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Solution enthalpy of hydrogen in fourth row elements: Systematic trends derived from first
principles

U. Aydin,* L. Ismer, T. Hickel, and J. Neugebauer
Max-Planck Institut für Eisenforschung, Max-Planck-Straße 1, D-40237 Düsseldorf, Germany

(Received 14 December 2011; revised manuscript received 19 January 2012; published 30 April 2012)

Based on first-principles calculations, we identify a master curve for the solution enthalpy of H in fourth row
elements including all 3d transition metals. Assuming nonmagnetic fcc crystal structures, we find two different
classes of materials with either the octahedral or the tetrahedral interstitial site being preferred by hydrogen.
An interaction radius for H in octahedral site of ≈0.7 Å (≈0.4Å for H in tetrahedral site) turns out to be a
characteristic value for which the chemical interaction energy has an optimum for all studied elements.
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I. INTRODUCTION

The ability of hydrogen to penetrate into metals has been
demonstrated first for Pd in 1866.1 Since the beginning of
the 20th century, it is known that the presence of hydrogen
can lead to serious material failures in transition metals, a
prominent example is the infamous hydrogen embrittlement in
steels.2 These observations triggered long-standing research
activities to gain precise knowledge about the fundamental
mechanisms behind hydrogen solution in metals. The
resulting theoretical and experimental studies addressed
hydrides and hydrogen soluble systems for various hydrogen
concentrations.

For hydrides of a few intermetallic and metallic compounds,
some empirical laws could be determined.3–6 In contrast to this,
such laws are largely missing on the opposite concentration
regime, i.e., on the dilute H regime. Nevertheless, there is a
large number of metals such as steels that do not form bulk
hydrides.7 For these materials for which the incorporation
of hydrogen is often critical with respect to mechanical
properties, much less is known about systematic trends. Two
rather general concepts are the proton model (the electron
of the H atom fills states of the host metal, yielding a
positively charged H state) and the anion model (low-lying
hydrogen states empty states of the host metal, yielding a
negatively charged H state). Later Nørskov and Besenbacher
published an effective medium theory and self-consistent
model calculations from which they came to the conclusion
that the heat of solution (and other properties) of dilute
hydrogen containing metallic systems is strongly correlated
to the electron density at the interstitial site and the d-band
filling of the host metal.8

Experiments with hydrogen-charged austenitic steels (up
to 5 at.% H) indicated that interstitial hydrogen influences
the electronic structure of the host and yields an increase
of the conductivity with hydrogen concentration. Further, the
density of conduction electrons is higher in hydrogen occupied
interstitial sites.9

With the development of further semiempirical models, a
better understanding of the mechanisms of hydrogen diffusion
and solution in transition metals has been developed.10–12

These models have, e.g., been used by Griessen to estimate
the hydrogen solution enthalpy �H in metals. Recent ab initio
studies on H in Fe and Mn showed a strong influence of the
metal lattice constant on the solution enthalpy.13 A detailed

analysis showed that differences in the solubility between
these two materials can solely be explained by changes in
the host lattice constants and subsequently with changes in the
interstitial volume.

In the present paper, our aim is to generalize this finding
for pure systems and find a computationally inexpensive
DFT approach to predict hydrogen solubility from physical
bulk parameters also for more complex systems. Accordingly,
chemical trends for the hydrogen solution were studied system-
atically, separating them from atomic effects (e.g., crystal type
or magnetism). In particular, we studied fourth row elements
of the periodic system from K up to Ge under comparable
conditions (pure elements, no magnetism, identical fcc-lattice
structure) at 0 K. Our discussion includes a critical ab initio
evaluation of the parameters introduced by Griessen in his
semiempirical approach. The calculations have been done by
assuming a dilute limit for hydrogen in the bulk metal and
neglecting the effects of H-H interactions on the hydrogen
solution enthalpy. We have considered both high-symmetry
interstitial sites (o-site and t-site) for hydrogen in these material
systems. Furthermore, the effect of zero point vibration has
been taken into account.

II. METHODOLOGY

A. Solution enthalpy and solubility of H in metals

Commonly, it is assumed that the hydrogen containing
metallic phase is in thermodynamic equilibrium with a
surrounding atmosphere of hydrogen molecules, expressed by

μ
g
H(H2 gas) = μM

H (in M). (1)

Here, μ
g
H is the chemical potential of a hydrogen atom in a

hydrogen molecule and μM
H the chemical potential of atomic

hydrogen dissolved in the host metal. Under the assumption
that the concentration of hydrogen in the metal is small,
Sievert’s law

cH =
√

p

p0
e

�S
kB e− �H

kB T (2)

can be derived (for details, see Ref. 14). Here, T is the
temperature, p is the pressure, p0 is a reference pressure
(in general, p0 = 1 atm), and kB the Boltzmann constant.
The nonconfigurational entropy of formation �S, which is
assumed not to change with temperature T , and the solution
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enthalpy �H are thermodynamic parameters.12 The key
quantity in Eq. (2) is the solution enthalpy �H .

