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Emission properties of an oscillating point dipole from a gold Yagi-Uda nanoantenna array
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We investigate numerically the interaction of an oscillating point dipole with a periodic array of optical
Yagi-Uda nanoantennas in the weak coupling limit. A very strong near-field enhancement of the dipole emission
by the resonant plasmon mode in the feed element is predicted in this structure. It is shown that the enhancement
factor depends strongly on the dipole position, the direction of the dipole moment, and the oscillation frequency.
The radiative intensity of the point dipole from appropriate places next to one feed element may exceed the
radiative intensity of an equivalent dipole in free-space by a factor of 100. Despite the fact that only one director
is used in each nanoantenna of the array, the far-field emission pattern is highly directed. The radiative efficiency
(the ratio of the radiative to the total emission) is around 20%.
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I. INTRODUCTION

Nanophotonics has been the focus of intensive investiga-
tions in recent years. One of its numerous areas is the nanoscale
control of light emission from a single molecule or quantum
dot. Promising tools for the realization of this goal are optical
nanoantennas.1–14

Metal antennas are traditionally used for controlling the
radiation pattern of electromagnetic wave emission in the radio
and microwave frequency range. Though the electromagnetic
properties of metals in the optical range differ significantly
from that in the radio and microwave range, it seems to be
reasonable to use the main concepts of radio antennas in the
optical range as well. It has been suggested1–6 to construct a
nanooptical antenna with elements that are arranged as in the
radio Yagi-Uda antennas.

Yagi-Uda antennas consist usually of one or two reflectors,
one feed element and several directors with appropriately
selected scattering phases (reflector and director are slightly
detuned inductively and capacitively). As has been recently
shown, the nanoantenna elements can be nanorods,2–4 core-
shell,1,5 or spherical14 nanoparticles. All elements scatter the
light, and the resulting interference forms a highly directed
beam along the antenna axis. The size of the elements in such
optical Yagi-Uda nanoantennas has to be smaller than the light
emission wavelength in free-space. Such optical nanoantennas
only work efficiently in narrow frequency domains, where the
interaction of the emitter with light is resonantly enhanced
because of the excitation of localized plasmons15,16 in the
nanoantenna elements.

Spontaneous emission is not an intrinsic atomic prop-
erty but depends sensitively on the local density of pho-
tonic modes at certain frequencies in a microcavity,17,18

or, equivalently, on the local electromagnetic field value at
the position of the quantum emitter.8,9,13 Using resonances,
it is possible to increase the local electromagnetic field
significantly, and, consequently, to enhance and redirect the
dipole emission. In the case of localized plasmon reso-
nances, the collective excitation of electrons at the plasmon

frequency leads to a considerably enhanced emission rate
when the point dipole is located in the vicinity of metallic
nanoparticles with the appropriate orientation of its dipole
moment.3,10,12

The exact description of photon radiation from the quantum
emitter located in some metal-dielectric environment is very
complicated. A convenient approximation is the model of
an oscillating point dipole. It oscillates with constant fre-
quency and magnitude fixed by the external source (so-called
weak coupling limit). In other words, the emission of a
current �j (�r,t) = �j0 · δ(�r − �r0) · e−iωt inside an environment
with spatially modulated permittivity has to be calculated. This
system is now classical and can be described by Maxwell’s
equations.

The goal of this paper is to investigate the radiation pattern
and emission rate of one oscillating point dipole located in a
periodic array of optical Yagi-Uda nanoantennas. Each antenna
in the array consists of three rectangular gold elements:
director, feed, and reflector. The point emitter is located a few
nanometers from the edge of one feed element. To the best of
our knowledge, the emission properties of an oscillating point
dipole from such a structure have not been investigated yet. The
structures investigated so far have been either single Yagi-Uda
nanoantennas1–5 or arrays of simpler spherical shapes.10 Using
arrays of antennas in combination with several emitters with
controlled phase difference of oscillation, we would be able
to control the optical emission directivity,19 just like in phased
antenna arrays.

The paper is organized as follows. In Sec. II, the Purcell
factor and radiative efficiency of an oscillating point dipole
inside the nanoantenna array are introduced. The scattering
matrix approach is applied for calculation of these quantities.
The calculated results for a periodic array of optical Yagi-Uda
nanoantennas with an oscillating point dipole are presented
in Sec. III. In this section, the calculated spectra, far-field
directional pattern of emission, Purcell factor, and radiative
efficiency are given and discussed. The results are summarized
in Sec. IV.
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FIG. 1. (Color online) Lateral view of a periodic array of optical
Yagi-Uda nanoantennas with an x-oriented oscillating point dipole
(black point with arrow) located at a horizontal distance of 5 nm from
the feed element of one nanoantenna.

