PHYSICAL REVIEW B 85, 155146 (2012)

Magnetoinductive polaritons: Hybrid modes of metamaterials with interelement coupling
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A theory is presented combining effective-medium theory with that of magnetoinductive (MI) waves
propagating by virtue of coupling between the resonant elements. The resulting circuit equations for the split-ring
resonator (SRR) loaded transmission line are shown to be analogous to those describing a continuous anisotropic
magnetic plasma exhibiting spatial dispersion due to interelement coupling. Interelement coupling is also shown
to govern the properties of both bulk and surface magnetoinductive polaritons (hybrid polaritonic modes of
electromagnetic waves and of slow waves of coupling between resonators). Implications of our method in
the design of structures with controllable effective material parameters and with required functionality are
demonstrated. We are able to design SRR-based near field manipulating devices for transverse electric (TE)
polarization, including a realization of Pendry’s near-perfect lens. Considering that surface waves of various
kinds have found a wide range of applications in the past, it is envisaged that surface magnetoinductive polaritons

will open up fresh possibilities.
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I. INTRODUCTION

Born at the turn of the millennium, the subject of meta-
materials rapidly evolved into a main stream in physics and
engineering. The upsurge of interest originated from a diversity
of research directions that fed the young subject, all with the
same goal: to be able to assemble structures with desired
electromagnetic properties not found in naturally available
materials. The approaches to how to look at metamaterials
range from effective medium theory to plasma physics and
circuit theory.

Effective medium theory has a long history. We still teach
in undergraduate courses the Clausius-Mossotti equations
derived in the 19th century. The theory is concerned with the
introduction of effective material parameters like permeability
and permittivity. Having obtained those parameters we can, for
most purposes, ignore the microscopic properties of atoms and
molecules. This quite simple theory turned out to be one of the
most enduring ones in solid state physics: the principles being
still applicable when the parameters take negative values as
well. See, for example, the papers of Thompson' and Pendry
et al > on negative permeability or that of Rotman® on negative
permittivity. With the advent of metamaterials, many more
papers followed making further advances in the theory (see,
e. g., Ref. 4).

Surface waves have been known since about the beginning
of the 20th century under names like Sommerfeld,’ Zenneck,’
Goubeau’ waves, and the whole family of surface plasma
waves, which are called nowadays surface plasmon polaritons
[see, e. g., Refs. 8-10]. Quite obviously, general anisotropic
plasma, with either permittivity or permeability being a tensor
rather than a scalar, offers a larger degree of freedom for
the existence of surface waves. Surface waves in anisotropic
dielectrics and magnetic plasmas were described in Ref. 11.
In the metamaterial context, surface waves have been found
experimentally on a stack of split-ring resonators (SRR) by
Gollub et al.'> who referred to them as magnetic surface
plasmons and explained them theoretically by assuming an
isotropic negative permeability.
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Another line of thought also goes back a long time. It
is to derive and explain the properties of certain waves by
invoking the interaction between elements. The elements may
be atoms and molecules, the interaction between them may
be restricted to nearest neighbors. From these assumptions,
the theory was born of acoustic waves extended later to
the optical branch (see Ref. 13). The elements could, of
course, be macroscopic ones, e.g., various circuits or resonant
structures. Using then the same kind of assumptions about the
interaction between the elements, it was possible to explain
the propagation of waves in slow wave structures by Silin
and Sazonov,'* in frequency filters by Atabekov,'® in coupled
optical resonators by Yariv et al.'® For an extension of the work
to interaction between many (or infinite number) elements
see, for example, the paper by Weber and Ford.'” In the
metamaterial context it was shown by Shamonina et al.'®!°
that magnetic coupling between elements leads to waves,
which have been known since as magnetoinductive or MI
waves. When the coupling is electric analogous waves were
shown to exist by Baena er al.?’ called electroinductive or
EI waves. Waves on magnetically coupled elements have also
been referred to more recently as magnetization waves?! and
magnetic plasmons.??> Waves due to interelement coupling are
eigenmodes of the metamaterial and, like any eigenmodes of
a medium, they can be expected to couple to and influence the
propagation of electromagnetic (EM) waves forming hybrid
polaritonic modes with electromagnetic waves. A 1D theory
incorporating interelement coupling into the effective-medium
model was derived by Syms et al.? An extension to an
isotropic 3D case was devised by Baena et al.** followed
by a further extension by Silveirinha et al.> that included
retardation effects as well.