B. Predicting solution enthalpy: Griessen’s empirical model

During the incorporation of a single hydrogen atom into a
metallic matrix, a heat δQ is released.14 We relate this quantity
to quantities accessible by ab initio calculations noting that
δQ is in an isothermal/isobaric process equal to the change
of enthalpy �H of the metal-hydrogen system after hydrogen
solution:

δQ = �H = HMH(p) − HM(p) − 1
2HH2 (p). (3)

Here, HMH is the enthalpy of the metal-hydrogen system and
HM is the enthalpy of the pure system. The last part of the
equation is the enthalpy of the hydrogen molecule for which
we take the enthalpy of a H2 molecule at zero pressure p = 0
as a reference, thus 1

2HH2 (p = 0) = μH(p = 0).
Using the thermodynamic relation H = U + pV for the

enthalpy, Eq. (3) leads to

�H (p) = �U (p) + pVH(p) − μH(p = 0), (4)

with the pressure-dependent excess volume VH(p) =
VMH(p) − VM(p), and the internal energy difference �U (p) =
UMH(p) − UM(p). Taking the derivative,

∂�H (p)

∂p
= ∂�U (p)

∂p
+ VH(p) + p

∂VH(p)

∂p
, (5)

and employing the fundamental relation ∂U
∂p

= −p ∂V
∂p

, one
obtains

∂�H (p)

∂p
= VH(p), (6)

which is a fundamental relation between the H induced excess
volume VH and the solution enthalpy �H (Griessen et al.11,15).
With the definition for the bulk modulus,

B = −V
∂p

∂V
, (7)

Eq. (5) is equivalent to12

∂�H (p)

∂lnVM(p)
= −B(p)VH(p). (8)

For H in transition metals, Griessen et al.11 showed that the
solution enthalpy strongly depends on the electronic structure
of the host metal. As a quantitative measure of the electronic
structure, the difference �E = EF − Es between the Fermi
energy EF and the energy at the center of the lowest conduction
band Es was used. In a subsequent study (Ref. 12), he extended
this model by taking also the d-d band overlap Wd and the
distance of the hydrogen atom to its nearest-neighboring metal
atoms Rj into account:

�H = α�EW
1/2
d

∑
R−4

j + β. (9)

Here, Wd and �E are general properties of the host metal.
The distances Rj depend on the local configuration.12 The
constants α and β are fitting parameters. This semiempirical
model helps to understand how the hydrogen concentration
in transition metals is related to specific material-dependent
quantities.

A drawback of this and other previous models is their
dependence on experimental input data. As a consequence,
it is hard to distinguish between different physical effects and
to derive the dependence of the solution enthalpy on simple
parameters. It is therefore unclear if relations constructed
from a certain set of experimental data can also be extended
to other materials not considered before. For a deeper and
more systematic understanding of the electronic and elastic
interactions of hydrogen in metallic systems, ab initio methods
have the clear advantage that they are universal and solely
based on quantum-mechanical principles. This allows a sys-
tematic evaluation of the empirical laws and a fundamental
understanding of the underlying mechanisms.

C. Ab initio description

In order to determine all the contributions to the pressure-
dependent solution enthalpy in Eq. (3), we fitted our ab initio
data to the Murnaghan equation of state for energy.16 Since H is
the lightest element in the periodic table, quantum-mechanical
effects in the H motion have to be taken into account. The
excess zero-point energy is defined as

Evib,tot = 1

2
h̄

⎛
⎝3(N+x)∑

j

ωMH
j −

3N∑
j

ωM
j − 1

2

3x∑
j

ω
H2
j

⎞
⎠ , (10)

where the ωj denote the phonon frequencies of the corre-
sponding systems. The first part of Eq. (10) describes the
energy, related to vibrations of the hydrogen-metal system.
The second part expresses the energy of the unperturbed (i.e.,
H-free) system. The third part describes the energy of an
oscillating H2 molecule. In order to obtain these frequencies,
we use the harmonic approximation. The actual calculation
is performed in two different ways, the Einstein method and
the calculation of the full dynamical matrix, respectively. In
the Einstein method, which is a computationally inexpensive
method, only the hydrogen atom is displaced in three different
orthonormal directions. For each of the three directions, the
resulting energy versus displacement curve is fitted with a
second-order polynomial. The second derivative of the fit
is a constant term a, which determines the frequency ωH

of the hydrogen atom with the mass m through the relation
ωH = √

2a/m.
The more accurate but computationally also much more

demanding second approach is calculating the full dynamical
matrix, i.e., displacing all atoms. The dynamical matrix is
obtained by displacing the atoms by 0.008 Å out of the
equilibrium position.17