II. SCATTERING MATRIX METHOD FOR EMISSION
PROPERTIES CALCULATION

The structure of interest is shown schematically in Fig. 1.
It consists of a glass superstrate (ε = 2.4), a periodic array
of optical Yagi-Uda nanoantennas that are arranged in a
rectangular lattice, and a quartz substrate (ε = 2.13). The
periods along the x and y axis are equal to 450 and 300 nm,
respectively. Each antenna consists of three rectangular gold
parallelepipeds of 30 nm height and 100 nm width. The lengths
of the top (director), middle (feed), and bottom (reflector)
elements are 220, 250, and 300 nm, respectively. They are
located in glass and the vertical distance between them is equal
to 100 nm. We assumed the gold permittivity to be described
by the Drude formula with 9016 meV plasma frequency and
81 meV damping rate.

Our first goal is to calculate the directional pattern as
well as the emission spectra in the direction normal to the
antenna plane. It makes sense to normalize the computed
emission intensity P (ϑ,ϕ), i.e., the Poynting vector of the
dipole emission in the far field as a function of the spherical
angles ϑ and φ, to the maximum intensity of the emission of
a point dipole in free space, which oscillates with the same
magnitude and frequency. Thus, we can easily distinguish
the enhancement of emission (P > 1) from the attenuation
(P < 1) compared to the dipole located in homogeneous
vacuum.

To characterize quantitatively the total dipole emission and
its radiative part, it is convenient to define the Purcell factor
and its radiative part as

FP =
�

�0
( �P · d �A)�

�0
( �P0 · d �A)

, and F rad
P =

�
�

( �P · d �A)�
�0

( �P0 · d �A)
, (1)

respectively. Here, �0 and � consist of two horizontal xy

planes: in case of �0 infinitesimally below and above the point
emitter, in case of � below and above the whole nanostructure,
i.e., in the substrate and superstrate. �P is the Poynting vector of
the dipole emission from the antenna array, �P0 is its counterpart
for dipole emission in free space. The antenna absorption
losses can be characterized by the nonradiative part of the
Purcell factor F nr

P ,

F nr
P = FP − F rad

P . (2)

FIG. 2. S-matrix diagram for an oscillating point dipole emission
configuration. The rounded rectangles denote the scattering matrices
of the top and the bottom laminated structures (see explanation in the
text). Vectors �d,�u with arrows specify amplitudes and the direction
of propagation. Amplitudes �dt and �ub are not shown since they are
equal to zero in the considered problem. The central dot with arrows
indicates the dipole moment.

Now, we can also introduce the radiative efficiency η, indicat-
ing the radiative part of dipole emission,

η = F rad
P

FP
. (3)

The calculation of the radiation characteristics from oscil-
lating dipoles in two-dimensional photonic crystal slabs can
be performed using the scattering matrix approach.20–22 The
basic idea of the method is shown schematically in Fig. 2.
First, the system is split by a horizontal xy plane (the dashed
horizontal line in that figure) containing the point dipole into
two parts above and below the dipole. Then, the top and the
bottom partial scattering matrices (Ŝt and Ŝb, respectively)
are computed and the amplitudes in four principal layers are
connected with each other:

( �d1

�ut

)
=

(
Ŝdd

t Ŝdu
t

Ŝud
t Ŝuu

t

)( �0
�u1

)
,

(4)( �db

�u2

)
=

(
Ŝdd

b Ŝdu
b

Ŝud
b Ŝuu

b

)( �d2

�0

)
.

Note that in these equations amplitudes �dt and �ub are replaced
by zero vectors, which means that external light propagating
toward the photonic crystal slab is absent. We rewrite these
equations in a slightly different form:

�db = Ŝdd
b

�d2, �ut = Ŝuu
t �u1; (5)

�d1 = Ŝdu
t �u1, �u2 = Ŝud

b
�d2. (6)

Amplitudes �dn and �un (n = 1,2) define the electro-
magnetic field distribution in two horizontal planes (in-
finitesimally above and below the dipole) via the material
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matrix F̂n
23:( �E1
�H1

)
= F̂1

( �d1

�u1

)
,

( �E2
�H2

)
= F̂2

( �d2

�u2

)
. (7)