The present paper combines effective medium theory
with interelement coupling in an anisotropic 2D configu-
ration. Hence, following faithfully the traditions of solid-
state physics, we shall use the term magnetoinductive (MI)
polaritons,***’ in analogy to plasmon polaritons in a bulk
metal or phonon polaritons in a diatomic semiconductor.
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We are restricting here the analysis to magnetically coupled
elements but of course very similar effects can be expected
when the coupling is electric or indeed when it is a combination
of magnetic and electric coupling.?® Starting with a circuit
model, we proceed to a description of both the micro and
macrophysics, and offer, in addition, a recipe for the design
of specific structures. We establish relationships between
effective-medium parameters and circuit characteristics of a
generally anisotropic 2D metamaterial comprising split rings,
unravel the properties of magnetoinductive polaritons both in
their bulk and surface variety, and show that the latter can lead
to an alternative realization of a superlens.?” The structure of
the paper is as follows. In Sec. II, a transmission-line model is
developed describing propagation of electromagnetic waves
through a general split-ring structure resulting in a set of
difference equations involving the circuit parameters of both
electromagnetic and magnetoinductive waves. In Sec. III, the
analogy between this discrete circuit model and Maxwell’s
equations for a transverse electric (TE) wave are discussed
yielding effective values of the permeability tensor and in
Sec. IV the properties of bulk MI polaritons and conditions
for their excitation are described. Analysis in Sec. V valid
for semi-infinite media, addresses the question under what
conditions these new type of waves have, besides the bulk, a
surface wave variety as well. Section VI is a straightforward
generalization of the analysis to that of a slab. We systematize
conditions for subwavelength imaging, identifying split-ring
configurations suitable (as well as those not suitable) for
subwavelength imaging via surface modes. Using realistic
parameters, we show how the transfer function of a split-ring
slab depends on the unit cell size and slab thickness. Finally,
we discuss possibilities of generalization of the model to an
arbitrary metamaterial structure with interelement coupling.
Conclusions are drawn in Sec. VIL.

II. CIRCUIT MODEL

We consider a rectangular array of split-ring resonators
(SRRs) as shown in Fig. 1(a). It is a generalization of the 1D
model of Syms et al.>* to 2D. It consists of two interlaced
sublattices, known as planar-axial structures* on account of
the coupling coefficients being significant both in the planar
and in the axial directions. The equivalent circuits of the
SRRs in the two sublattices are represented by identical
inductance-capacitance (LC) resonators in Fig. 1(b). Taking
only nearest neighbors into account, the mutual inductances
standing for axial coupling are denoted by the subscript a
and those representing planar coupling by the subscript p.
The coupling may take place either in the x or in the z
directions. Accordingly, as shown in Fig. 1(b), we distinguish
four different mutual inductances, M., Ma;, My, and My, . It
should be noted that another kind of coupling between nearest
neighbors in the x and z directions in the same unit cell may
also exist. However, we shall disregard them in the present
treatment. In an example given in the next section, we shall
show that in the structure chosen this type of coupling is
entirely negligible.

The electromagnetic wave, with which the split rings
interact, is assumed in the form of a TE wave propagating
in the xz plane with the electric field in the y direction. Its
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FIG. 1. (Color online) (a) 2D split-ring metamaterial. (b) Its
circuit model capable of describing both MI waves and TE elec-
tromagnetic waves. (c) The equivalent impedance scheme.

circuit equivalent is the 2D transmission line consisting of
an inductance L. and a capacitance C; as may also be seen
in Fig. 1(b). L; = pod and C; = gpd, with g and gy being
the permeability and permittivity of vacuum, and d being the
unit cell size in both the x and the z directions. To account
for the interaction between the electromagnetic wave and the
split rings, the elements of this discrete transmission line are
coupled to the corresponding resonant circuits by mutual in-
ductances M and M in the two different directions. When the
resonant circuits loading the transmission line are independent
of each other, then what we have is the traditional model for
finding the effective permeability of a SRR metamaterial. Our
aim is, however, to combine the effective medium model with
the one permitting wave propagation via coupling between the
resonant circuits.

Our mathematical treatment starts with the presentation of
Kirchhoff’s equations. For the voltages, they take the form

Vl+l,m - V/,m = _ijllx,l,m _ja)M):;J)C,l,mv (l)
Vim+1 — Vim = _ijtIz,l,m _jwMéJz,l,m: 2
and for the currents,

Ix,l—l,m + Iz,l,m—l = Ix,l,m + Iz,l,m +Ja)CtVlmv (3)
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where V} ,, is the voltage across the capacitor between the node
[,m and earth, w is the frequency, I, 1.» and Jy(;), i are the
currents flowing in the transmission line and in the resonator
in the x(z) direction, respectively. Time variation is assumed
in the form exp(jwt).

