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Optical conductivity for a dimer in the dynamic Hubbard model
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The dynamic Hubbard model represents the physics of a multiband Hubbard model by using a pseudospin
degree of freedom to dynamically modify the on-site Coulomb interaction. Here we use a dimer system to obtain
analytical results for this model. The spectral function and the optical conductivity are calculated analytically for
any number of electrons, and the distribution of optical spectral weight is analyzed in great detail. The impact
of polaronlike effects due to overlaps between pseudospin states on the optical spectral weight distribution is
derived analytically. Our conclusions support results obtained previously with different models and techniques:
holes are less mobile than electrons.
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I. INTRODUCTION

The occurrence of electron-hole asymmetry in tunneling
spectra1 and the anomalous behavior in the optical
conductivity sum rule at the superconducting transition
temperature2–6 both contribute to the possibility that the
superconductivity in the cuprate materials is unusual in several
respects. In particular, the notion of “kinetic energy-driven
superconductivity” is implied by the optical experiments, as
predicted almost ten years in advance of these experiments.7

These experiments indicated that a significant transfer of
spectral weight occurs in the cuprates,8 both in the normal
state as a function of temperature and as a result of the
superconducting transition. More importantly, perhaps, is the
range of frequencies affected by the transition, as a significant
amount of spectral weight is transferred from very high
frequencies to very low frequencies. Thus there is an apparent
violation of the Ferrell-Glover-Tinkham optical sum rule, as
an examination of the low-frequency region alone shows a
spectral weight discrepancy. This indicates that physics beyond
the usual paradigm of “energy lowering due to potential energy
considerations”is at work; in particular, the anomalous sign of
the change in low-frequency optical spectral weight indicates
that some mechanism involving the kinetic energy of the
carriers is at work.

Earlier modeling of cuprate superconductivity9 includes
some of this physics—this is what motivated the rela-
tively early theoretical discussion of optical spectral weight
transfer—but a more recent theoretical model, advanced
more than ten years ago,10 goes further to explain some of
the anomalous features in the spectroscopic measurements
of the cuprates; this is the so-called dynamic Hubbard
model. This model utilizes a phenomenological pseudospin
degree of freedom at each lattice site designed to mimic
orbital relaxation effects which necessarily occur in real
atoms. As far as optical spectral weight transfer is con-
cerned, this model includes higher frequency excitations
(here modeled by the pseudospins), and therefore, while we
do not address superconductivity or temperature effects in
this paper, by using the dynamical Hubbard model, we can
study how spectral weight transfer occurs as a function of
doping.

The Hamiltonian for the dynamical Hubbard model is10

HDHB = −t
∑
〈i,j〉σ

(c†iσ cjσ + c
†
jσ ciσ ) − μ

∑
i,σ

niσ

+
∑

i

(
ω0σ

x
i + gω0σ

z
i

)+
∑

i

(
U − 2gω0σ

z
i

)
ni↑ni↓,

(1)

where the pseudospin degree of freedom is here represented
by a Pauli operator σi at each site; it interacts with the
electron charge through the double occupancy term, and
contributes a dynamical interaction in addition to the usual
Hubbard interaction. The rest of the Hamiltonian is as follows:
the first term represents the electron kinetic energy within
a tight-binding model with one orbital per site. Note that
we are really trying to understand physics that originates
in processes involving multiple orbitals. It is desirable to
minimize the complexity by retaining a single orbital, and
it is then the pseudospin that acts to mimic the physics of
carriers undergoing transitions between multiple orbitals when
the local occupation changes. The second term determines
the electron density through the chemical potential, the third
term defines the two-level system for the pseudospin degree
of freedom at each site, and the last term is the on-site
interaction which, in addition to the short-range Coulomb
repulsion represented by U , is also modulated through a
coupling constant gω0 by the state of the pseudospin.

When the double occupancy is high, the pseudospin will
reside in its excited state for the sake of minimizing the
Coulomb repulsion, much like the phenomenon in real atoms,
where two electrons will sacrifice having a minimal electron-
ion energy and spread out amongst the excited orbitals in
order to minimize their Coulomb repulsion. In the opposite
limit, when the double occupancy is very low, electrons will
tend to stay in the lowest energy state available in the given
atom (loosely, the Wannier state which is being modeled in
the tight-binding Hamiltonian), and the Coulomb energy will
be high, though irrelevant, since only rarely will two electrons
occupy the same site.

The dynamic Hubbard model contains at least some of
the phenomenology of hole superconductivity,9,11–13 proposed
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more than 20 years ago. In particular, the model contains
electron-hole asymmetry, where holes at the top of a band
are heavier than electrons at the bottom of a band. Electron-
hole asymmetry can arise in a number of ways: just having
further than nearest-neighbor hopping can result in a band
mass asymmetry, upon which polaronic mass asymmetry
can build.14 Even with just nearest-neighbor hopping, lattice
geometry can also result in electron-hole asymmetry, and again
be amplified through polaron effects.15 Here, the electron-hole
asymmetry arises through realistic interactions, and is strongly
connected to the fact that holes pair more readily than electrons
by lowering their kinetic energy in the superconducting phase,
a phenomenon supported by the anomalous observations in
the optical conductivity sum rule mentioned above. More
recently, the dynamic Hubbard model has been explored with
dynamical mean-field theory (DMFT).16 In particular, the
spectral function and the optical conductivity were calculated,
in the normal state, to illustrate the electron-hole asymmetry
present in the model.

