematically) studied the
relationship between the spin multiplicity of the ground state
and the morphology of 2D polygonal QDs with number of
apexes M of 3 (trigon), 4 (tetragon), 5 (pentagon), 6 (hexagon),
8 (octagon), and also a circle, in terms of the MFT approaches.
Odd polygons (trigon, pentagon) prefer to generate the
ground-state triplet as predicted by Hund’s rule, whereas even
polygons (tetragon, hexagon, octagon) cause ground-state
instability in the spin multiplicity and tend to produce the
anti-Hund state of the ground-state singlet with strengthening
of the interelectron interaction. The circle, which has an infinite
number of apexes (M = ∞) is intermediate between these two
cases. The present study provides much needed information to
improve electronic structure calculation methods. If one can
perform observation of polygonal QDs in an experiment, and
if the ground-state multiplicity is investigated by varying L∗,
determination of �EST would be possible. Then, the order
found in Fig. 5 may be tested. If the order following the
even-odd rule explained above appeared, it would suggest
feasibility and relevance of UHF in the medium correlation
regime.

α 

α

FIG. 8. (Color online) Distribution of electron density for two
electrons confined in a trigon with the spin singlet. Equiarea lines
of the trigon A = L2

4 tan(α/2) and density profiles of restricted solutions
and unrestricted H- and V-type solutions are also shown. The left and
right numbers in the parentheses are the base line length L and the
apex angle α, respectively.
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APPENDIX A: TWO-ELECTRON SPIN SINGLET
STATE IN TRIGON

Here, we briefly discuss the electronic state of two electrons
confined in a 2D trigon with the spin singlet configuration
(completely unpolarized; Nα = Nβ). Figure 8 illustrates the
electron density distributions for the UHF singlet solution as
functions of the base line L and the apex angle α. Two types
of SCF solutions are found: a restricted SCF solution with a
nodeless density distribution and an unrestricted SCF solution
with two peaks in ρ. The unrestricted solutions can be further
classified into H (horizontal) and V (vertical) types. In H-type
solutions, the two peaks in the electron density are located
near the base line, whereas the two peak positions are aligned
perpendicular to the base line in the V-type solution. These
three characteristic density distributions depend on the defor-
mation of the trigon by L and α. Therefore we qualitatively
investigated these characteristic electron separation based on
the relation between the interelectron term and the geometrical
features of the deformed trigons.

The strong confinement causes the one-electron energy
term to be greater than the interelectron one, and the individual
UHF orbitals coincide irrespective of the spin polarization α

and β. Thus, RHF-like solutions are obtained even in UHF
calculations. The present deformation of the trigon by varying
α and L maintains the point group symmetry of C2v and
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FIG. 9. (Color online) Density profiles of four electrons confined
in tetragon having L = 6. We can compare those calculated by UHF
approach with those by res-UHF treatment, in accordance with spin-
singlet and spin-triplet states.

produces a confinement area of

A = L2

4 tan(α/2)
.

We show the resulting equiarea lines in Fig. 8, indicating that
the equiarea line of A = 10 ∼ 20 represents the boundary be-
tween the restricted and unrestricted solutions. The boundary
tail of the acute trigon is well described by this equiarea line.

Both H- and V-type solutions are unrestricted solutions
are obtained from deformed trigons with large L and/or α

in which the weak confinement strengthens the interelectron
Coulomb term. The present system is assumed to be in
the spin-singlet state and only the direct Coulomb term is
considered. Consequently, the boundary between the H- and
V-type UHF solutions can be explained in terms of the
maximum distance in the trigon. Thus, we should compare
the base line L with the height h = L/2

tan(α/2) . When the trigon is
deformed by α = 2 arctan(1/2) ∼ 53.13◦, the resulting trigon
has h = L and the two electrons have equal separation in
the longitudinal and transverse directions. Thus the point
charge approximation predicts that the boundary between H-
and V-type UHF solutions is determined by the line α =
53.13◦. However, including the actual electron delocalization
shifts this boundary to the line α = 60 in the present UHF
calculations, as shown in Fig. 8.

APPENDIX B: TOTAL CHARGE DISTRIBUTION

The lowest UHF scf-solution produces the quasicrystalline
structure in the charge density (CD) when four electrons
are confined in the tetragon having L = 6 (see Fig. 9). The
resulting CD structure shows the fourfold rotational symmetry
(C4), whereas the corresponding UHF spin density (SD)
shows the twofold symmetry. Consequently, the symmetry
nature of the D4h Hamiltonian is violated, as indicated in

Fig. 1(b). One should note that the UHF calculation produces
the other scf-solutions, being in the rotational relation by π/2
mutually. Accordingly, the res-UHF approach including these
UHF solutions naturally reverts the D4h symmetry even in
the SD structure [see Fig. 1(c)]. This result agrees with the
EDM result by Creffield et al.14 who have found the similar
quasicrystalline CD structure in the sufficiently larger QD.
Thus the MFT approach of UHF (DFT) can give a qualitatively
correct estimation in the CD distribution.