Next, we write Kirchhoff’s voltage equation for the resonant
circuits in the x and z sublattices as

ZJx.l,m +jwM)/ch,I,m +jprx(Jx,l—l,m + Jx,H—l,m)
+jwMaz(Jx,l,m71 + Jx,l,m+1) =0 (4)

and

ZJz,l,m +]a)M§Izlm +jwMax(Jz,l—l,m + Jz,l+l.in)
+jprZ(Jz,l,mfl + Jz,l,m+1) = O, (5)

where Z is the impedance of the resonant circuit. Note that
Egs. (1)—(5) completely specify the problem. We can express
J with the aid of I, from Eq. (4) and substitute it into Eq. (1).
Similarly, we can express J; with the aid of I, from Eq. (5) and
substitute it into Eq. (2). Using further the wave assumption
for all the currents and the voltage that they vary along the x
and z directions as exp[—j(lk,d + mk.d)], we obtain

Vicrm = Vim = —Zileim (6)
and
Vimer = Vim = —Z: 1 1 m, (7N
where
Zyy) =joL (1—@> ®)
x(2) t Dry)’

2
w,
Dx(z) =1- 0)_(2) + Kaz(x) COS(kz(x)d) + Kpx(z) COS(kX(Z)d),

©))

with the resonant frequency, wy = 1/+/LC, the MI coupling
coefficients,

2M
Ka(p) x() = % (10)
and the EM-SRR coupling coefficients,
M/
x(2) an

Ax(z) = m’
also known as the fill factors, corresponding to the ratio of the
SRR area to the area of the unit cell.*

Note that expressions (9) for D, and D, represent the
dispersion equations of the magnetoinductive waves for the
two sublattices.* Equations (6) and (7) together with Eq. (3)
offer the simplified equivalent circuit shown in Fig. 1(c).
We now have single equivalent impedances in the x and
z directions although, of course, they have a complicated
dependence on the parameters as may be seen from Eqgs. (8)—

(11).

III. EFFECTIVE PERMEABILITY TENSOR IN TERMS
OF CIRCUIT QUANTITIES

Our aim in this section is to relate the theory derived so
far to that of effective medium theory, i.e., we intend to find
the corresponding permeabilities. We shall assume a TE wave
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when the components of the electric and magnetic fields are
E,, H,, and H; and we shall take the diagonal elements of the
permeability tensor as uy, 1, u,. Maxwell’s equations for this
case may be written as

0H, 9H, _ .
— = Jwé s
0z ox 10O
9E, .
5o = oo + M) = jouou H.
9E, .
T = —lope(H: + Mo) = —jououHe,  (12)

where M, and M, are the components of the magnetization.
Considering Egs. (3), (6), and (7) for the discrete case, using
the relationship between the discrete and continuous quantities
as

Vl,m = Eyd7 Ix,l,m = sz7 Iz,l,m = _de (13)

and identifying, as mentioned before, C, with g¢d, and L with
Hod, we can deduce the equivalent permeabilities as

Z; Z,
My = - and ;= - , (14)
Jopod Jopod
or, using Eq. (8), as
2 72
c=1—-= and p,=1--2>. 15
jZ D. Mz D, (15)

In the absence of magnetoinductive coupling (taking all kappas
as zero) and with isotropic EM-SRR coupling (taking g, =
q. = q), Eq. (15) reduces to the known result provided by the
simplified effective-medium theory:

w2

_ _ 2
U =p;=1—¢q P

(16)

The presence of magnetoinductive coupling in Eq. (15)
results in anisotropy and in spatial dispersion of the
permeability.*?? Also, the frequency range where permeability
is negative can be seen to depend on the MI coupling strength;
for small values of kd, where the spatial dispersion can be
disregarded, the denominators in Eq. (15) can be approximated
by

2

@y
Dy ~1— el + Kaz(x) + Kpx(z)- 7

Depending on the value and on the sign of the coupling
constants, the shift can be both positive and negative.

Next, we relate the macroscopic field quantities to the
circuit parameters. The relationship between the magnetic
fields H, and H, and the currents /, and /, is already given by
Eq. (13), as

I, I, (18)
d 9

where

[1- e—jkxmd].

Ix(z) = (19)
x(z)
The expressions for the magnetization components, M, and
M, follow from Egs. (1)—(3) and (12) as
J.M! LM

M, =-""% M = ,
* Ld ¢ Ld

(20)
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where

dx(z) Lt
- T Ax(2)-

DX(Z) L

Jx(z) = (21)

Note that particularly simple results are obtained in the
symmetric case (equal fill factors g, = g,) when there are
no MI interactions (all kappas taken as zero).