In this paper, we will focus on the optical conductivity,
and provide a complementary calculation involving a simple
dimer. Such a small system does not constitute a very realistic
system; however, dimer calculations have an illustrious history
for providing insight into models.17–19 Furthermore, following
Ref. 7, a dimer calculation provides good insight into the
processes that contribute to the conductivity. We will briefly
review the optical conductivity and the sum rule in the next
section, and describe the details of the dimer calculation in the
third section, in perturbation theory; we have also performed
exact diagonalizations to delineate the regime of validity of
the perturbative results. This is followed with a discussion of
the results, particularly in light of the DMFT results reported
in Ref. 16. We then conclude with a summary.

II. OPTICAL CONDUCTIVITY AND RELATED
SUM RULES

The real part of the optical conductivity σ1(ω), as a function
of frequency, ω, at finite temperature T can be written as

σ1(ω) = π

Z

∑
n,m

e−βEn − e−βEm

Em − En

|〈m|J |n〉|2

× δ

(
ω − Em − En

h̄

)
, (2)

where |m〉 and |n〉 are eigenstates of the Hamiltonian of the
system, Z is the partition function, β = 1/kBT , and J is the
current operator, obtained through the polarization operator.20

As formulated by Kubo in 1957,21 the optical conductivity
satisfies the general sum rule,∫ +∞

0
Re[σμν(ω)]dω = π

2

∑
r

e2
r nr

mr

δμν, (3)

where r denotes the type of charge carrier, nr , er , and mr are the
number density, charge, and mass, respectively, of the r-type
carrier, and μ,ν are the indices of the conductivity tensor. For
an isotropic electron system, the sum rule (3) is rewritten as∫ +∞

0
σ1(ω)dω = πe2n

2m
, (4)

with m the bare mass of electrons and n the total electron
density.22

In condensed matter systems we often work with effective
Hamiltonians, for example, formulated for a single band within
tight binding. One can then formulate a sum rule restricted to
that single band, and obtain23–25

∫ +∞

0
Re[σxx(ω)]dω = πe2

4h̄2

{
4

N

∑
k

∂2εk

∂k2
x

nk

}
, (5)

where nk is the single electron occupation number, and εk is the
dispersion relation for the noninteracting electrons. In reality,
the integration in Eq. (5) is taken up to a cutoff frequency ωc

determined experimentally in order to allow only intraband
transitions, and to avoid the inevitable interband transitions
which are not part of the sum rule Eq. (5). Theoretically, the
right-hand side (RHS) of Eq. (5) is often used,26 as this is much
simpler to calculate. Furthermore, when only nearest-neighbor
hopping is allowed on a hypercubic lattice, the sum rule Eq. (5)
reduces to23 ∫ ωc

0
σ1(ω)dω = −πe2a2

2h̄2 〈K〉, (6)

with K = −t
∑

〈ij〉,σ=↑↓(c†iσ cjσ + H.c.) and a the lattice
constant. From the RHS of Eq. (6), it is clear that the optical
sum depends not only on the external parameters (such as
the temperature) but also on the electronic structure of the
system. The validity of using the kinetic energy on the RHS
instead of the expression in Eq. (5), even when the dispersion
is not just nearest-neighbor hopping has been explored in
Refs. 28 and 27, to which the reader is referred. In the
following, we assume Eq. (6) holds.

Measurements of the optical conductivity sum rule in a
number of the cuprate superconductors generally show an
increase of spectral weight in the low-frequency regime in
the superconducting state, at least in the underdoped and
optimally doped materials.3–6 This enhancement of the optical
sum at the superconducting transition temperature conflicts
with the result from BCS-like superconductivity where an
increase in the kinetic energy (and therefore a decrease in
the single band optical sum) is expected instead. This can be
explained through a number of different scenarios, examples
of which are preformed pairs29 and phase fluctuations.30–32

In contrast to the model considered here, many of these
calculations have, as a key ingredient, proximity to a nearby
Mott insulating state.31,33 Note that some authors26,34 have
attributed the anomalous temperature dependence of the low-
frequency optical spectral weight to a cutoff effect (required
in the experimental analysis). Karakozov et al.34 have also
attributed the anomalous change in spectral weight at the
superconducting transition temperature to a cutoff effect,
though this has been refuted in Ref. 25. See Ref. 35 for a
brief review.

On the other hand, models like the hole mechanism of
“kinetic energy driven” superconductivity support the idea of
minimizing the total energy by reducing the kinetic energy, and
therefore the optical sum has an anomalous temperature depen-
dence below Tc.36 When the system goes superconducting, the
missing optical spectral weight is predicted to be distributed
over the whole range of frequencies, i.e., weight is transferred

155134-2



OPTICAL CONDUCTIVITY FOR A DIMER IN THE . . . PHYSICAL REVIEW B 85, 155134 (2012)

from high frequency to low frequency and the low energy sum
rule appears to increase as a consequence.7,37

III. OPTICAL CONDUCTIVITY IN A DIMER

We proceed now with a brief discussion of the site
Hamiltonian followed by a detailed description of the dimer.