APPENDIX C: CLASSICAL LIMIT OF FOUR-ELECTRON
CONFIGURATION

Neglecting the extension of the wave functions of the
individual electrons [point electron approximation (PEA)],
the four electrons in the spin-singlet state are classically
thought to localize at the four corners, forming a regular square
(D4h) electron configuration with alternating spin polarization.
In contrast, the four electrons in the spin-triplet state are
thought to form a starlike triangle (D3h) conformation; the
three electrons are localized at the three corners having same
spin and the remaining electron having an opposite spin
at the center. That is, in the classical PEA, four electrons
having a spin-singlet multiplicity prefers to distribute into
a square, whereas those having a spin-triplet multiplicity
tend to distribute into a triangle. Furthermore, one should
remember the following two tendencies; electrons delocalized
strongly reduce the energy through the kinetic term and larger
separation distances reduce the Coulomb repulsion energy.
Consequently, we can qualitatively discuss the singlet-triplet
energetics by finding which has a larger size between the
triangle and square inscribed in the polygon, because four-
electron classically form a triangle or square configuration in
accordance with the spin multiplicity of the triplet or singlet. In
the following, we first find which has a larger size between the
triangle and square inscribed in the polygon. We then predict
the S/T instability classically. Finally, we decompose the UHF
total energy into the kinetic and Coulomb terms and discuss
the validity of the classically limited electron configuration
model.

Table I compares the size of the largest triangles and
squares inscribed within the polygons M = 3 (trigon), 4
(tetragon), 5 (pentagon), and 6 (hexagon). It is crucial to find
the larger shape between the inscribed triangle and square
for the individual polygons, because the larger shape causes
the larger energetical stabilization through both the kinetic
and Coulomb terms. When the inscribed triangle is larger
than the inscribed square, the kinetic term in the spin triplet
state is expected to be energetically more stable than in the
spin-singlet one. Similarly, the interelectron term in the spin-
triplet state is energetically more stable than in the spin-singlet
one. Consequently, both the kinetic and interelectron terms
preferentially cause the ground-state triplet in this case. A has
an area of the inscribed triangle (1.30ζ 2), being larger than that
of the inscribed square (0.65ζ 2). Here, ζ is the distance from
the center to the edge corners of the polygon. This inscribed
triangle also gives a smaller value for the sum of the inverse of
the interelectron distance 4.73/ζ , compared with the inscribed
square (6.01/ζ ). Consequently, the classically limited electron
configurations suggest that four electrons confined in a trigon
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cause a spin triplet in the ground state. Analogously, Table I
indicates that four electrons confined in a tetragon or pentagon
prefer a spin singlet in the ground state, because the inscribed
square has a larger area than the inscribed triangle. One should
further note that a hexagon can inscribe two types of squares
inside: one is a square (D4h) and the other is a rectangle (D2h)
as shown in Fig. 7(a). Table I indicates that the rectangle
(D2h) gives the largest area of 1.73ζ 2 and the smallest value
of 2.15/ζ . Accordingly, a hexagon also is expected to cause a
spin singlet in the ground state where the four electrons would
distribute in a rectangle rather than square.

We now compare these simple predictions with the UHF
results in Fig. 7(b). We can easily decompose the total
energy of the four electrons into the kinetic and interelectron
interaction terms because we employed the hard-wall potential
to define the boundaries of the individual polygons. The
resulting energy decomposition demonstrates that both the
kinetic and interelectron terms work to cause the spin triplet
state in a trigon, as predicted classically. Except for the
trigon, the square is larger when inscribed in the polygons
(tetragon, pentagon, and hexagon), and the ground state singlet
is expected classically. Based on the numerical values of the
calculated UHF total energy alone, this classical prediction
might be consistent. However, the decomposed energy terms
are not necessarily consistent with the classical prediction:
the Coulomb term in the tetragon works to cause the spin-
triplet state. In contrast, the pentagon and hexagon prefer the
spin-triplet configuration because of the kinetic term. These
disagreements are caused by the conflicting electron/spin dis-
tribution found in the calculated UHF solutions [see Fig. 7(c)]

where a starlike triangle distribution of the spin triplet is only
found in the trigon but the square and/or squarelike distribution
is found in the tetragon, pentagon, and hexagon.

Comparison of results for QDs with the known results
from the Hubbard model and related studies is interesting
as well. The starlike triangle configuration for the triplet
ground state in a trigon reminds us of the electronic state
of trimethylenemethane (TMM).32 We find that the starlike
triangle configuration prefers the triplet state both in the
electron gas and in the tight-binding regimes. There have been
several theoretical studies using the extended Hückel approach
or the Hubbard model. The half-filled four-site Hubbard model
on a starlike graph shows the triplet ground state with local
antiferromagnetic correlation. This ferromagnetic ground state
is understood by a ferromagnetic spin configuration appearing
in the Heisenberg antiferromagnetic spin model on the same
graph. Thus the strong-correlation regime of the trigonal QD
is comparable, or essentially identical to the corresponding
Hubbard model. In this respect, advantage of the QDs is found.
Now, we consider a final message on this advantage in the
controllability as follows. The semiconductor quantum dot is
known to be controlled by applied bias voltage. There are
several techniques to fabricate control gates on the substrate
supporting the dot. If we have a QD in a Reuleaux triangle,
the creation of three surrounding gates and the application of
a bias may shift the electronic character in a Kubota triangle.
Accordingly, the stability of the triplet ground state is expected
to be enhanced by this bias voltage. Therefore by utilizing the
results found in this paper, we can hope to design controllable
QDs.
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