IV. BULK MAGNETOINDUCTIVE POLARITONS

From Egs. (3), (6), and (7), we obtain the following
dispersion equation

.o kd . o ky
Z,Z.Yy,+4Z, sin - +4Z, sin =0 (22)
or, in the alternative form,
2 2 2 2‘”2
DD.T =q;D.F, + q;D:F, +61qu;7 (23)
t
where w, = 1/ L{C,,
T = -2 g K 4 g K 24)
= —— sin” —— sin ,
a)t2 2 2
2 kyoyd
Fuo = —— + 4sin? 2%, 25)
w

t
Equation (23) may be easily interpreted physically. It describes
how the solution for propagating TE electromagnetic wave
and the eigenmodes of the metamaterial (MI waves) are
transformed to polaritonic states of mixed modes. On the
left-hand side, we have the product of three functions: D,, D,,
and 7. If the right-hand side (RHS) is zero, then these functions
represent three independent dispersion characteristics: two
independent MI waves for the two sublattices of the structure
(terms D, and D,) and a very familiar wave that propagates on
a 2D transmission line consisting of an infinite set of discrete
LC; circuits (term T'). In the continuous limit (k,d,k,d < 1),
the latter corresponds to the electromagnetic wave, taking the
simplified form
»’ 212\ 2
T = (—C—2 +k; +kx>d . (26)
The resulting hybrid modes have striking similarities with plas-
mon polaritons although the physics is different: the character-
istics depend on the interaction between neighboring elements.
Equation (23) is a cubic in u = 0} /w? yielding three branches
of the dispersion equation. Although the coupling coefficients
may be small their influence upon the dispersion characteristics
can be significant as shown in the examples below.
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For the planar-axial configuration shown in Fig. 2(a),
i.e., in the absence of one of the sublattices in Fig. 1, the
corresponding dispersion equation reduces to a quadratic one:

D.T = g?F,. 27

The resulting dispersion has two branches. If the RHS is zero,
they correspond to the unperturbed magnetoinductive wave
of the planar-axial array (term D.) and TE electromagnetic
wave (term 7). The condition for the RHS to be nonzero is
particularly easy to interpret. The coupling between the EM
and MI modes is provided via g, but it occurs only if there is a
nonzero k, component of the EM wave. This means physically
that a nonzero H, component is needed for the excitation of
the planar-axial array considering that the SRRs lie in the yz
plane.

We will illustrate the properties of bulk magnetoinductive
polaritons on a number of examples including the planar-axial
structure [see Fig. 2(a)], the symmetric structure [see Fig. 2(b)]
and the “brick wall” [see Fig. 2(d)]. The inclusion of the last
one needs some explanation. Our aim is to arrive at a simple
structure in which coupling in the x direction is eliminated to
a good approximation. The first step toward this elimination is
the structure of Fig. 2(c) in which the sublattice of “horizontal”
elements is shifted by half a period in the vertical, x, direction
relative to the structure of Fig. 2(b). There is now clearly no
interaction between the “vertical” and “horizontal” elements in
the same row justifying our earlier assumption that this type of
coupling can be neglected. We can further reduce or eliminate
coupling between certain pair of elements by shifting every
second row in the horizontal direction arriving at the structure
shown in Fig. 2(d), which for obvious reasons we call the
brick-wall structure.

In the brick-wall structure, there is no interaction between
vertical and horizontal neighbors within each column [see
Fig. 3(a)] and within each row [see Fig. 3(b)]. Furthermore,
by judicious design, the coupling between both vertical
[see Fig. 3(c)] and horizontal [see Fig. 3(d)] elements in
neighboring rows can be eliminated.*” There will of course be
interactions between elements (both vertical and horizontal)
two rows or two columns away from each other but those
will be much weaker so in first-order approximation they can
be neglected [seee Figs. 3(e)-3(h)]. Hence, for the brick-wall
structure, it is sufficient to take into account interactions only
between neighboring elements within each row as indicated
by arrows in Fig. 2(d).