A. Properties of the Hamiltonian

Following Refs. 16 and 38, we begin with the on-site
Hamiltonian for electrons:

H
(i)
DHM = ω0σ

i
x + gω0σ

i
z + [

U − 2gω0σ
i
z

]
ni↑ni↓. (7)

The solutions are provided in detail in Refs. 16 and 38; for n

electrons the ground state (|n〉) and the first excited state (|n̄〉)
are

|n〉 = u(n)|+〉 − v(n)|−〉, |n̄〉 = v(n)|+〉 + u(n)|−〉, (8)

with

u(0) = u(1) = v(2), v(0) = v(1) = u(2), (9)

and

u(0) =
√

1

2

(
1 − g√

1 + g2

)
, v(0) =

√
1

2

(
1 + g√

1 + g2

)
.

(10)

The eigenvalues [ground state ε(n) and excited state ε̄(n)] are

ε(n) = δn,2U − ω0

√
1 + g2, ε̄(n) = δn,2U + ω0

√
1 + g2.

(11)

Especially important for the hopping processes is the overlap
of background spin states with different numbers of electron;
these are

T = 〈0|1〉 = u(0)u(1) + v(0)v(1) = u(0)2 + v(0)2 = 1,

S = 〈1|2〉 = u(1)u(2) + v(1)v(2) = 2u(1)v(1) = 1√
1 + g2

.

(12)

These parameters play an important role for the spectral
function; these are defined in Ref. 39 as An+1,n for electron
destruction in a system of n + 1 electrons (and An,n+1 for
electron creation in a system of n electrons. For a single site
these single-particle spectral functions are39

A10(ω) = A01(ω) = δ(ω),
(13)

A12(ω) = A21(ω) = S2δ(ω) + (1 − S2)δ(ω − 
0).

Even though the spectral weight is calculated for a single
site, it is clear that there is a reduction of the weight at zero
frequency if the second electron is added to the one-electron
ground state. The reason is because there are two possibilities:
the pseudospin can remain in the same state as the first electron
with a probability S2 < 1, or it can become excited with an
energy cost 
0 = 2ω0

√
1 + g2. In the thermodynamic limit,

this effect is known as the reduction of quasiparticle weight by
transferring part of the coherent contribution (at ω = 0) to the
incoherent part (at large ω), resulting in a one-particle spectral
weight, z < 1. Since the quasiparticle weight is inversely

proportional to the effective mass, z ∼ m/m�, this statement
means that holes are heavier (or more “dressed”40) than
electrons.

For calculating the optical conductivity in perturbation
theory, the Hamiltonian is divided into two parts:

H = H0 + H ′, (14)

H0 =
∑

i

(
ω0σ

x
i + gω0σ

z
i

) + (
U − 2gω0σ

z
i

)
ni↑ni↓, (15)

H ′ = K = −t
∑
〈i,j〉σ

(c†iσ cjσ + c
†
jσ ciσ ), (16)

where H0 is the site Hamiltonian and H ′ is the hopping part
which is considered as a perturbation under the following
conditions. Based on the definition of the overlaps between
the pseudospin ground states in Eq. (12), we can define a
pseudospin state for a given number of electrons in terms of the
eigenstates involving a different number of electrons. These
overlaps contain the background deformations (modeled by
the pseudospin) that must be “dragged”along as the electron
hops. Thus, following Ref. 7,

|1〉 = S|2〉 − S̄|2̄〉, (17)

|1̄〉 = S̄|2〉 + S|2̄〉, (18)

|2〉 = S|1〉 + S̄|1̄〉, (19)

|2̄〉 = −S̄|1〉 + S|1̄〉, (20)

where

S̄ =
√

1 − S2 = g√
1 + g2

. (21)

We wish to solve this problem in all number sectors (one,
two, and three electrons). We cover these in the following
subsections.

B. Three electron sector

Beginning with three electrons on the dimer (a holelike con-
figuration), the (non-normalized) ground-state wave function
is given in first-order perturbation theory as

∣∣ψ (3)
0

〉 = |1〉o +
√

2tSS̄


0
|3〉o − t S̄2

2
0
|4〉o, (22)

