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Conductance fluctuations induced by bulk state in quasi-one-dimensional
strips of topological insulator
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We numerically calculate the conductance of a topological insulator confined as quasi-one-dimensional strips
using a four-band Hamiltonian. The conductance is nearly unchanged in the presence of a short-range disorder
when the Fermi level is located in the bulk band gap. Helical edge states of topological insulators are no
longer protected against the disorder, and scattering takes place if the bulk state coexists. Both the magnitude of
conductance fluctuations and the average conductance are found to vary nonmonotonically in the latter regime
with the strength of disorder, where the fluctuation amplitude is reduced when the average conductance is around
2e2/h. The scattering of the topological states is hence evidenced to be nontrivially affected by the coupling with
the bulk state.
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I. INTRODUCTION

The bulk band gap of topological insulators (TIs) contains
gapless metallic surface states having a linear dispersion.
These states are helical, i.e., the orientation of spin is locked
to be perpendicular to the direction of propagation.1,2 As
nonmagnetic impurities do not flip the spin in reversing
the momentum of an electron by scattering, time reversal
symmetry forbids backscattering for the helical TI states.3,4

The absence of scattering gives rise to quantum spin Hall
effect, where a spin current flows without dissipation.5 The
quantum spin Hall effect has the potential to allow us
to manipulate the electron spin purely electrically with-
out using ferromagnetic materials or an external magnetic
field. The helical states in TIs are thus attractive for
spintronics.

Anderson localization for Dirac fermions and its conse-
quences on the quantum spin Hall effect were investigated
theoretically.6–9 For topological protection from scattering,
the energy gap arising from the spin-orbit interaction plays a
crucial role. Although the quantum spin Hall effect produced
by the robust topological order was predicted initially for
graphene,10 the spin-orbit interaction in graphene was soon
recognized to be too weak for the topological protection to be
relevant. Nonetheless, the absence of backscattering has been
experimentally demonstrated alternatively for the edge states
in HgTe quantum wells,11 which are two-dimensional (2D)
TIs, and for the surface states in Bi1−xSbx

12 and Bi2Te3,13

which are three-dimensional (3D) TIs.
The robustness against external perturbations in TIs breaks

down in some circumstances. In this paper, we investigate
a breakdown caused by the coexistence of the bulk state.14

Although we treat a 2D TI as a model system, our findings
may be relevant to the reproducible magnetoconductance
fluctuations observed in Bi2Se3 samples.15 In the 3D TIs
Bi2Se3, Bi2Te3, and Sb2Te3, crystal vacancies provide free
carriers and thus the Fermi level is typically located outside
the bulk band gap. These materials are narrow-band-gap
semiconductors, and so the influence of the bulk state is hard
to avoid even if the Fermi level is brought into the band gap
by a carrier compensation.

We present the results of numerical simulations on the
conductance of quasi-one-dimensional (quasi-1D) strips of a
TI in which a short-range disorder is imposed. We examine
the variations of the average conductance and the amplitude
of conductance fluctuations when the disorder is strengthened.
We show that not only the fluctuation amplitude but also the
average conductance can change nontrivially with the disorder
strength. A correlation between the fluctuation amplitude and
the average conductance is identified, which is pronounced
when the Fermi level is located just above the threshold of the
bulk 1D sub-bands.

II. NUMERICAL MODEL

To describe the electronic states in 2D TIs, we used the
effective four-band Hamiltonian,2,16,17

H =

⎛
⎜⎝

Ck + Mk Ak+ −iRk− −�

Ak− Ck − Mk � 0
iRk+ � Ck + Mk −Ak−
−� 0 −Ak+ Ck − Mk

⎞
⎟⎠ ,

(1)

defined on a basis (|e+〉,|h+〉,|e−〉,|h−〉), where e and h
denote, respectively, the electron and hole bands and ±
refers to the spin orientation. Here, Ck = −D(k2

x + k2
y), Mk =

M − B(k2
x + k2

y), and k± = kx ± iky . Two types of spin-orbit
coupling (� and the electron Rashba term controlled by the
parameter R) due to the breaking of bulk inversion symmetry
were taken into account.2,17 The material parameters were
chosen to be appropriate for HgTe quantum wells,2,17 as listed
in Table I.