As mentioned before, we assume hydrogen to be in the
dilute limit (x � N ). In order to evaluate the influence
of possible H-H interactions on the solution enthalpy, we
performed careful supercell convergence checks for two (with
respect to the filling of their 3d shells) different 3d elements,
namely, Ti and Cu. The experimental value for the solution
enthalpy for H in the investigated elements (excluding Ge) is
in the range of 1.5 eV. We aim at a total error for the solution
enthalpy of less than 10% of this value, i.e., the targeted error
should be below 0.15 eV. It turned out that in the fcc bulk
material, a 2 × 2 × 2 supercell consisting of 32 metal atoms,
is sufficient to guarantee an error of <0.05 eV.
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All our ab initio results have been obtained from DFT calcu-
lations using PAW pseudo-potentials18 implemented in VASP.19

For the description of electronic exchange and correlation, we
have used the GGA-PBE functional,20 yielding an additional
error that cannot be quantified. The numerical error due to the
choice of a plane-wave cutoff energy of 300 eV and 6912 k

points for the sampling of the Brillouin zone (corresponding
to a 6 × 6 × 6 Monkhorst-Pack mesh)21 is sufficiently small
to ensure (besides our energy criterion) an error in the bulk
modulus of less than 1 GPa. We have used a Methfessel-Paxton
scheme22 with electronic smearing of 0.1 eV. The relaxation of
atoms has been performed with a second-order quasi-Newton
method. Convergence checks of the solution enthalpy have
shown that the numerical error due to k-point sampling and
cutoff energy is below 0.02 eV.

III. RESULTS

A. Comparison with experiments

As mentioned above, all our ab initio calculations are
performed for nonmagnetic (NM) fcc crystal structures. This
allows to separate chemical trends from structure and magnetic
interactions. The approach is also motivated by the interest in
understanding the effect of the local chemical environment on
the H solution enthalpy in an fcc alloy. The locally enriched
impurity atoms do not change the lattice structure of the host
matrix if their concentration is small.

Figure 1 compiles our ab initio data and experiment.
As can be seen, the experimental data for the 3d elements
nicely agree with our DFT results. The figure also nicely
shows that chemical trends become much more apparent
if consistently NM-fcc structures are assumed rather than
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FIG. 1. (Color online) Solution enthalpies of H in 3d elements.
Circles: Experimental data cited in Ref. 23: K and Sc (see Ref. 24),
Ti (see Ref. 25), V and Cu (see Ref. 26), Cr, Mn, Fe, and Co (see
Ref. 27), Ni (see Ref. 28), Zn (see Ref. 29), and Ge (see Ref. 30).
Filled diamonds: ab initio results for 3d elements assuming NM-
fcc structures. Open diamonds: ab initio results including zero-point
energy (ZPE) in NM fcc structure. Filled triangles: ab initio results
for 3d elements in their ground state (T = 0 K) stable structure,
as indicated by the label. The ab initio results always refer to the
energetically most favorable interstitial site. Bold elements indicates
fcc structure for the ground state.

changing a complete set of parameters. Prominent examples
are Cr, Ga, or Ge. Finally, we note that zero-point vibrations
have little effect on the results.

For the transition metals, we observe a clear dependence
of �H on the filling of the outer d shell, beginning with
one electron in the case of Sc and a filled shell for Cu.
Since we observe an increase with the filling of the 3d shell,
these electrons have apparently a systematic direct or indirect
effect on the solution enthalpy. An indirect effect might be a
change in the lattice constant, which (indirectly) affects via the
interstitial volume the solution enthalpy. In order to discrimi-
nate between direct and indirect effects, the lattice constants of
the elements have to be taken into account. Previous studies11

as well as our own investigations13 have already indicated
that apart from the chemical structure of the host lattice, the
distance of the interstitial to its next neighboring metallic atom
is a decisive parameter controlling H solubility. For example, H
solubility increases when alloying Fe with Mn or C, which both
expand the Fe lattice. Specifically, a linear relation between
the interstitial Voronoi volume and the solubility of hydrogen
at the corresponding site has been observed that is almost
independent of the chemical environment.13

B. Solution enthalpy as a function of the lattice constant

In order to check if such volume effects can be generalized,
we replot the solution enthalpies of Fig. 1 as a function of the
lattice constant (see Fig. 2). In addition, we systematically
varied the volume for each of the studied 3d elements
around the equilibrium lattice constant, corresponding to an
application of hydrostatic pressure.