where

|1〉 e

o
= 1√

2
[c†a↑c

†
a↓|2〉a ⊗ c

†
b↑|1〉b ± c

†
a↑|1〉a ⊗ c

†
b↑c

†
b↓|2〉b],

|2〉 e

o
= 1

2
[±c

†
a↑|1〉a ⊗ c

†
b↑c

†
b↓|2̄〉b ± c

†
a↑|1̄〉a ⊗ c

†
b↑c

†
b↓|2〉b

+ c
†
a↑c

†
a↓|2〉a ⊗ c

†
b↑|1̄〉b + c

†
a↑c

†
a↓|2̄〉a ⊗ c

†
b↑|1〉b],

|3〉 e

o
= 1

2
[∓c

†
a↑|1〉a ⊗ c

†
b↑c

†
b↓|2̄〉b ∓ c

†
a↑|1̄〉a ⊗ c

†
b↑c

†
b↓|2〉b

+ c
†
a↑c

†
a↓|2〉a ⊗ c

†
b↑|1̄〉b + c

†
a↑c

†
a↓|2̄〉a ⊗ c

†
b↑|1〉b],

|4〉 e

o
= 1√

2
[c†a↑c

†
a↓|2̄〉a ⊗ c

†
b↑|1̄〉b ± c

†
a↑|1̄〉a ⊗ c

†
b↑c

†
b↓|2̄〉b],

(23)
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are the eight basis states required to span the Hilbert space
for the three electron sector. Here the subscript e refers to the
even states, and a and b are the indices of the first and second
site, respectively, in the dimer. Note that kets followed by the
subscript a or b have numbers 0, 1, or 2 (with or without
bars on top) that refer to the pseudospin eigenstates defined in
Eq. (8), whereas kets followed by e (for even) or o (for odd)
refer to linear combinations of product states of electrons and
pseudospin eigenstates, as, for example, in Eq. (23).

The three-particle ground-state energy, to first order in the
hopping perturbation, is given by

E
(3)
0 ≡ o〈1|H |1〉o = U − tS2 − 
0, (24)

and the excited-state energies for the three electron sector are

E
(3)
1 ≡ e〈1|H |1〉e = U + tS2 − 
0,

E
(3)
2 ≡ e

o
〈2|H0|2〉 e

o
= U, E

(3)
3 ≡ e

o
〈3|H0|3〉 e

o
= U, (25)

E
(3)
4 ≡ e

o
〈4|H0|4〉 e

o
= U + 
0.

Note that there are degeneracies at zeroth order between even
and odd states; these are broken in first-order perturbation
theory, as is explicitly written in Eq. (24) and the first of
Eqs. (25). Only the zeroth-order energies (and wave functions)
are needed for the other excited states, and that is what is
written here. Also, the Hamiltonian will only couple states of
a given parity, whereas the conductivity will couple only states
of opposite parity.

The optical conductivity for the dimer at zero temperature
can be calculated for the three electron sector as

σ1(ω) = π
∑
m=0

∣∣〈ψ (3)
0 |J |m〉

e

∣∣2

E
(3)
m − E

(3)
0

δ

(
ω − E(3)

m − E
(3)
0

h̄

)
, (26)

where |m〉e are the excited states of the system [only even
parity is required since the ground state has odd parity—these
are given in Eq. (23)], and

J = iet

h̄

∑
σ

(c†aσ cbσ − c
†
bσ caσ ) (27)

is the current operator. By acting with the J operator on the
ground state |ψ (3)

0 〉, we connect to three of the excited states
(all even parity) given in Eq. (23). Note that, since the current
operator is already of order t , only zeroth-order wave functions
are required, but for the first even parity excited state, first-
order corrections to the energy are required in the denominator
of Eq. (26) to break the degeneracy.

Operating with the current operator on the unperturbed
ground state gives

J |1〉0 = iet

h̄
(S2|1〉e −

√
2SS̄|3〉e − S̄2|4〉e), (28)

so that the optical conductivity for three electrons includes
three peaks. These three transitions are shown schematically
in Fig. 1; the analytical expression for the optical conductivity
(for three electrons) is

σ
(3)
1 (ω) = πe2t

2h̄2

[
S2δ

(
ω − 2tS2

h̄

)
+ 4S2S̄2 t


0
δ

(
ω − 
0

h̄

)

+ S̄4 t


0
δ

(
ω − 2
0

h̄

)]
. (29)

FIG. 1. Schematic depiction of optical transitions in a dimer with
three electrons. The lines (both solid and dashed) show the two
available levels of the pseudospin energy at each site; the solid lines
correspond to the occupied pseudospin state and the dashed lines
correspond to the unoccupied state. Transitions between states with
the same pseudospin energy levels are diagonal; these contribute to
the intraband conductivity, while nondiagonal transitions between
states with different pseudospin energy levels modify the interband
conductivity. State labels are those found in Eq. (23) in the text, where
they are given in full even or odd form.

The optical sum rule can be checked by calculating the
expectation value of the K operator in the ground state,

〈
ψ

(3)
0

∣∣ − K
∣∣ψ (3)

0

〉 = t

(
S2 + 4S2S̄2 t


0
+ S̄4 t


0

)
, (30)

which is precisely the combination of weights given in
Eq. (29). The first contribution comes from intraband
transitions—this would correspond to the Drude weight for an
extended system. This Drude response is, however, weighted
by the overlap S = 〈1|2〉 between the respective ground
states of the pseudospin with one and two electrons. This
is referred to as a “diagonal”transition in Fig. 1, since the
background (here, the pseudospin) doesn’t become excited
in the transition.The second and the third peaks involve
transitions corresponding to one and two pseudospin excita-
tions, 
0; these are recognized as interband transitions in the
language of multiple band models. This first-order perturbation
approximation result remains valid as long as t/
0 � 1.
Comparisons with exact results will be shown below.