Figures 4—6 show dispersion curves [see Egs. (27) and (23)]
as 3D surfaces w(ky,k;) for the planar-axial, the symmetric
and the brick-wall structures, respectively. Figures 7-9 show
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FIG. 2. (Color online) Side view of the SRRs. Wave propagation in the z direction. (a) Planar-axial structure. (b)—(d) Tailoring the coupling:
transition from two coupled sublattices of SRRs (b) to two uncoupled sublattices of SRRs (c¢) and to the brick-wall structure with coupling only
in the z direction (d). The dominant coupling coefficients are shown by black arrows.
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FIG. 3. (Color online) Elimination of coupling between elements
shown in red in the brick-wall structure.

the corresponding dispersion curves plotted along the paths
I'XMTI" and I'ZMT of the 1st Brillouin zone. Note that the
value of w/wy in these examples was chosen to be very small,
equal to 1.6, in order to show more clearly the range of the
interaction (this value corresponds to the resonant frequency
wo/2w = 100 MHz and a unit cell size of d = 1/10). In
each of the cases, we switch on and off EM-SRR coupling
and MI coupling, which, when not switched off, are taken
as (1) qz2 = 0.2, kor = 0.1, kp; = —0.1 (Fig. 4, planar-axial),
(2) ¢? =q? =02, kax = ka; = —kpx = —kp; = 0.1 (Fig. 5,
symmetric), and (3) qf = qf =0.2, k4, = —kpy = 0.1, k5, =
kpz = 0 (Fig. 6, brick wall).

For circularly shaped split rings, the values of 0.1 and —0.1
for magnetoinductive coupling coefficients kappas correspond
to the center-to-center distance approximately equal to the
diameter of the rings in the axial and in the planar arrangement,
respectively, whereas the value of 0.2 for the fill factor (repre-
senting the ratio of the SRR area to the area of the unit cell) is
close to a typical value of 0.4 often quoted in the literature.*
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e e
0o - : 00 -
k din k din k din k din

FIG. 4. (Color online) Planar-axial structure of Fig. 2(a). Dis-
persion of bulk MI polaritons. (a) Unperturbed case, no EM-SRR
coupling, no MI coupling. (b) With EM-SRR, but without MI
coupling. (c) Without EM-SRR coupling, but with MI coupling;
(d) with both EM-SRR and MI coupling. Color bar corresponds to
the values of w/wy.
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FIG. 5. (Color online) Symmetric structure of Fig. 2(b) without
coupling between horizontal and vertical sublattices. (a)—(d) Dis-
persion of bulk MI polaritons. (a) Unperturbed case, no EM-SRR
coupling, no MI coupling. (b) With EM-SRR, but without MI
coupling. (¢) Without EM-SRR coupling, but with MI coupling;
(d) with both EM-SRR and MI coupling. Color bar corresponds to
the values of w/wy.

As expected, the planar-axial case (see Fig. 4) exhibits only
two branches of bulk magnetoinductive polaritons, whereas
the symmetric (see Fig. 5) and the brick-wall (see Fig. 6)
cases have three branches each. It can be seen that plots
(a) are identical in all configurations. In this trivial case
of no EM-SRR and MI coupling, the branches are the
unperturbed electromagnetic wave (seen as a light cone) and

00 - 0o -
k din k,din kdin ki

FIG. 6. (Color online) Brick-wall structure of Fig. 2(d). (a)—(d)
Dispersion of bulk MI polaritons. (a) Unperturbed case, no EM-SRR
coupling, no MI coupling. (b) With EM-SRR, but without MI
coupling. (¢) Without EM-SRR coupling, but with MI coupling;
(d) with both EM-SRR and MI coupling. Color bar corresponds to
the values of w/wy.
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FIG. 7. (Color online) Planar-axial structure of Fig. 2(a). Disper-
sion of bulk MI polaritons along the I'ZMI" path (left column) and
I'’XMT path (right column). Dashed lines: no EM-SRR coupling.
Solid lines: with EM-SRR coupling. Top row: no MI coupling.
Bottom row: with MI coupling.

the eigenmodes of the metamaterial in this case simply given
by the single resonance frequency of the split rings (horizontal
plane ® = wy). In case (b), in the absence of magnetoinductive
coupling, Egs. (23) and (27) reduce to the known result
provided by the simplified effective-medium theory describing
the propagation of a TE wave in a SRR medium. Both Figs. 5(b)
and 6(b) coincide giving three branches exhibiting identical
behavior in the x and z directions. This could be expected
due the equal number of SRRs oriented in the xy and in the
zy planes. The resulting polaritonic states of mixed modes
have simple properties. A stop band for bulk modes appears
due to the range of negative permeability. In case (c)—no
interaction with EM waves—we can see the unperturbed light
cone together with unperturbed 2D dispersions of MI waves.
In all three configurations, the corresponding dispersions look
different. The MI dispersion for the planar-axial configuration
[see Fig. 4(c)] shows a backward wave character along the z
and a forward wave character along the x axis. The symmetric
configuration [see Fig. 5(c)] consisting of two identical
planar-axial sublattices mirrored relative to the axis x =z