Since the solution enthalpy in Eq. (2) is a function of
pressure, the enthalpy difference between the metal-hydrogen
and the metal systems described in Eq. (3) have been calculated
at the same pressure. We observe, however, that the volume
dependent trends are more clear if we plot the solution
enthalpy with respect to the lattice constant instead of pressure.
In Fig. 2, the resulting solution enthalpy is shown if H is
placed separately in an octahedral [o-site, Fig. 2(a)] and in a
tetrahedral site [t-site, Fig. 2(b)]. The derivative for the change,
as a function of the volume, is provided in Figs. 2(c) and 2(d),
respectively. We notice two interesting effects: (i) the solution
enthalpy and, in particular, its slope follow closely an universal
master curve. This curve is largely independent of the specific
host element. For H in an o-site (t-site), the minimum of the
solution enthalpy is at a lattice constant of 4.6 Å (5.5 Å).
The occurrence of a minimum indicates the occurrence of
competing repulsive and attractive interactions. The volume
dependence can be approximately fitted by the following
functional dependence �H (alat) = α exp(−alat) − β(1/alat)
[see red line in Fig. 5(b)]. (ii) For elements with almost the
same lattice constant (e.g., Ti and Zn or Fe and Cu), in some
cases a constant shift in H solubility is observed. The slope
(derivative) remains, however, almost unchanged.

In addition to the solution enthalpy, the ab initio approach
provides the bulk modulus and the excess volume for a wide
range of chemical elements and lattice constants (pressures).
This allows to check the performance of the analytical relation
provided in Eq. (8). Since in this expression the derivative
of the solution enthalpy with respect to the logarithm of
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FIG. 2. (Color online) Solution enthalpy �H for: hydrogen in o-site (a) and in t-site (b). Furthermore the derivative of the solution enthalpy
�H with respect to the logarithmic volume for hydrogen in the o-site (c) and hydrogen in the t-site (d) is shown. The red line indicates a fit
of the resulting master curve of the simplified form �H (alat) = α exp(−alat) − β(1/alat). The linear dependence of the derivative is due to the
second-order fit of the �H values.

the volume enters, we fit for each element the discrete data
[shown in Figs. 2(a) and 2(b)] to a third-order polynomial.
The pressure dependence of the bulk modulus as well the
excess volume have been determined through the Murnaghan
equation of state. The results are summarized in Fig. 3. As
can be seen, the points are close to the analytical expression
(solid red line). We therefore conclude from the validity of
Eq. (8) that the universality described in (i) applies also to the
product of the pressure-dependent bulk modulus and the excess
volume, and less rigorously also to the individual quantities
B(p) and VH(p). The remaining part of the paper is devoted
to understanding of the origin of the numbers and effects
mentioned in (i) and (ii).
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FIG. 3. (Color online) The derivative of the solution enthalpy as
a function of the bulk modulus B multiplied by the excess volume
VH. The solid red line gives the analytical relation [see Eq. (8)].

C. Hard spheres model

In a first step, we focus on geometrical aspects and consider
atoms to be hard spheres. If interstitial hydrogen is represented
by a specific atomic radius, it needs a sufficiently large
interstitial volume to allow an incorporation. An octahedron
(tetrahedron) formed by hard spheres (situated at the corners
and touching each other) has in its center some free space,
which can be used to incorporate hydrogen (see Fig. 4).

By varying the lattice constant, the free volume in the
octahedron is changing. If we assume that at a given lattice
constant, the surrounding host atoms are touching each other,
the hard sphere radius for the host atoms is then given by

rhost(alat) = alat/
√

8. (11)

Based on this condition, the interstitial radius of a sphere that
fits into the empty space in an o-site is then given by

rHocta (alat) = alat (
√

2 − 1)/
√

8, (12)

FIG. 4. (Color online) Hard spheres model: hydrogen (red)
located in an o-site (a) at alat = 4.6 Å and in a t-site (b) at alat =
5.5 Å with host atoms (yellow) sitting at the octahedral (tetrahedral)
corners.
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and the interstitial radius in a t-site is given by

rHtetra (alat) = alat (
√

6 − 2)/
√

32. (13)

Applying these formulas for the site-dependent optimum
lattice constant (aocta

lat = 4.6 Å and atetra
lat = 5.5 Å), we obtain

rhost(aocta
lat ) = 1.6 Å and rhost(atetra

lat )= 1.9 Å. Using Eqs. (12) and
(13), we find for the H radii rHocta (a

octa
lat ) = 0.7 Å and rHtetra (a

tetra
lat )

= 0.4 Å, i.e., both are significantly different. Interestingly,
however, the host atom-H bond length in the o-site rhost(aocta

lat +
rHocta (a

octa
lat ) and in the t-site rhost(atetra

lat ) + rHtetra (a
tetra
lat ) is for both

sites approximately 2.3 Å, i.e., independent on the site.
A smaller lattice constant yields a more dense ion packing,

and leaves less space for hydrogen, resulting in a higher so-
lution enthalpy, and higher enthalpy of solution, respectively.
This argumentation is in agreement with the above mentioned
investigation of Syono et al., reporting about incompressibility
of hydrogen in metals.6 Using high-pressure techniques, a
similar observation of H incompressibility has been reported
by Baranowski in an experimental study on H solubility in
fcc metals.31 However, such a model does not explain why the
solubility goes down when exceeding a critical lattice constant.
Furthermore, as will be discussed below, the hard sphere model
predicts for both sites (t and o) nonidentical sphere radii for
the H atom.