C. Two electron sector

The same procedure can be performed with the more
difficult case of two electrons. In this case there are 16 basis
states, and again they can be divided into eight even and
eight odd states. We use a slightly different notation—there
are now states involving double occupation of a single site,
and those involving only single occupation. The states with
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double occupation are

|d1〉 e

o
= 1√

2
[c†a↑c

†
a↓|2〉a ⊗ |0〉b ± |0〉a ⊗ c

†
b↑c

†
b↓|2〉b],

|d2〉 e

o
= 1√

2
[c†a↑c

†
a↓|2〉a ⊗ |0̄〉b ± |0̄〉a ⊗ c

†
b↑c

†
b↓|2〉b],

(31)

|d3〉 e

o
= 1√

2
[c†a↑c

†
a↓|2̄〉a ⊗ |0〉b ± |0〉a ⊗ c

†
b↑c

†
b↓|2̄〉b],

|d4〉 e

o
= 1√

2
[c†a↑c

†
a↓|2̄〉a ⊗ |0̄〉b ± |0̄〉a ⊗ c

†
b↑c

†
b↓|2̄〉b],

where the d in the ket stands for double, and the subscripts
1,2,3,4 simply enumerate the states, starting with the lowest,
|d1〉, where both pseudospins are in their ground states. The
three other basis states correspond to the first site having an
excited pseudospin state, the second site having an excited
pseudospin state, and both sites having excited pseudospin
states, respectively.

Similarly, for the basis states involving only singly occupied
sites, the s in the ket stands for single; these are

|s1〉 e

o
= 1√

2
[c†a↑|1〉a ⊗ c

†
b↓|1〉b ± c

†
a↓|1〉a ⊗ c

†
b↑|1〉b],

|s2〉 e

o
= 1√

2
[c†a↑|1〉a ⊗ c

†
b↓|1̄〉b ± c

†
a↓|1̄〉a ⊗ c

†
b↑|1〉b],

(32)

|s3〉 e

o
= 1√

2
[c†a↑|1̄〉a ⊗ c

†
b↓|1〉b ± c

†
a↓|1〉a ⊗ c

†
b↑|1̄〉b],

|s4〉 e

o
= 1√

2
[c†a↑|1̄〉a ⊗ c

†
b↓|1̄〉b ± c

†
a↓|1̄〉a ⊗ c

†
b↑|1̄〉b].

The first has both pseudospin states in the ground state, with
the three others having excited pseudospin states as in the
case of the doubly occupied states. Note that an equally
valid set of states combines |s2〉 and |s3〉 symmetrically and
antisymmetrically [as we did in the middle two basis states of
Eq. (23) for the three electron sector].

We want the unperturbed ground state to reside in the
space of states involving only ground-state pseudospin states.
Confining ourselves to this sector only, the ground-state wave
function is ∣∣ψ (2)

0

〉 = a0|d1〉e + b0|s1〉o, (33)

with

a0
2 = 1

2

(
1 − U/2√

(U/2)2 + 4t2S2

)
, (34)

b0
2 = 1

2

(
1 + U/2√

(U/2)2 + 4t2S2

)
. (35)

This will be an accurate ground-state wave function as long
as the pseudospin excitation energy remains the largest energy
scale in the problem, i.e., U � 
0, along with the restriction
already used, t � 
0. When U � 2tS the ground state
consists of nearly equal amplitudes of the two basis states;
on the other hand, when U � 2tS, a0 ∼ 0 and b0 ∼ 1, and
the singly occupied basis state dominates the ground state,
as expected. With these same assumptions the two electron
ground-state energy is given as

E
(2)
0 ≈ −
0 + U/2 −

√
(U/2)2 + (2tS)2. (36)

FIG. 2. Schematic depiction of the optical conductivity with two
electrons in a dimer. Parts (a) and (b) refer to the two basis states
that make up the ground-state wave function given by Eq. (33)
with ground-state energy given by Eq. (36). The first has only (two)
nondiagonal transitions (the second transition, to states given by |s2〉e,
is qualitatively the same as the one shown), while the second basis
state has both diagonal and nondiagonal transitions, as shown. The
state representations are schematic only; formulas in the text represent
the full (even or odd) state.

To determine the optical conductivity we need the result of
the current operator on each component of the ground state;
the result is

J |d1〉e = iet S̄

h̄
(|s2〉e − |s3〉e),

(37)

J |s1〉o = 2iet

h̄
(S|d1〉o − S̄|d3〉o).

Figure 2 summarizes these transitions schematically. The
unperturbed energies associated with these states are readily
determined by inspection from Eqs. (31) and (32). Using
the analog of Eq. (26) appropriate to two electrons, with
the ground state now a linear superposition of basis states
given by Eq. (33), the optical conductivity for two electrons is
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obtained as

σ
(2)
1 (ω) = πe2t

2h̄2

{
4tS2√

(U/2)2 + (2tS)2
δ[ω − ε/h̄]

+ 4a2
0 t S̄

2


0 − U + ε
δ[ω − (
0 − U + ε)/h̄]

+ 8b2
0t S̄

2


0 + ε
δ[ω − (
0 + ε)/h̄]

}
, (38)

where

ε ≡ U/2 +
√

(U/2)2 + (2tS)2 (39)

plays the role of a low energy scale, i.e., t (as U → 0) or U

(as t → 0).
The two electron optical conductivity also has three peaks,

as seen in Eq. (38) or schematically in Fig. 2. In the perturbative
approach we have used, however, the two higher frequency
peaks should be viewed as one occurring at a frequency scale
of order 
0 that has been split by a low energy scale of order
U or t . The analog of the third peak in the three electron case
is absent here; there is no peak at 2
0.