Here, the electric �E and magnetic �H supervectors consist of x

and y projections only, i.e., �E = (Ex,Ey)T , �H = (Hx,Hy)T .
For the sake of simplicity, we assume that the dipole does not
lie at the boundary between two different layers, i.e., F̂1 =
F̂2 ≡ F̂ (a solution for the general case will be published
elsewhere). In what follows we will need also the general
form of a material matrix and its inverse operator (which is
valid only for specific symmetric cases24)

F̂ =
(

Ê Ê

Ĥ −Ĥ

)
, F̂−1 = 1

2

(
Ê−1 Ĥ−1

Ê−1 −Ĥ−1

)
. (8)

It is straightforward to obtain directly from Maxwell’s
equations20,22 that the horizontal components of electric and
magnetic fields exhibit discontinuities near the dipole’s plane,
i.e., ( �E2

�H2

)
−

( �E1
�H1

)
=

( �JE

�JH

)
, (9)

where

�JE ≡ −4π

ω

(
k̂x

k̂y

)
ε̂−1
z jz, �JH ≡ 4π

c

(
jy

−jx

)
. (10)

In these formulas, c is the speed of light, k̂x and k̂y are the
differential (momentum) operators, ε̂−1

z signifies the inverse
permittivity z-component operator in momentum space, jx ,
jy , and jz are the three dipole’s current projections in the
momentum space. We substitute Eq. (7) to Eq. (9) and multiply
it by the inverse material matrix F̂−1 using Eqs. (8):

�d2 − �d1 = �Jd, (11)

�u2 − �u1 = �Ju. (12)

Here, we introduced new quantities for brevity,

�Jd = 1
2 (Ê−1 �JE + Ĥ−1 �JH ), �Ju = 1

2 (Ê−1 �JE − Ĥ−1 �JH ).

(13)

We can replace amplitudes �d1 and �u2 in Eqs. (11) and (12)
by Eqs. (6):

�d2 − Ŝdu
t �u1 = �Jd, (14)

Ŝud
b

�d2 − �u1 = �Ju. (15)

After multiplying Eq. (15) by −Ŝdu
t and adding it to Eq. (14),

we come to an equation for the amplitude �d2. Similarly, we
can derive the amplitude �u1. Thus,(

1̂ − Ŝdu
t Ŝud

b

) �d2 = ( �Jd − Ŝdu
t

�Ju

)
, (16)(

1̂ − Ŝud
b Ŝdu

t

)�u1 = (
Ŝud

b
�Jd − �Ju

)
. (17)

Finally, one can express amplitudes �d2, �u1 from these equations
and obtain the solution of the emission problem,

�d2 = (
1̂ − Ŝdu

t Ŝud
b

)−1( �Jd − Ŝdu
t

�Ju

)
, (18)

�u1 = (
1̂ − Ŝud

b Ŝdu
t

)−1(
Ŝud

b
�Jd − �Ju

)
. (19)

Using this solution and Eqs. (6) and (7), one can compute
the electromagnetic field distribution in two planes located
infinitesimally above and below the dipole. Hence, the power
flow through each plane z = zdipole±0 can be calculated as

P = c

8π
Re(〈Ex |Hy〉 − 〈Ey |Hx〉). (20)

In this case, the scalar product does not depend on the
representation and can be calculated in coordinate space

〈Eα|Hβ〉 =
∫ ∞

−∞
dx

∫ ∞

−∞
dyE∗

α(x,y,z)Hβ (x,y,z), (21)

as well as in momentum space

〈Eα|Hβ〉 =
∫ ∞

−∞
dkx

∫ ∞

−∞
dkyE

∗
α{kx,ky,z}Hβ{kx,ky,z}. (22)

Here α,β = x,y and ∗ denotes the complex conjugate.
Finally, the total radiative rate can be computed as a

difference between the power flow through the upper and lower
horizontal planes infinitesimally close to the point dipole:

R = P+ − P−. (23)

In this equation, the minus sign appears because the outward
normal to the lower plane is directed oppositely to the z axis.
Strictly speaking, the total radiative rate is by definition the
power flow through an infinitesimal sphere surrounding the
oscillating point dipole. However, it is straightforward to show
that this is equal to Eq. (23). Now, we normalize this rate to
the total radiative rate of an oscillating point dipole in a free
space,

R0 = |�j0|2ω2

3c3
, (24)

and obtain the Purcell factor,

FP = R

R0
. (25)

Similarly, the radiative part of Purcell factor can be found
as a difference between the power flow through the top and the
bottom interfaces of the complete structure,