We have checked the validity of the o-site minimum at 4.6 Å
and the t-site minimum at 5.5 Å for the elements Ca, Sc, Ti,
Mn, Fe, Cu, Zn, Ga, and Ge. Since the lattice constant for most
of these elements is much smaller (or higher) a giant tensile
(compressive) strain occurs when probing the minimum of the
master curve. As a result, these structures become unstable
when introducing H. To avoid this instability, we enforce for
the host atoms the ideal fcc structure (no relaxations). In the
o-site, the resulting optimum lattice constant for Ca, Zn, and
Ti coincides with that of Sc (i.e., is consistent with a hydrogen
radius of approximately 0.7 Å in the hard sphere model). In the
case of Mn, Fe, and Cu, the optimum lattice constant is with
approximately 4.1 Å (compared to 4.6 Å), which is slightly
smaller. The highest resulting optimum lattice constant has
been achieved for the elements Ga and Ge with approximately
5.3 Å. The resulting hard sphere radius for the interstitial in an
o-site is between the range from 0.6 to 0.77 Å.

For H in t-site, we find a slightly different trend for the
optimum lattice constant. The resulting hard sphere radius
is in the range from 0.35 to 0.44 Å and thus much smaller.
We therefore conclude that a value between 0.6 and 0.77 Å
(0.35 to 0.44 Å) is an optimum chemical interaction radius for
hydrogen in an o-site (t-site).

Recent ab initio studies on hydrogen-vacancy interaction
in fcc iron revealed that it is energetically more favorable
for hydrogen to be situated in the 〈100〉 directions from the
vacancy center. The (high-symmetric) vacancy center itself
is a local maximum and not preferable for hydrogen.32 An
interesting question is whether the H-M binding is strong
enough to break (o-site) symmetries in crystals where the
lattice constant is larger than 4.6 Å. This can be realized, e.g.,
by shifting the H atom away from the interstitial center. For
this purpose, we made test calculations for H in Ca, since the
lattice constant of Ca is well above the minimum one. To break
the symmetry, we position a H atom off center at a distance

of 2.3 Å of a single Ca atom (of two Ca atoms, respectively).
Performing atomic relaxations, the H atom moves back into
the high-symmetry o-site. Thus, for all elements studied here,
the qualitative character when going from a compressed to
a tensile interstitial configuration remains unchanged and
provides the basis for the universal shape of the master curve.

D. Separation of strain and chemical effects

The strong impact of the lattice constant on H solubility
can have various physical origins. It is straightforward to
assume that atomic relaxation effects are critical. To estimate
their importance, we decompose the solution energy into its
various contributions. The strain energy �Estrain is the energy
difference between the two different configurations of the
matrix atoms (without hydrogen):

�Estrain = Erelaxed
MN /H1

− Eideal
MN

. (14)

Here, the term Erelaxed
MN/H1

describes the relaxed positions of the
host atoms due to the incorporation of H (total energy without
hydrogen) and the second term describes the ideal fcc lattice
positions. The remaining part of the H solution enthalpy at the
right-hand site of Eq. (3) is called chemical effect and given
by

�Echem = Erelaxed
MN H1

− Erelaxed
MN/H1

− 1
2EH2 . (15)

The results are shown in Fig. 5.
The energy gain due to relaxation effects is by definition

always positive. In the case of H in an o-site [see Fig. 5(a)] it
shows a remarkable dependence on the lattice constant. When
going away from the optimum lattice constant toward smaller
ones, the expected increase of (compressive) strain energy is
seen. Also toward the opposite limit of larger lattice constants,
an equally strong increase of (in this case tensile) strain energy
is observed, i.e., the host atoms neighboring H are pulled
toward the impurity. It is remarkable that the minimum, where
the strain energy vanishes, is close to the optimum lattice
constant of the master curve. This configuration may thus
be regarded as special in the sense that no displacements of
matrix atoms are necessary when H is included. The increase
of compressive energy is approximately two times larger in the
case of H in t-site [see Fig. 5(c)]. The stronger relaxation in the
t-site can partly be explained by the smaller hydrogen-metal
distance for the identical lattice constants.