We considered narrow strips prepared from a 2D TI having a
uniform width of 100 nm. The conductance G of the strips was
determined using the Landauer formula G = (e2/h)Tr[t†t],
where the transmission matrix t was calculated using the lattice
Green’s function method.18 The strips were approximated
by a square lattice having a lattice parameter a (see the
Appendix).17–19 A short-range disorder17,20,21 was introduced
by modifying the on-site energy randomly by amounts dis-
tributed uniformly within an interval [−U/2,U/2]. The length
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TABLE I. Parameters for the effective four-band Hamiltonian
corresponding to HgTe quantum wells.2,17

M −0.01 eV
D −0.5 nm2 eV
B −0.7 nm2 eV
A 0.365 nm eV
R −0.016 nm eV
� 0.0016 eV

of the disorder region was set to be 2 μm. Unless stated
otherwise, i.e., except in Fig. 4, we assumed a = 2 nm and the
statistical properties of the conductance were evaluated using,
at least, 500 disorder realizations. For the critical features in the
conductance fluctuations that we describe below, the statistical
reliability was checked by increasing the number of disorder
ensembles up to 1000.

III. RESULTS AND DISCUSSION

In Fig. 1, we show the dispersion of 1D sub-bands in
the 100-nm-wide strip. The negative value of M implies that
the energy edge of the electron band is lower than that of the
hole band. The overlapped electron and hole bands generate a
Dirac cone when a coupling between the bands is turned on
through the terms in H associated with the parameter A. The
Dirac point, which is indicated by the arrow in Fig. 1, opens
a gap when the 2D system is confined laterally as a quasi-1D
strip. For energies higher than 22.0 meV for the conduction
band and lower than −15.2 meV for the valence band, bulk
1D sub-bands are also occupied at the Fermi level. As one
finds, the spin degeneracy is lifted in our simulations due to
the spin-orbit coupling.
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FIG. 1. (Color online) Energy band structure in a quasi-one-
dimensional strip of a topological insulator. Parameters were chosen
to correspond to a 100-nm-wide strip produced from a HgTe quantum
well. The wave number k was calculated using a tight-binding model
with a lattice constant a = 2 nm. The arrow indicates the Dirac
point when lateral confinement is absent. Conductance characteristics
plotted in Figs. 2 and 3 were calculated for the Fermi energies
represented by the dotted lines.
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FIG. 2. (Color online) Dependence of the amplitude of conduc-
tance fluctuations �G (filled circles) and the average conductance
〈G〉 (open circles) on the strength U of short-range disorder. The
Fermi energy EF was chosen to be 12, 22, 23, 25, 35, 36, and 37 meV,
from top to bottom. The width of the topological insulator strip is 100
nm. The length of the disordered region is 2 μm. The lattice constant
a of the square lattice used for the simulations was set to be 2 nm.
The statistical uncertainties are smaller than the symbols. Bars in (c)
and (f) indicate the disorder strengths assumed in Fig. 5.

The evolution of the average conductance 〈G〉 and the
amplitude of conductance fluctuations �G = 〈(G − 〈G〉)2〉1/2

when the disorder is strengthened is shown in Figs. 2
and 3 for n- and p-type conductions, respectively. Here,
〈· · ·〉 denotes averaging over disorder realizations. The Fermi
energy EF was set to the values indicated by the dotted
lines in Fig. 1.22 As shown in Figs. 2(a) and 3(a), the
conductance is nearly unaffected by the disorder when the
bulk state is unoccupied,20,21 i.e., 〈G〉 ≈ 2e2/h and �G ≈ 0.
The topological protection for the helical edge states from
backscattering breaks down in this circumstance only if the
disorder is strong [see Fig. 2(a)].

When the Fermi level exceeds the threshold for the lowest
bulk 1D sub-band in the conduction band [Figs. 2(b)–2(g)],
the conductance fluctuations emerge as soon as the disorder
is imposed. The amplitude of the universal conductance
fluctuations (UCFs) in ordinary conductors is 0.73e2/h and
0.365e2/h in the absence and presence of spin-orbit interac-
tion, respectively.23–25 While �G changes nonmonotonically
with U , the peak values of �G are comparable with these
universal amplitudes. In particular, in Fig. 3(c), where the first
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FIG. 3. (Color online) Dependence of the amplitude of conduc-
tance fluctuations �G (filled circles) and the average conductance
〈G〉 (open circles) on the strength U of short-range disorder when the
Fermi level is located in the valence band. The Fermi energy EF is
(a) −5 meV, (b) −16 meV, and (c) −18 meV. The lattice constant a

of the square tight-binding lattice was set to be 2 nm. The statistical
uncertainties are smaller than the symbols.

bulk 1D sub-band in the valence band is occupied, �G is
nearly identical to the value for the case of strong spin-orbit
interaction.