12 At 12 N

2[001] M[101]

k
1T © 1T @
p X[100] 12 N 12 N
X - -—

.8 .8
M[101] r[000]  Z[001] M[101] M[101] r[000]  X[100] M[101]
kd/n kd/n

z

[000]

olog

0!&?[101] [000]  Z[001] M[101] 0&%101] T[000]  X[100] M[101]
kdir kdin

FIG. 8. (Color online) Symmetric structure of Fig. 2(b) without
coupling between the horizontal and the vertical sublattices. Disper-
sion of bulk MI polaritons along the 'ZMTI" path (left column) and
I'’XMT path (right column). Dashed lines: no EM-SRR coupling.
Solid lines: with EM-SRR coupling. Top row: no MI coupling.
Bottom row: with MI coupling.
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FIG. 9. (Color online) Brick-wall structure of Fig. 2(d). Disper-
sion of bulk MI polaritons along the 'ZMT path (left column) and
I'’XMT path (right column). Dashed lines: no EM-SRR coupling.
Solid lines: with EM-SRR coupling. Top row: no MI coupling.
Bottom row: with MI coupling.

unsurprisingly shows two identical branches of MI waves,
also mirrored relative to the k, = k, axis. This is because
in the symmetric configuration of Fig. 2(b) the coupling
coefficients are fully symmetric, there is an obvious fourfold
symmetry as the x and z directions are interchangeable. The
brick-wall configuration [see Fig. 6(c)] shows two branches of
two sublattices with MI coupling only in the z direction, and as
a result, both being independent of k,. One sublattice carries
a forward MI wave and the other one a backward MI wave
along the z direction. Case (d) looks of course different but
not drastically different. With a bit of imagination their origin
in cases (b) and (c) could be recognized. Interestingly, for
the planar-axial configuration [see Fig. 4(d)] the two branches
remain uncoupled for propagation in the x direction (k, = 0).
This is not surprising, considering that the SRRs being oriented
in the yz plane need a nonzero H, component to be excited
and this is missing in the TE mode having k, vector only.
The way to look at and appreciate dispersion characteristics
depends largely on one’s previous experience. One way of
looking at them has been given by Figs. 4—6. We believe
however that much would be gained if we added to this another
representation [see Figs. 7-9] favored by solid state physicists.
Note that the Z direction (see left column) corresponds to k,
and the X direction (right column) to k, when compared with
our previous notations. There are still four subplots for each
figure but in a different arrangement. The absence of EM cou-
pling is now shown by dashed lines in all four subplots. Panels
(a) and (b) show the dispersion curves in the absence and panels
(c) and (d) in the presence of MI coupling. There is, of course,
no new information given in Figs. 7-9 relative to Figs. 4-6.
However, some of the information is presented in a more quan-
titative and therefore more digestible form. For example, the
effect of EM interaction is much better indicated and in partic-
ular it is now much clearer [see, e.g., Fig. 7(b)] that dispersion
characteristics can cross each other without any interaction.
The reason can be found in the polarizations of those waves.
A major advantage of our approach is that we have analyt-
ical expressions for the field quantities enabling us to plot not
only the dispersion curves but also the polarization properties.
As may be expected, the polarizations will, in general, be
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FIG. 10. (Color online) Polarization ellipses for the symmetric configuration of Fig. 2(b) plotted at regular intervals in the k,-k, plane for
the three branches of the dispersion surfaces. First row is the magnetization, second row is the magnetic field.

elliptical. Figure 10 shows, for the symmetric configuration of
Fig. 2(b), the polarization ellipses of M and H, at selected
points in the 1st Brillouin zone. The three branches are
numbered as 1, 2, 3 with ascending frequency. The polarization
state is shown by ellipses (right-elliptical polarization in red,
left-elliptical in blue, and linear polarization in black). Also
shown, as green lines, the direction of the wave vector in each
of the points of the Brillouin zone, and, as grey lines, the
direction perpendicular to the wave vector.

It can be seen that, for propagation along either the x axis,
the z axis or the diagonal x = z the 1st and the 3rd modes are
purely transverse, whereas the 2nd mode is purely longitudinal.
This is in agreement with the result by Baena et al..”* However,
the polarization becomes increasingly elliptical for other
propagation directions. In particular, for the 2nd mode, the
presence of nonlongitudinal polarization shows the presence
of coupling between EM and MI wave.