In this context it is, however, surprising that for the t-site
the optimum lattice constant with respect to strain energy also
seems to be around 4.6 Å, whereas the minimum solution
enthalpy occurs at around 5.5 Å. This observation indicates the
limitations of a simple geometrical sphere model in describing
solution of hydrogen. One reason for the obvious limitations
may be that the model does not consider second-nearest
neighbors. A direct comparison between the o-site and t-site
is also difficult because of geometric differences between
these sites. Employing a Voronoi construction to determine
interstitial volumes, we observe that the hydrogen atom sitting
in an o-site is completely surrounded by octahedral atoms,
whereas the hydrogen atom in the t-site has a contact surface
to the second NN atoms. Eventually, the number of chemical
bonds is influenced by this coordination effect. The importance
of such chemical coordination effects becomes particularly
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FIG. 5. (Color online) Separation of the solution enthalpy into a strain (a) and a chemical part (b) for o-sites. The strain energy is determined
by relaxation effects of the host matrix whereas the chemical energy is determined by the interaction of the H atom with the matrix atoms.
Both energy curves show an approximate master curve of the form α̃ exp(−alat) − β̃(1/alat) (red). For H in the t-site, the same separation into
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clear when noticing that in both cases �Estrain is almost an
order of magnitude smaller than �Echem, i.e., the solution
enthalpy curve �H is mainly determined by �Echem. We
therefore conclude that the universal master curve is not
dominated by H induced strain in the host lattice, but rather by
the strength of the H-metal bonds.

E. Zero-point vibrations

An effect, which might be particularly relevant for a
light weight element such as hydrogen, is the change of the
solution enthalpy due to zero-point vibrations (ZPE). We have
therefore studied this contribution for H in different elements
and different sites employing the two methods introduced in
Sec. IIC. The Einstein method is the computationally much
faster but also more approximate method to compute ZPE.
We have used the Einstein method to calculate the volume
dependent contribution of the ZPE for H in Sc (o-site) and
in Ca (t-site). The lattice constants of these two materials
have been changed such that a compressive, respectively, a
tensile, strain up to 5% was achieved. It turned out that for
both elements, the energy difference between the tensile and
compressive regions of the material does not exceed a total
value of 50 meV.

A more accurate method is the calculation of the full
dynamical matrix. The results of the latter method can be seen
in Fig. 6. For the missing matrix elements, V, Cr, Ni, and Ge
imaginary frequencies were obtained. Imaginary frequencies
indicate that these elements are unstable in an fcc structure.
Nevertheless, a calculation of the hydrogen ZPE in these
elements was still possible within the Einstein method. For
the elements Zn and Ga, we obtained imaginary frequencies

for H in the o-site. We notice a trend of the ZPE with respect
to the d-band filling. With the filling of the d band the ZPE
energy is increasing linearly until it reaches a maximum
at a half-filled d band. With further filling of the d band
the ZPE energy is decreasing linearly. Again, we observe
a clear dependence with respect to the host lattice constant.
Two observations are noteworthy: first, the results are largely
independent with respect to the particular site chosen by the H
atom. Second, the effect of the ZPE on the solution enthalpy
vanishes almost completely at the previously identified specific
lattice constant of 4.6 Å. We note that the highest effect on
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FIG. 6. (Color online) Effect of hydrogen zero-point Energy
(ZPE) on the solution enthalpy. The ZPE are calculated within the
harmonic approximation. Open squares: H in o-site, filled diamonds:
H in t-site. For some host elements (V, Cr, Ni, Ge) not shown in this
figure, imaginary frequencies (see text) were obtained.
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the solution enthalpy due to zero-point vibrations is less than
0.08 eV. Including ZPE will therefore affect chemical trends
only moderately. In fact, the zero-point energies are well below
our targeted convergence criterion (0.15 eV).

F. Chemical shift of �H

For chemical elements, which have similar lattice constants
the chemical offset in solution energies can be obtained. As
shown in Figs. 2(a) and 2(c), the slope of �H is independent
on the specific element. The offset in the absolute value of the
solution enthalpy is thus a direct consequence of the specific
chemical nature of the host-hydrogen interaction. A general
observation is that elements with filled d shells (e.g., Zn, Cu,
Ga, Ge) have a higher solution enthalpy than elements without
filled 3d shells (e.g., Ti, Fe, V). The filling of the 3d shell is
not directly correlated with the lattice constant, see e.g., Zn
and Ti in Fig. 2.