F rad
P = Rrad

R0
= Pt − Pb

R0
. (26)

For the scattering matrix calculation we use the Fourier
modal method,20,23 which has been improved by the formula-
tion of the correct Fourier factorization rules25 and adaptive
spatial resolution,26 as well as of matched coordinates for
more complex metallic shapes.27 In what follows, the results
of these quantities will be presented employing 1633 spatial
harmonics in the Fourier modal method with adaptive spatial
resolution.23,27
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FIG. 3. (Color online) Calculated spectra of the emission in top
(blue solid curve) and bottom (red dotted curve) directions of the
oscillating point dipole (directed along x) coupled to the gold Yagi-
Uda nanoantenna array. The intensity is normalized to the maximum
radiation intensity of an equivalent dipole (with the same magnitude
and the same frequency) in free space.

III. NUMERICAL RESULTS AND DISCUSSION

The calculated emission spectra in top (+z) and bottom
(−z) directions of the x-directed oscillating point dipole lo-
cated inside the periodic array of gold Yagi-Uda nanoantennas
are shown in Fig. 3. The dipole is placed on the horizontal
symmetry axis along x direction at a distance of 5 nm to the
edge of the feed element (see Fig. 1). Only one strong and
narrow resonance occurs in the emission spectra in the top
direction at the photon energy h̄ω = 820 meV (λ = 1.5 μm).
Its magnitude is about 250 times stronger than that of an
equivalent dipole in free space and the FWHM is 107 meV.
The emission to the bottom direction is significantly smaller.
It even possesses a minimum at the plasmon resonance.

Figure 4 depicts the calculated radiation pattern of emission
P (ϑ,ϕ) �er at the resonant photon energy h̄ω = 820 meV
(where �er is the radial unit vector of a spherical coordinate
system centered in the point dipole position). The calculated
radiative part of the Purcell factor according to the second
part of Eq. (1) is as high as 80 (see also Fig. 5 below), which

FIG. 5. (Color online) Calculated dependence of the radiative part
of the Purcell factor F rad

P on the horizontal distance between the dipole
and the edge of the feed element for a x-, y-, and z-polarized dipole
(squares, circles, and diamonds, respectively). The vertical dashed
line marks the position exactly above the edge of the reflector. The
geometry is explained in the inset: The x-polarized dipole is shown as
a black dot with arrow, it is centered with respect to the feed element
along y and z direction and shifted in x direction, along the dotted
horizontal line.

indicates very strong enhancement of the dipole emission by
the feed element.

In spite of only one director employed in our Yagi-Uda
antenna, the emission in top direction is highly directional.
In order to characterize it, the angular directivity D(ϑ,ϕ) is
calculated,28 which indicates the part of the total emission
radiated along the direction (ϑ , ϕ):

D(ϑ,ϕ) = 4πP (ϑ,ϕ)�
P (ϑ,ϕ)d�

. (27)

Its maximum value Dmax = max[D(ϑ,ϕ)] is called directivity
and indicates the antenna’s ability to form a narrow beam. In
the case of the radiation pattern of Fig. 4, Dmax = 4.7; i.e., it
exceeds the directivity of the dipole in free space (Dmax

0 = 1.5)
by a factor of 3.1. In Ref. 3, the directivity of a single Yagi-Uda
antenna with three directors has been calculated as 6.4, which
is only 1.37 times larger than in our case with only a single

FIG. 4. (Color online) Calculated 2D polar diagrams (solid lines) of far-field emission in xz (left panel) and yz (central panel) planes, as
well as the total 3D-directional diagram (right panel) for the x-oriented oscillating point dipole coupled to the gold Yagi-Uda nanoantenna
array at resonant photon energy (h̄ω = 820 meV). The emission intensity is normalized to the maximum radiation intensity of the equivalent
dipole (with the same magnitude and the same frequency) in free space and shown in the right panel as colored surface P (ϑ,ϕ) �er . The dipole
position is in the center-of-coordinates. Dashed lines in left and central panels show the scaled by a factor of 1/2 polar diagrams of P2( �d,ϑ,ϕ),
the emission of a pair of synchronized dipoles separated by distance �d (see explanation in the text).
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FIG. 6. (Color online) Calculated dependence of the Purcell
factor FP (squares) and the radiative efficiency η (diamonds) on the
dipole position for a z-polarized dipole. The x coordinate of the dipole
is changed from −125 to 100 nm (measured from the position of the
edge of the feed element), while the y and z coordinate are fixed.
The vertical dashed lines mark the positions exactly at the edges of
the director, feed, and reflector elements. The geometry is explained
in the inset: The z-polarized dipole is shown as a black dot with arrow;
it lies 10 nm above the feed’s upper horizontal surface, it is centered
with respect to the feed element along y direction and shifted in x

direction along the dotted horizontal line.

director. Furthermore, we can also increase the directivity
using more than one dipole emitter coherently coupled to
different antenna array elements, which is shown below.