The initial decay in 〈G〉 as U is increased becomes
slower in Figs. 2(b)−2(e) for higher Fermi energies. The
increase in the kinetic energy for the bulk 1D sub-band is
plausibly responsible for this suppression of the scattering.
When the Fermi level is just above the threshold of the bulk
sub-band [Fig. 2(b)], 〈G〉 develops a plateau for moderate
values of U (=2–6 meV). The plateau value 2e2/h suggests
that the TI states are almost completely transmitted owing to
the topological protection, whereas the bulk state is almost
fully localized by the disorder because of its negligibly
low kinetic energy. The conductance fluctuations peaked at
U ≈ 0.5 meV are thus attributed to the bulk sub-band. The
characteristics for U > 5 meV are similar to those shown
in Fig. 2(a), and so they are indicated to be associated with
the TI states. The small �G suggests that the localized bulk
state in this situation provides almost no contribution to the
conductance.

As EF is increased to be away from the sub-band threshold,
�G increases to be as large as expected for UCF over nearly
the entire range of U . We emphasize that the high fluctuation
amplitude implies that the conductance in this circumstance
can be considerably lower than 2e2/h. That is, the TI states
are no longer protected from scattering. Nevertheless, 〈G〉
remains at ∼2e2/h in Fig. 2(c) over a wide range of U , giving
rise to a plateau-like structure. The topological protection is
thus suggested to be partly maintained when the Fermi level
is not far from the sub-band threshold. Reflecting, presum-
ably, this influence of the topological protection, we find a
remarkable reduction in �G when the average conductance is
approximately 2e2/h at U = 2.5 and 5−5.5 meV.

With increasing EF , the plateau-like structure shifts to
higher values of U and weakens. In the regime of the
plateau-like structure, 〈G〉 does not decrease monotonically
with increasing U . To illustrate these behaviors clearly,
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FIG. 4. (Color online) Gray-scale (and contour) plots of
(a) fluctuation amplitude �G and (b) average conductance 〈G〉 when
the Fermi energy and the strength U of disorder are varied. The
maximum values and 0 are set to be, respectively, white and black
for the gray scales. Statistical properties were calculated assuming
the lattice parameter to be a = 10/3 nm and using 200 disorder
realizations. The disorder strength U when a = 10/3 nm is equivalent
to U ∗ = 5

3 U when a = 2 nm. The dotted line in (a) indicates the dip
when 〈G〉 crosses 2e2/h. The value of 〈G〉 for the thick line in (b) is
2e2/h.

we plot 〈G〉 and �G in Fig. 4 using gray scales. Here,
we assumed a = 10/3 nm and used 200 disorder ensem-
bles for evaluating the conductance statistics in order to
lighten the computational load. The mean free path associated
with the short-range disorder is proportional to (Ua)−2, and
so the disorder strength for a = 10/3 nm is equivalent to
U ∗ = 5

3U when a = 2 nm.
As shown in Fig. 4(a), a valley develops between the

quantized conductance at U = 0 and the plateau-like structure
for large U . Both the valley and the plateau-like regions shift to
larger U with increasing EF . One finds in Fig. 4(b) that �G is
enhanced in the domain of the valley in 〈G〉. The suppression
in �G when 〈G〉 crosses 2e2/h, which is indicated by the thick
solid line in Fig. 4(b), in the course of transition between the
quantized conductance at U = 0 and the conductance valley is
unambiguously visible. As highlighted by the dotted curve in
Fig. 4(a), the dip appears to emerge at U = 0 when the Fermi
level crosses the sub-band threshold. The behaviors of 〈G〉 and
�G are even more puzzling when U > 6 meV.