When discussing the chemical nature of the unperturbed
host lattice, previous works11,12 mainly considered global
electronic properties of the pure bulk system (�E and Wd )
as the relevant quantities influencing the hydrogen solubility.
In these studies, the analysis of the electronic density of
states (DOS) plots revealed that the difference in the global
electronic structure between dilute hydrogen and the pure
metallic systems is not significant. Locally, however, hydrogen
dissolved in the metal is expected to accumulate charge close
to its shell.4 We therefore focus on local effects around the
H atom and analyze the hydrogen induced perturbation of
the electronic charge by considering electronic charge density
differences (CDD) between the perturbed and unperturbed
systems. The difference is given by the equation

n(r)CDD = nrelaxed
MxH (r) − nrelaxed

Mx
(r) − nH(r) (16)

in which the first part describes the electronic charge of
the metal-hydrogen system. The second part belongs to the
metallic system, with the positions of the metal atoms being
identical to the M-H system. The last part is the electronic
charge of a single hydrogen atom in vacuum. For Ti, the CDD
isosurface is shown in Fig. 7. The analysis of the isosurfaces
revealed for all elements an isotropic charge accumulation
at the H position. For a more quantitative evaluation, a 2D
intersection for all elements is shown in Fig. 8. The pronounced
maximum observed for all elements in Fig. 8 is the result of the
attractive Coulomb interaction of the proton. As can be seen,
the amount of accumulated electronic charge at the hydrogen
atom depends on the specific host element. Elements on the left
side of the periodic system with a low number of 3d electrons
like Ca, Sc, and Ti show a higher perturbation of the electronic
charge, induced by hydrogen. Elements to the right, like Cu,
Zn, and Ge, with closed 3d shells, have a lower perturbation of
the electronic charge. This behavior can be understood within a
bonding (anion model) picture: hydrogen minimizes its energy
by binding an extra electron in its 1s shell. Transition metals
with incompletely filled 3d shells have thus a higher tendency
to donate electrons.

According to the proton model,4 an additional electron
(coming from H) will be added at the Fermi level, the Coulomb
interaction of electrons will increase with higher electron
densities, and as a consequence an increase of �H follows.

FIG. 7. (Color online) Isosurface for the charge density difference
nCDD(r) using the example of Ti. The electron accumulating region
(H position) is red coded and the donating region (host atoms) blue.
For all elements, the electronic accumulation at H is isotropic.

This is related to the higher electronic density of states at the
Fermi level for elements with filled 3d shells as compared to
early transition metals. In this study, the change of the states
at the Fermi level was not observed. However, based on the
results shown in Fig. 8, for dilute hydrogen in 3d metals,
the solution energy actually increases with the CDD (charge
accumulation) at the H position. Furthermore, the s-like state
was occupied with two electrons in almost all studied elements,
i.e., the anion model4 seems to be a much more appropriate
model for dilute hydrogen.

A more quantitative analysis is given in Fig. 9. In Fig. 9(b),
�Echem is plotted against the spherically integrated CDD (see
Fig. 8). The radius of the integration sphere is determined by
the transition point from negatively to the positively charged
CDD. We observe a clear correlation: a larger CDD is related to
a reduced �Echem. Therefore H solubility increases with the
ability of the host to donate electrons to H. The correlation
becomes much clearer if the shift of the chemical energy
�Echem(sh), which is the energy difference between �Echem

and the master curve in Fig. 5, is considered. The result is

FIG. 8. (Color online) 2D intersections through the charge den-
sity difference between the systems with and without hydrogen for
different elements. For H in an o-site, a positive peak for all elements
is seen and the electronic charge is increased.
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FIG. 9. (Color online) Chemical effect as a function of the
spherically integrated CDD (see text). (a) The chemical effect vs
the integrated CDD. Early elements of the transition series (Sc, Ti,
V, Cr, Mn) show larger polarization effects. Such screening effects
lower the chemical offset and simultaneously increase H solubility.
(b) The element dependent chemical shift relative to the master curve
vs the integrated CDD. The plot reveals a critical value of CDD for
the elements, which separates the studied elements in two classes.

plotted in Fig. 9(a) versus the spherically integrated CDD.
Here, a critical value of 0.025 electrons/Å3 for the CDD is
obtained, which separates the elements into two classes: all
transition metals except Cu and Zn have a CDD larger than
the critical value, which results to a �Echem below the master
curve. The elements Cu, Zn, Ga, and Ge, on the other hand, in
which H is less soluble are below the critical CDD value.

G. Comparison with previous approaches

In the following section, we compare our ab initio eval-
uation with previously suggested approaches to assess �H .
According to Griessen et al., �H can be expressed for d metals
as an approximate function of various physical quantities (�E,
Wd , and Rj ) of the unperturbed host system. In the following,
we derive these quantities from our method for the 3d metal
and check at the same time the extendibility to other metals
considered in this work.

The energy difference between the Fermi level and the cen-
ter of the lowest-lying conduction band, �E = EF − Es , is
a global parameter describing the structure of the undisturbed
crystal. In order to determine its ab initio value, we have
integrated the electronic density of states (DOS) of the pure
bulk system. The way to determine the center of the lowest
lying (s-like) conduction band Es is discussed in Ref. 11: Es

is the energy for which the integrated DOS is equal to one and
EF is simply the energy at the Fermi level.