The first (low energy) peak corresponds to the diagonal
transition from state |s1〉o to |d1〉o, where, as in the three
electron case, the hopping of an electron between sites occurs
without modification of the pseudospin background. This
diagonal transition corresponds to the Drude-like (or coherent)
part of the optical conductivity, though it may extend to a
range of (low) frequencies on the scale of U as well as t (as
represented by ε).

The second peak at frequency ω = 
0 − U + ε is given
by the two transitions: |d1〉e to both |s2〉e and |s3〉e. The third
peak at frequency 
0 + ε is obtained by the |s1〉o to |d3〉o state
transition, as detailed in Fig. 2. The second and third peaks
correspond to nondiagonal transitions, which means that the
pseudospin background is excited in the transition; this in turn
corresponds to transitions involving higher energy bands, not
included in our starting Hamiltonian. There is also an overall
factor of 2 enhancement because there are now two carriers
instead of the one carrier present in the three electron case
presented above (or the one electron case shown below).

One can again verify the conductivity sum rule; for this
we need the ground-state wave function given to first order in
t/
0. Straightforward calculation41 gives

∣∣ψ (2)
0

〉 ≈ a0|d1〉e + b0|s1〉0 + a0t S̄


0 − U + ε
(|s2〉0 + |s3〉0)

− 2t S̄b0


0 + ε
|d3〉e, (40)

and an evaluation of the kinetic energy expectation value gives

−〈
ψ

(2)
0

∣∣K∣∣ψ (2)
0

〉 = 4t2S2√
(U/2)2 + (2tS)2

+ 4t2S̄2a2
0


0 − U + ε

+ 8t2S̄2b2
0


0 + ε
, (41)

again in agreement with the weights in Eq. (38).

D. One electron sector

Finally, similar calculations in the one electron sector are
particularly simple, because the single site pseudospin ground
states for zero and one electron are identical. This means that
there are no pseudospin excitations arising from application
of the current operator to the single electron ground state. The
optical conductivity for one electron is given by the simple
expression

σ
(1)
1 (ω) = πe2t

2h̄2 δ(ω − 2t/h̄), (42)

which contains only a Drude contribution, with no normaliza-
tion (as required by the sum rule).

IV. DISCUSSION

We wish to show the relative contributions to the con-
ductivity for the three different electron densities that we
can access. Because this is a tight-binding model it will not
conserve total oscillator strength. This makes comparisons
for different numbers of electrons and/or different parameter
values difficult.7 Here, for a given number of electrons, we
will normalize the conductivity to the overall spectral weight
in the conductivity for that number of electrons. Figure 3
shows the two-site optical conductivity with one, two, and
three electrons, using U = 0 and g = 3, with ω0 = 1, as a
“standard”set of parameters. While not necessarily realistic,
they are chosen specifically to remove Mott complications at
half filling; here the presence of U will result in a significant
decrease in low-frequency spectral weight, in spite of the
increase in the number of available carriers. These parameters
will serve to illustrate the spectral weight transfer physics
inherent in this model. At the same time, it is clear that the

 0

 1

 2

 3
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 0  2  4  6  8  10  12  14

σ 1
(ω

)

ω

U=0; g=3; ω0=1

p1

p2

p3

1 electron
2 electrons
3 electrons

FIG. 3. (Color online) Normalized optical conductivity as a
function of frequency in a dimer obtained by perturbation theory with
U = 0, g = 3, and ω0 = 1. The δ functions in the formulas in the text
are represented here as broadened Lorentzians (with a width 0.05).
Note the decrease in relative low-frequency spectral weight (labeled
as p1) as one goes from one to two to three electrons, indicating
a reduced mobility as the number of electrons increases. Also note
as the number of electrons decreases the higher frequency relative
weight decreases: for the two electron case spectral weight is entirely
absent at 2
0 (labeled as p3), while for the one electron case weight
is absent even for ω = 
0 (labeled as p2).
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perturbation calculation is valid if ω0 is large enough so that

0 is much larger than U,t as assumed above.

The simplest case is clearly that of one electron. Equa-
tion (42) and Fig. 3 show that a single peak is present; it
is located at ω = 2t/h̄, a nonzero value only because we
are dealing with a dimer, and not the thermodynamic limit.
In the thermodynamic limit this would be a δ function at
zero frequency, representing the Drude contribution. Normally
this peak would be broadened through, for example, impurity
scattering, but here (and even in the DMFT study of Ref. 16)
it remains a δ function, broadened in Fig. 3 artificially by
hand, so as to be visible. For small but nonzero electron
densities U would contribute as well, but for the most part
this picture would remain unchanged. In particular, excited
pseudospin states are essentially absent (see Fig. 3 in Ref. 16,
which shows that that the expectation value of the pseudospin
operator is essentially its ground-state value for low densities).
Because the electron density is relatively dilute, there are very
few optical transitions involving doubly occupied sites, and
therefore it is not possible to excite the pseudospin excited
state. For the dimer the only representative sector for this
physics is the one electron sector (two electrons already
constitutes a somewhat crowded lattice).