In order to gain insight into the peculiar characteristics of
�G and 〈G〉, we compare in Fig. 5(a) the distributions of the
conductance when EF = 23 meV for various values of U .
There we plot the probability P (g) for the conductance to be
lower than g. In the metallic limit, a Gaussian distribution
of conductance is expected for UCF.26 For U = 1.5 meV,
the spread of the Gaussian conductance distribution is above
2e2/h. We anticipate that the conductance fluctuations in this
case arise solely from the bulk state, while the TI states
are unaffected by the disorder. This explains the near-UCF
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FIG. 5. (Color online) Probability P (g) for the conductance to be
lower than g when the Fermi energy EF is (a) 23 meV and (b) 36 meV.
The magnitude U of the disorder is 1.5, 2.0, 2.5, 3.5, 5.0, and 7.0 meV,
respectively, for the thin solid, thin dotted, dashed, dash-dotted, thick
solid, and thick dotted curves in (a) and 1.0, 1.25, and 1.5 meV,
respectively, for the dotted, solid, and dashed curves in (b).

value for �G. The bulk state is roughly localized when
U is 2.0−2.5 meV. The conductance is, as a consequence,
distributed in a narrow range around the value of 2e2/h

provided by the TI states. As the bulk and TI states remain
to be nearly decoupled,27 the localized bulk state plays only a
negligible role, and so �G decreases.

For U > 2.5 meV, the conductance values for most of
disorder realizations become smaller than 2e2/h. The increase
in �G to the level of the UCF value when U = 3.5 meV thus
arises from the fact that the TI states are scattered here by the
strong disorder. We point out that the distributions for U =
2.0 and 3.5 meV contain tails on the large- and small-G sides,
respectively, in contrast to the nearly symmetric distribution
for U = 2.5 meV. That is, the conductance distribution changes
dramatically when �G develops a dip. The asymmetric shape
of the distribution is hence considered to be a manifestation of
the influence of the partly protected TI states.

Surprisingly, the topological protection for the TI states
reappears when U is further increased to 5.0 meV. A forward-
propagating electron in the helical edge state is likely scattered
into the backward-propagating bulk sub-band when U =
3.5 meV. The bulk state will cease to act as the outgoing state
when it is strongly localized by the disorder. In Fig. 5(a), the
conductance when U � 3.5 meV is almost limited to be below
2e2/h, suggesting the almost-complete localization of the bulk
state. The conductance fluctuations will then be suppressed, as
the probability for a direct scattering between the helical edge
states is still low. When U = 7.0 meV, the direct scattering
probability is expected to increase significantly, similarly to
the large-U case in Fig. 2(a), giving rise to an increase in �G

and a decrease in 〈G〉.
The plateau-like structure in Fig. 2(e) takes place at large

U as the Fermi level is far above the sub-band threshold.
The suppression in �G when 〈G〉 ≈ 2e2/h persists, although
it is fairly weak. These features reappear in the small-U

region when the Fermi level crosses the second bulk 1D
sub-band [Figs. 2(f) and 2(g)]. The fluctuations are reduced
when the average conductance exhibits a maximum at the
end of the plateau-like structure, at U ∼ 4 meV in Fig. 2(f)
and U ∼ 4.5 meV in Fig. 2(g). The anomalous features again
shift to larger U and become smaller in magnitude with
increasing EF .

In comparison to the case associated with the threshold
of the lowest bulk 1D sub-band, the plateau value is higher;
i.e., the plateau is considerably above 2e2/h in Fig. 2(f).
Both the second-lowest and the lowest bulk 1D sub-bands
are thus suggested to be involved in the transport when the
plateau-like structure emerges. With respect to the reduction
in �G that occurred in the course of transition from the
quantized conductance at U = 0 to the conductance valley, the
reduction is observed in Figs. 2(f) and 2(g) when 〈G〉 ≈ 4e2/h.
The distribution of conductance changes the shape markedly
when U is varied around the value for the dip in �G.
As shown in Fig. 5(b), the distribution for U = 1.0 and
1.5 meV again exhibits large- and small-G tails, respectively.
We speculate that the localization of the second bulk sub-band
is responsible for the reduction in �G, while the lowest
bulk sub-band is almost fully transmitted, as the disorder is
insignificant for the latter. In other words, the near-complete
transmission for the TI and lowest bulk 1D states leads
to 〈G〉 ≈ 4e2/h.