According to Eq. (9), the choice of the chemical element
affects with �E, Wd , and Rj three quantities simultaneously.
Thus to evaluate the validity of Eq. (9), we take the depen-
dence on two of these quantities for granted and check the
dependence on the third by rearranging Eq. (9) as, e.g., in the
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FIG. 10. (Color online) Correlation between Griessen’s
approach12 for the H solution enthalpy and the parameter �E, as
obtained from our ab initio calculations. Open squares: hydrogen in
the o-site. Filled triangles: hydrogen in the t-site.

case of �E :

�H − β

αW
1/2
d

∑
R−4

j

= �E (17)

(respectively rearranging the equation for Wd and Rj ).
Here, we take for the fitted parameters the values α =
0.13 (eV/atom)(eV−3/2 Å4) and β = −1.07 eV/atom. For the
transition metals as predicted by the Griessen approach, there
is a perfect correlation between the parameters since all values
should lie on the black line (see Fig. 10). We see that the model
can even be extended to Ga and Ge but not to the elements K,
Ca, and Zn.

The analogous analysis is performed for the distance
between interstitial hydrogen and the neighboring atoms Rj

(see Fig. 11). Here again, the linear behavior is reproduced
for the transition metals, and can be extended to Ga and Ge.
The correlation between the Griessen parameter d-bandwidth
Wd (which we have treated as the full bandwidth) and the
rearranged Eq. (17) is shown in Fig. 12.

In conclusion, the Griessen parameters �E, Wd , and Rj ,
which can be easily obtained from ab initio calculations of
the unperturbed host material, can be used to predict hydrogen
solution in transition metals. The approach fails, for the studied
alkali metals K and Ca and the late transition metal Zn.
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However, we found that it can be extended to Ga and Ge,
which have like Zn a full 3d shell.

IV. CONCLUSION

Using DFT and a large set of metals we identified chemical
trends for the solution enthalpy �H of interstitial H. To ensure
a systematic comparison, we restricted the study to (i) 3d

transition metals and the neighboring elements K, Ca, Ge, and
Ga, (ii) the fcc crystal structure, and (iii) nonmagnetic config-
urations. The ability of the ab initio approach to implement
these constraints, is a clear advantage compared to previous
empirical studies that were solely based on experimental data.

Systematically using these constraints, we were able to
identify several rules for hydrogen solubility in transition
metals. (1) Most importantly, our results reveal a hitherto not
expected universal behavior between the hydrogen solution en-
thalpy versus lattice constant of the host metal. The universality
becomes most apparent if strained materials are considered.
(2) The solution enthalpy is the result of a competition between
sufficient space to incorporate hydrogen (i.e., a preference
for large lattice constants) and the formation of strong
hydrogen-metal bonds (favoring smaller atomic distances).
The first trend is consistent with previous observations in
the Fe-Mn system.13 In the present study, we identified an

optimal spherical radius for interstitial H of approximately
0.7 Å in the octahedral site (0.4 Å in the tetrahedral site,
respectively). (3) An fcc-lattice constant of 4.6 Å turned
out to be characteristic for several atomistic mechanisms.
In particular, at this lattice constant, no relaxation of matrix
atoms is needed upon hydrogen incorporation at the octahedral
site. (4) These observations motivate a decomposition of the
hydrogen solution enthalpy in a strain-induced part �Estrain

(related to the lattice relaxations) and a remaining chemical
part �Echem. (5) Such defined chemical part, �Echem, contains
the energy related to the formation of chemical bonds. It covers
the largest part of the hydrogen solution enthalpy. Accordingly,
its volume dependence also shows the universal behavior
observed for the whole solution enthalpy. (6) Investigating
charge density differences at the hydrogen position revealed
two classes of elements: in one class only a small part of the
electronic charge of the matrix material is locally bound at
the hydrogen position. This is a consequence of the limited
ability of these materials to screen the proton. The resulting
reduction in ionic character explains the significantly higher
endothermic hydrogen solution enthalpy.

The above insights were only possible due to the ab initio
nature of this study, which allowed to assess earlier, more
empirical findings for the dependence of the hydrogen solution
enthalpy in metals. We found that the parameters suggested in
the work of Griessen12 for transition metals yield trends that
are reasonably confirmed by our ab initio data and can even
be extended to further fourth row elements like Ga and Ge.

Despite the approximations in the DFT exchange-
correlation functionals used in our approach, the good agree-
ment with experimental data makes us confident that our
predictions are qualitatively correct. Besides the achieved
general understanding of fundamental rules for the incorpora-
tion of interstitial hydrogen, we believe that the knowledge
of such trends may help in understanding and designing
materials where dilute H concentration have severe effects
on functionality and/or structural solubility such as, e.g., H
embrittlement.
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