In contrast, the three electron sector represents the most
“crowded” situation for a dimer, while the two electron sector
is somewhat in between, and, as mentioned previously, the
absence of a Coulomb repulsion (U = 0) aids to highlight
the pseudospin physics, and suppress the Mott-related physics
(which, from our point of view, is not essential, and will
complicate the analysis). Referring to Fig. 3, note that the three
electron conductivity has a significant relative contribution at
high frequency (2
0); this is entirely absent in the two electron
conductivity—it has been pushed down to lower frequency
(
0). The reason for this is as follows: with three electrons,
the ground state consists of a doubly occupied and a singly
occupied site, with the respective pseudospins at each site in
its ground state—see the first of Eqs. (23). An optical transition
can result in one of the three states shown in Fig. 1; one of these,
state |4〉e, has two excited pseudospin states, corresponding
to an energy 2
0. One of these excitations comes from the
site with a single electron—before the transition this site was
doubly occupied, and the ground state for this configuration
required a pseudospin ground state corresponding to two
electrons. Since one has left, there is now a component of the
pseudospin which corresponds to an excited state for the one
electron configuration. Similar remarks apply for the site that
was previously singly occupied and is now doubly occupied.
For two electrons this cannot happen—see Fig. 2 and note the
absence of an alternative involving the two excited pseudospin
state. This is because the pseudospin ground state is the same
for an empty and singly occupied site—see Eq. (9) or the first
of Eqs. (12), where T = 1.

This accounts for the peak structure for the various electron
sectors in Fig. 3. The dimer calculations have an “all or
nothing” character to them—no high frequency (2
0) peak
for the two electron sector, and not even an intermediate (
0)
peak for the one electron sector. Of course, in the DMFT
calculations the changes from one electron density to another
are smoothed out, as one can see in Fig. 13 of Ref. 16. The
other feature that is apparent in Fig. 3 is the decrease of spectral

weight in the relative Drude (low-frequency) portion as one
goes from the one electron to the two and then three electron
sector. This is due to the polaronlike hopping renormalization
already discussed. The relative weight of the Drude portion is
indicative of the coherence of the carriers, so again, in the dilute
limit, electrons can hop while the background pseudospin
degree of freedom remains in the same ground state at both
the site from which the electron hops, and at the site to which
the electron hops, because only empty or singly occupied
sites are involved. In the more crowded lattice limit (here
represented by the three electron sector), doubly occupied sites
are necessarily involved, and then the background pseudospin
has to adjust according to whether a singly or doubly occupied
site is involved.

The progression of spectral weight with electron number
is perhaps best exemplified by examining the conductivity
formulas, Eqs. (29), (38), and (42) for three, two, and one
electron(s), respectively, for U = 0. Then the low-frequency
spectral weights are [omitting the common factor πe2t/(2h̄2)]
S2 for three electrons (but one hole carrier), 2S/2 = S for two
electrons, and unity for one electron; these weights steadily
increase by reducing the number of electrons, since S < 1
always, and this illustrates the principle that holes are less
mobile than electrons.

We analyze in more detail our results for the frequency
dependence of the optical conductivity. The three electron
optical conductivity has three distinct peaks from low to high
frequency, one at ω ≈ t , one at ω ≈ 
0, and one at ω ≈ 2
0,
whose weights we denote p1, p2, and p3, respectively. In the
two electron conductivity, there are again three peaks, but
as explained above, the two high frequency ones are at the
same characteristic frequency (identical if U = 0), so we will
combine the weight from these two and denote it as p2; we will
continue to use p1 for the lowest-frequency peak, and of course
for the one electron conductivity, there is only a low-frequency
Drude-like peak, which we will also denote as p1. In Fig. 4
we plot these weights to show how the spectral distribution of
the optical conductivity varies with the strength of coupling g

for 3 (a) and for 2 (b) electrons; in (c) and (d) we show the
corresponding results as a function of ω0, and in (e) and (f)
results are shown for a variation of U . In all cases, the optical
conductivity has been normalized to the total spectral weight
for the parameters used in Fig. 3, separately for each electron
number.

As expected, increasing the coupling strength g between
the electron and the background (pseudospins) reduces the
mobility of the electron as obtained in the spectral weight
of the first peak p1 (which would correspond to the Drude
weight for an infinite lattice). This is simply due to the
polaron effect mentioned above; with increased coupling, the
amount of “background adjustment”required as the electron
hops increases. Physically, the actual coupling in a given lattice
is given by the amount of multiorbital involvement required
to minimize the energy locally when two electrons try to
accommodate one another on the same site. Since we model
this process with the pseudospin degree of freedom, we span
a considerable parameter range in the figures. The absolute
weight p2 of the second peak for the three electron case is
given analytically as 4t

g2

(1+g2)2
t


0
[see Eq. (29)], and achieves

its maximum value at g = √
2/3 ≈ 0.8, which is independent
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(f) g=3, 0=12 electrons
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(d) U=0, g=32 electrons
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FIG. 4. (Color online) Dependence of the various normalized spectral weight contributions to the optical conductivity on electron-pseudospin
coupling g for three electrons (a) and two electrons (b). In (c) and (d) we show the same quantities as a function of ω0, while in (e) and (f) they
are shown as a function of U . Perturbation results are shown as curves, while exact results (for the dimer) are shown by symbols, as indicated.
Note that usually the Drude weight dominates; however, for sufficiently large g (and U in the case of two electrons) the Drude weight is
significantly reduced, indicative of reduced mobility, especially for the highly (electron) doped regime.