It is also instructive to investigate the dependence of the
emission enhancement on the dipole position and on the
orientation of its dipole moment to the feed element. Figure
5 shows the calculated dependence of the radiative part of
the Purcell factor F rad

P with respect to the distance between
the feed element and the dipole for x-, y-, and z-directed
dipoles. The emission enhancement of the antenna array
decreases with increasing distance. The strong polarization
and distance dependence demonstrates the local nature of the
antenna-dipole enhancement.

For the different distances indicated in the inset of Fig. 5,
the emission is only significantly enhanced for the x-polarized
dipole, which means that a plasmon mode with charges
oscillating along x is excited in the system. Such a mode leads
to a very strong enhancement of emission and determines the
directional pattern. As the electromagnetic field near the edges
of the feed element is known to have a dipolar character at
the fundamental plasmon mode, it is not surprising that the
radiation pattern (not shown here) of the z-polarized dipole
displaced vertically by 10 nm above the edge of the feed
element (see the black point in the inset of Fig. 6) nearly
coincides with that of the x-polarized dipole 5 nm apart from
the edge of the feed element (shown in Fig. 4). This effect has
been demonstrated, for example, in Refs. 3,13, and 29. Unlike
a z-polarized dipole in free space, the majority of the emission
is directed along the dipole polarization (i.e., along the z axis).
The magnitude, however, is about three times smaller than that
of the x-oriented dipole.

At this point, let us discuss the results of the total Purcell
factor FP and the radiative efficiency η. The calculated results
are shown in Fig. 6, where the dipole is placed 10 nm above
the feed (i.e., in a homogeneous transparent glass). The Purcell
factor is rather large and reaches the maximum of FP ≈ 200

when the dipole is located above the edge of the feed element.
The radiative efficiency appears to be almost independent on
the dipole’s x coordinate and is about 20% when the emitter
is above the feed element.

It should be mentioned that within the Fourier modal
method we cannot calculate correctly the total Purcell factor
as well as the radiative efficiency η if the dipole is inside a
modulated layer (as, e.g., shown in Fig. 5). In this case, the
discontinuous permittivity function of such a layer is described
by a truncated Fourier expansion. As a result, due to the Gibbs
phenomenon, the permittivity of the lossless surrounding of the
lossy metal acquires a small imaginary part. On the other hand,
the point dipole approximation fails if the dipole is placed
inside a lossy material.

Finally, we would like to mention that the antenna array
allows us to control the emission directivity further by using
several emitting dipoles in different positions and controlling
their phase difference of oscillations. Figure 4 shows the 2D
polar diagrams (scaled by a factor of 0.5) of the emission of
two phase-coherent dipoles positioned at neighboring antennas
of the array at distance �d, proportional to integer numbers of
periods (see dotted and dashed lines in the left and central
panels). The emission intensity of the synchronized pair of
dipoles normalized to the maximum emission intensity of two
nonsynchronized dipoles is then simply

P2( �d,ϑ,ϕ) = P (ϑ,ϕ)[1 + cos(2πn( �d · �er )/λ)], (28)

where P (ϑ,ϕ) is the directional pattern of a single dipole
(solid line), and n is the refractive index of superstrate.
Note that the polar diagrams P2 of the synchronized dipoles
demonstrate the effect of super-radiance: The Purcell factor of
two synchronized closely positioned dipoles becomes twice
as large than for the unsynchronized case. It hence becomes
possible to increase the directivity using two coherently
coupled emitting dipoles.

IV. CONCLUSION

We calculated for the first time that a gold Yagi-Uda
nanoantenna array enhances and simultaneously redirects ra-
diation of the oscillating point dipole. The dipole-nanoantenna
enhancement depends very strongly on the oscillating fre-
quency, dipole position, and orientation of its moment. It
becomes possible to control the emission directivity further by
using several coherently coupled emitting dipoles attached to
different antennas in the array. This opens a road to manipulate
the excited-state lifetime of a quantum emitter and to fabricate
narrow beam nanoscale antennas in the optical range, which
could be redirected just like an optical phased-array.
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