In Figs. 2(e)−2(g), �G is also reduced when U ∼ 7 meV.
This reduction is, however, ascribed to the fact that the
localization is strong, i.e., 〈G〉 < �G. In the strongly localized
regime, ln G exhibits the Gaussian distribution rather than
G.28,29 It may be noteworthy that the statistical reliability of
�G and 〈G〉 that we obtained by averaging G consequently
deteriorates as they are dominated by the disorder realizations
for which the conductance becomes high. This is plausibly
responsible for the small irregular features in �G.

When the Fermi level is in the valence band, the topological
protection is extremely robust against disorder, as shown
in Fig. 3(a). The nonmonotonic features of �G and 〈G〉
are practically absent even when the Fermi level is just
above the threshold of the bulk 1D sub-band [Fig. 3(b)].
The disorder-induced coupling with the bulk state is, there-
fore, indicated to cause merely the simple backscattering
of the TI states for U > 7 meV. The increase in �G

when 〈G〉 becomes smaller than 2e2/h in Fig. 3(b) may be
regarded as evidence that the bulk 1D hole sub-band generates
conductance fluctuations corresponding to the case of strong
spin-orbit interaction, whereas the spin-orbit interaction is
effectively absent for the fluctuations produced by the TI
states.

Throughout our simulations presented above, �G was
smaller than 0.6e2/h. Although gigantic conductance fluctua-
tions in a 3D TI were observed experimentally by Checkelsky
et al.,15 we find no enhancement of the fluctuation amplitude
affected by the TI states in comparison to the value expected
for ordinary conductors. We note, however, that the topological
protection does not forbid scattering between the surface states
in 3D TIs, as electrons do not have to be scattered in the
backward direction, in contrast to 2D TIs. The conductance
fluctuations in 2D and 3D TI systems may, therefore, exhibit
different characteristics.
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IV. CONCLUSIONS

In conclusion, we have numerically examined the quantum
transport in 100-nm-wide quasi-1D strips constructed from a
HgTe quantum well in the presence of a short-range disorder.
The backscattering for the helical edge states in the TI is no
longer absent when the bulk 1D sub-bands are occupied at
the Fermi level, as scattering from the edge state to the bulk
state is allowed. We have demonstrated that the amplitude
of conductance fluctuations and the average conductance can
change nonmonotonically when the disorder is strengthened.
The unusual dependence on the disorder strength originates
from the fact that the disorder-induced scattering between the
TI and bulk states and the transition from the metallic transport
regime to the localized transport regime for the bulk state
take place at different scales of the disorder strength. The
anomalous features are pronounced when the Fermi level is just
above the sub-band threshold, as the barely occupied sub-band
is strongly localized by disorder.

APPENDIX: TIGHT-BINDING MODEL

The effective four-band Hamiltonian, Eq. (1), is mapped
onto a 2D square tight-binding lattice as

HTB =
∑
i,j

Vij c
†
ij cij +

∑
i,j

(Txc
†
i+1,j cij + Tyc

†
i,j+1cij + H.c.),

(A1)

where c
†
ij and cij are the creation and annihilation operators at

the lattice site (i,j ), respectively. The on-site elements Vij are
given by

Vij =

⎛
⎜⎜⎜⎝

M+ − EF 0 0 −�

0 M− − EF � 0
0 � M+ − EF 0

−� 0 0 M− − EF

⎞
⎟⎟⎟⎠ ,

(A2)
where M± = ±M − 4(D ± B) and EF is the Fermi energy.
The nearest-neighbor hopping elements Vx and Vy are given
for the longitudinal direction as

Vx =

⎛
⎜⎜⎜⎝

D + B iA/2 R/2 0
iA/2 D − B 0 0
−R/2 0 D + B −iA/2

0 0 −iA/2 D − B

⎞
⎟⎟⎟⎠ (A3)

and for the transverse direction as

Vy =

⎛
⎜⎜⎜⎝

D + B −A/2 −iR/2 0
A/2 D − B 0 0

−iR/2 0 D + B −A/2
0 0 A/2 D − B

⎞
⎟⎟⎟⎠ . (A4)

The wave function is set to vanish outside the lattice, and so
the width W of a strip consisting of N transverse lattice sites,
for instance, is given as W = (N + 1)a.
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