of U . For the two electron case, the off-diagonal transition
contributions, represented by p2, are quite negligible compared
with the low-frequency weight p1 at weak coupling, but they
play a more important role at strong coupling. Note that
results arising from a complete diagonalization of all the dimer
states are also shown, and, for these parameter regimes, the
agreement is excellent, as expected. The transitions denoted
by p2 and p3 represent incoherent processes; they may well
correspond to the midinfrared band that seems to feature so
prominently in a wide variety of cuprate superconductors.42

The other experimental feature to which we can make
contact with these dimer calculations is the dependency on
doping. Experimentally, the anomalies at the superconducting
transition are most pronounced in the low hole regime,5

consistent with the fact that the pseudospin physics in these
calculations plays a large role precisely in this regime as well.

Comparison with the results obtained from DMFT
calculations16 is also possible. For example, in Fig. 13 of
Ref. 16, we show the conductivity as a function of frequency
for various electron densities. Note that the parameters used
in the DMFT calculation are in the more weak to interme-
diate coupling regime. Nonetheless, the calculations here are
semiquantitatively consistent with those. The first panel there
refers to the very dilute limit (n = 0.1), and, as suggested
here, there is a single low-frequency Drude peak. Of course,
there it is centered around zero frequency, while here it is at
2t , for reasons already explained. In the last panel in the same
Fig. 13, n = 1.9, corresponding more to our present three elec-
tron calculation. We expect weight at 
0 = 2ω0

√
1 + g2 ≈

5.7, which is very close to the one shown there. Furthermore,
the Drude-like peak has reduced spectral weight (clearer in
Fig. 15 of Ref. 16) compared to the result at n = 0.1. The
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expected peak at 2
0 is, however, barely present, and at a
higher frequency than expected. It is not clear what the cause of
this latter discrepancy is, especially in light of the quantitative
accuracy of the other peaks.

For completeness we have included plots to show the
variation with ω0 and U , where the expected behavior occurs.
Note that at half filling (two electrons) the exact results differ
considerably from the perturbation theory results, as Mott
physics becomes more prevalent (this is not surprising since
this was not considered in the perturbative approach we took).
As ω0 increases, the results for three and two electrons become
dominated by the Drude-like peak near the origin. Again, this is
entirely expected, since pseudo-spin excitations become more
and more energetically costly, and so, as seen explicitly in our
perturbative expressions, energy denominators increasingly
suppress these transitions requiring excited pseudospin states,
so that these play much less of a role as ω0 increases. As is clear
from panels (c) and (d), exact diagonalization results support
these perturbative calculations.

V. CONCLUSIONS

We have investigated spectral properties of the dynamic
Hubbard model on a dimer, primarily to gain a qualitative
understanding of the physics of electron-hole asymmetry, and
polaronlike mobility inherent in real atoms. Primarily we have
investigated the spectral features of the optical conductivity
with different numbers of electrons. The physics we are trying
to capture is that when electron movement results in a change
from a doubly occupied site to a singly occupied site, or
vice versa, a considerable amount of “background”adjustment
needs to take place. In real atoms this is apparent in that
the orbitals occupied by a single electron are considerably
modified when two electrons occupy that same orbital. In the
dynamic Hubbard model, these modifications are simulated by
a pseudospin degree of freedom, at each site; an excited pseu-
dospin state corresponds to an electron (partially) occupying
an orbital that does not minimize the electron-ion energy, but
does minimize the (local) electron-electron repulsion.

Such processes will impact the optical sum rule; in
particular, weight will be transferred over a considerable range
of energies, as a function of temperature and as a result of a
phase transition. A considerable variation is expected as a
function of electron concentration, and it is this aspect on
which we have focused in the dimer calculations presented
here. If the electron concentration is low, the pseudospin
degree of freedom will be rarely excited, and the electrons
will be highly coherent. However, if the electron concentration
is high, then electron movement will be accompanied by
pseudospin excitations. There is considerable experimental
evidence for such incoherent processes in the cuprates, namely
the midinfrared band. Our calculations clearly indicate that the
Drude-like portion for holes has reduced mobility compared to
that of electrons. The connection of the optical sum rule to the
kinetic energy and how this probe can demonstrate this physics
has been worked out in great detail for the dimer system
considered here. More detailed comparison to experiment will
have to rely on DMFT calculations16 that provide answers in
the thermodynamic limit.

The results of the dimer calculations presented here agree
with the physics originally obtained in a model in which the
pseudospin degree of freedom impacted the on-site energy
of an electron.7 Here, the pseudospin degree of freedom
alters the effective Coulomb interaction between two electrons
through a dynamical change in the on-site electron-electron
interaction epitomized by U .10 The qualitative picture obtained
here also provides a better understanding of the conclusions
obtained for an infinite lattice in Ref. 16: holes are less mobile
than electrons, and the optical spectral weight distribution is
significantly different for holes than for electrons.
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Scientific, Singapore, 1992), p. 363.
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