The argument supporting this statement is analogous to that
often used in plasma physics. The dispersion equation (23) is,
for the continuous case, equivalent to

divB = div(uH) = 0. (28)

In the simplest case of no MI coupling and for ¢, = ¢,, we
deal with the isotropic case of u, = u,. Then, there are two
possibilities to satisfy Eq. (28), either if

divH=k -H=0, (29)

yielding the transverse mode with k perpendicular to H
or if

w=0, (30)

for which we are left with the option that the wave is
longitudinal. In case of anisotropic permeability tensor, the
argument is no longer valid. Considering the symmetric
configuration of Fig. 2(b), similar analysis leads to the

conclusion that the 2nd mode is longitudinal only for the
symmetry axes x, z and x = z, otherwise the spatial dispersion
and anisotropy of permeability does not permit the existence
of purely longitudinal bulk MI polaritons. Therefore we can
safely assume that for the majority of practically relevant
cases, most bulk modes of MI polaritons will be excited
by an incident TE electromagnetic wave. For the brick-
wall structure, the ellipticity becomes even more prominent
and the pureness of the longitudinal/transverse modes is
preserved only for propagation along the crystallographic axes
(not shown).

V. SURFACE WAVES: SEMI-INFINITE MEDIA

Surface waves on metamaterials have been reported before
by Sanada®' and Radkovskaya et al.3? but in both cases the
surface wave propagated between two judiciously designed
metamaterials. The question we are asking here whether a
surface wave analogous to a surface plasmon polariton can also
exist in any of our structures, i.e., do surface magnetoinductive
polaritons exist? With that aim in mind, we shall now look at
the conditions under which surface waves can propagate along
the boundary of media 1 and 2 (located at x = 0) when medium
1 is vacuum occupying the lower half plane and medium 2 is
our anisotropic magnetic plasma (abbreviated hence by AMP).
If it is a surface wave, the fields must decline away from
the boundary. Consequently, the decays in the two media are
assumed in the form exp(x;x) and exp(—«,x) where both x|
and k, are assumed to be positive and the subscripts 1 and 2
refer to the respective media. Solving Eq. (12) both in air and
in the AMP and noting that the waves must travel along the
interface, i.e., in the z direction, at the same velocity in both
media, we find the relationship in medium 1 as

k2 —

(€19}

2 _ 42
ki = kg
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and medium 2 as
2 2 _ 2 _w
Weks — pxky = papizky, ko = o’ (32)

and we have a further equation, relating k, and x; to each
other, by satisfying the boundary conditions at x = O for the
tangential components of the electric and magnetic fields in
the form
—K1lz = K2, (33)
where c is the velocity of light in vacuum. It may be seen from
Eq. (33) that a necessary condition is that
u, < 0. (34)

Further algebraic manipulations yield for the wave number in
the z direction,

_ 2 pa(l — pz)
=kj——.

1 — pxpy
For a surface wave to propagate, we need the inequality k, >
ko. This criterion is satisfied when

py > 1 (36)

k2

Z

(35)

for positive u, and when

el > el ™! (37)

for negative w,. The dispersion equation can be found by
substituting into Eq. (35) the frequency dependence of the two
components of permeability given by Eq. (14).

In the planar-axial structure of Fig. 2(b) with SRR normals
in the x direction, the z component of the permeability is
unity, 1, = 1. Immediate consequence is that there cannot
be any surface MI polaritons propagating along the surface
X = const.

The situation is quite different for the brick-wall structure of
Fig. 2(d). In Fig. 11, using the same parameters as in Fig. 6(d),
we plot dispersion curves for already familiar bulk modes,
and, besides, the surface-mode dispersion characteristics as

1.4 T T T T
’r ux=im
bulk I light 1,=0
mode 3 | line - e
I‘ -0
’I bulk ™!

k_d/n
z

FIG. 11. (Color online) Bulk and surface MI polaritons of the
brick-wall structure with an interface air/metamaterial at x = 0. Blue
lines: bulk modes, black line: surface mode. Also shown asymptotes
for permeability and the light line.
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FIG. 12. (Color online) Surface MI polaritons. (a) Effect of MI
coupling, (b) effect of EM-SRR coupling.

well. For convenience, we also plot five asymptotic lines:
U, = oo, u, = too, u, =0, u, =0, and pypu, = 1. The
surface mode can be seen to originate at the point where
the w, = £oo line intersects the light line w/k, = ¢, and,
for large k,, it asymptotically approaches the w,u, = 1 line
and can exhibit strong spatial dispersion. Depending on the
relative values of the planar and axial coupling coefficients,
the surface MI polariton can be a forward or a backward wave.
This may be seen in Fig. 12(a) where we show surface-mode
dispersion along the surface x = const for various MI coupling
coefficients using the condition k, —«, = 0.2 and taking
g? =¢q?=0.2. It leads to a forward wave when the axial
coupling is dominant and to a backward wave when the planar
coupling is higher. Returning to the k, = —0.1, k, = 0.1 case
the effect of g2, the coupling between the electromagnetic
wave and the SRRs, is investigated in Fig. 12(b). As may be
expected, higher EM-SRR coupling leads to a wider band for
surface waves.

VI. SPLIT-RING SLAB

This is a straightforward generalization of the treatment
in Sec. IV to the case when there are three media: an AMP
slab of thickness D surrounded by vacuum on both sides,
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FIG. 13. (Color online) Surface MI polaritons of a slab. (a) Top
view of a slab of a brick-wall structure. (b) Surface MI polariton

dispersion for various thicknesses D of the brick-wall slab and (c)
the corresponding transfer function at the optimum frequency.

see Fig. 13(a). The model is exactly the same as for surface-
plasmon slabs: a surface wave propagates in the z direction and
the fields decline away in the transverse direction from both
surfaces of the slab. The transfer function across the slab for
an incident electromagnetic wave with the component along
the boundary, can be obtained in the form

T = 4
(1 +¢)?exp(ka D) + (1 — ¢)? exp(—«2 D)

(38)

with ¢ = u,k,/k1. The dispersion equation is obtained from
the condition that the denominator in Eq. (38) is zero.
Performing the calculations we obtain the following two

solutions reminiscent to those for surface plasmons (see, e.g.,
Ref. 4):

D D
¢ = —tanh KZT and ¢ = —coth KZT 39)
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To solve the dispersion equation we need again the frequency
dependence of 1, and p, from Eq. (15) and, of course, we still
need to satisfy Egs. (31) and (32). Taking as an example a brick-
wall structure of thickness D shown in Fig. 13(a) with elements
coupled only in the z direction, we obtain dispersion curves
for the coupled surface modes shown in Fig. 13(b) with D as a
parameter taking values of /20, A/5, and co. The parameters
are the same as in previous brick-wall examples, except that
for the unit cell size, we take now a more realistic* value of
d = A/100. The analogy with surface plasmon polaritons on
a silver slab can be clearly seen. Not only the forward waves
but the backward waves found first by Oliner and Tamir® are
also present. Figure 13(c) shows the transfer function for the
superlens of thickness D, operating at w/wy = 1.05, for image
transfer from the object plane to the image plane, both being
D/2 distance away from the boundaries of the slab. It may
be seen that for D = A /5 the approximately flat region of the
transfer function extends up to k,d /m >~ 0.2 and for D = A/20
the flat region goes up to k.d/m >~ 0.3. With d = 1/100 this
corresponds to about k. / kg ~ 10 and 15, yielding a resolution
of about A /10 and A /15, respectively, well below the size that
can be resolved by classical means.

The conclusions are encouraging. In full analogy to the
silver slab, the magnetoinductive polaritonic slab can act as
a superlens with resolution improving for thinner slabs. The
roughness of such a slab is determined by the unit cell size and
manufacturing tolerances (in our example, d = A/100 may be
expected to provide a sufficiently smooth surface), and the slab
thickness determines the resolution—the thinner the slab the
better.

VII. CONCLUSIONS

A two-dimensional theory has been developed that com-
bines traditional effective medium theory with the theory of
magnetoinductive waves using as a model a metamaterial built
up from split-ring resonators. Taking into account nearest-
neighbor coupling between the elements, expressions have
been derived for the diagonal elements of the permeability
tensor. Coupling has been shown to have considerable influ-
ence upon the tensor elements. Dispersion characteristics of
several configurations have been investigated; the well-known
planar-axial and the symmetric structures, to which a new
configuration, the brick-wall structure, has been added. It
has been shown for the first time that besides bulk waves, a
magnetic metamaterial with interelement coupling is capable
of propagating surface waves as well. The resulting waves
bear strong similarity to surface plasmon polaritons but differ
from them in two important aspects: the interaction responsible
for their existence is that between individual SRRs and the
electromagnetic wave is not a TM but a TE wave. Elliptic
polarization states of both the magnetization and of the
magnetic field have been calculated analytically demonstrating
that in most anisotropic cases the MI polariton is not a pure
longitudinal or pure transverse mode. The analogy with surface
plasmon polaritons has also been extended to a slab geometry.
Ithas been shown that the brick-wall structure is suitable for the
realization of the near-perfect superlens. The basic formulation
can be extended to include modifications of the unit cell, and
include retardation, losses and higher-order interactions, and,
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of course, the same type of phenomena can be expected when
the interaction between the elements is electric or a combi-
nation of electric and magnetic coupling. Obvious generaliza-
tions could be to multilayered and cylindrical superlenses.*
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