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Hyperfine induced electron spin and entanglement dynamics in double quantum dots:
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We consider a system of two strongly coupled electron spins in zero magnetic field, each of which is interacting
with an individual bath of nuclear spins via the hyperfine interaction. Applying the long-spin approximation that
we introduced in a previous paper [Europhys. Lett. 95, 47009 (2011)] (here each bath is replaced by a single long
spin), we numerically study the electron spin and entanglement dynamics. We demonstrate that the decoherence
time is scaling with the bath size according to a power law. As expected, the decaying part of the dynamics
decreases with increasing bath polarization. However, surprisingly it turns out that, under certain circumstances,
combining quantum dots of different geometry to the double dot setup has a very similar effect on the magnitude
of the spin decay. Finally, we show that even for a comparatively weak exchange coupling the electron spins can

be fully entangled.
DOI: 10.1103/PhysRevB.85.155127

I. INTRODUCTION

The Loss-DiVincenco proposal is one of the most promising
concepts for solid-state quantum information processing.
Here, electron spins confined in semiconductor quantum dots
are utilized as qubits."> The central drawback of this approach
is the fast decoherence caused by the coupling of the electron
spin qubits to the nuclear spins of the host material via the
hyperfine interaction.>”!” For related reviews, the reader is
referred to Refs. 11-15. Other nanostructures in which similar
situations arise are given by carbon nanotube quantum dots,'®
phosphorus donors in silicon,!” and nitrogen vacancies in
diamond.'8-%0

However, the hyperfine interaction allows us to access the
nuclear spins efficiently. Hence, when it comes to utilizing
them instead of the electron spins for quantum information
purposes, vice turns into virtue and the hyperfine interaction
gets a very advantageous character. Examples in this context
are given by the possibility to build up an interface between
light and nuclear spins,?!>? to polarize nuclear spin baths,?*>
to set up long-lived quantum®®?’ and classical’® memory
devices, or to generate entanglement.?’

Following the idea to take advantage of the hyperfine
interaction, in a recent paper’’ we investigated a system of two
exchange-coupled electron spins, each of which is interacting
with an individual bath of nuclear spins via the hyperfine
interaction. In contrast to most of the approaches considered
in the context of hyperfine interaction,>' % no magnetic field,
enabling for a perturbative treatment of the problem, was
applied to the electron spins. Using exact diagonalization
studies, we demonstrated that the nuclear baths can be swapped
and fully entangled, provided they are large enough. In order
to be able to numerically consider the required system sizes,
we introduced the so-called long-spin approximation (LSA).
Here, we assumed homogeneous couplings within each of the
baths and considered them to be highly polarized. This allows
us to replace them by two single long spins. Interestingly, the
spectrum of the two-bath model with homogeneous couplings,
studied in a preceding publication,’” exhibits systematically
degenerate multiplets under certain conditions. Motivated by
this, we distinguished between systems with and without in-
version symmetry, i.e., a formal exchange of the central as well
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as the bath spins. In the latter case, quantum dots of different
geometry are combined to a double dot setup. Surprisingly, it
turned out that here the swap performance is much better.

In the present paper, we apply the LSA in order to study
the electron-spin dynamics. The results complement those of
Refs. 30 and 37 and, in particular, those of Ref. 38, where we
studied the electron spin evolution assuming the electrons to
interact with a common bath of nuclear spins via homogeneous
couplings.

The paper is organized as follows: In Sec. I we introduce
the model and the methods. In particular, we discuss in detail
the applicability of the LSA with respect to the electron-spin
dynamics. We then study the spin and entanglement dynamics
in the limit of an exchange coupling, which is much larger
than the hyperfine energy scale. Here, the nuclear baths
act as a perturbation. This is a particularly interesting case,
as exceptionally long decoherence times can be expected.
In Sec. IIl we focus on the time evolution of the electron
spins. In a first step we study basic dynamical properties. In
particular we demonstrate that in certain parameter ranges the
process of decoherence is incomplete. Furthermore, we find a
simple empirical rule describing the dynamical signatures of
different initial states. We then quantitatively investigate the
decoherence time and the magnitude of the spin decay. As
expected from Ref. 38, the decoherence time scales with the
system size according to a power law. As already mentioned,
in Ref. 30 it was demonstrated that the nuclear-spin dynamics
strongly benefit from combining quantum dots of different
geometry to the double-dot setup. In full generality, this result
can be confirmed only in certain parameter regimes. In Sec. [V
we then focus on the entanglement dynamics and demonstrate
that, surprisingly, even for a comparatively weak exchange
coupling, the electron spins can be fully entangled.

II. MODEL AND METHODS

The hyperfine interaction in a double quantum dot is
described by the Hamiltonian

N N
H =S, 'ZAEI)Z+§2-ZAEZ)Z+JGX§1 S, )
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where 5} are the electron and 7, are the nuclear spins. The
parameter Jox denotes an exchange coupling between the
two electron spins, which can be adjusted in a range of
[—1073,1073] eV. The constants Agl), Al(.z) are the hyperfine
couplings of the two electron spins. In a realistic quantum dot,
these are proportional to the electronic wave function of the
Jjth electron at the site 7; of the ith nuclear spin:

AP o (WO, @
For typical GaAs quantum dots, this leads to an interaction

with N ~ 10% nuclear spins and the overall hyperfine coupling
strength of the jth electron,

is of the order of [107*,10~ ] eV (see Ref. 39).

Due to the spatial variation of the electronic wave func-
tion, the hyperfine couplings are clearly spatially dependent.
However, for any set of hyperfine coupling constants, the
Hamiltonian, obviously, conserves the total spin J = 3’1 +
S+ Z,N 1 I;. This is a very helpful symmetry for exact
numerical diagonalizations of the Hamiltonian matrix,*>
through which we will gain the dynamics of the system in what
follows. Here we consider the eigensystem of the Hamiltonian

Hy;) = Ei|;) “4)

and decompose the initial state |¢) into a sum of energy

eigenstates:
a) =Y ailyn). (5)

Applying the time evolution operator U = e~iH1 and tracing
out the nuclear degrees of freedom then gives the reduced
density matrix for the electrons,

pe(t) = Try (o) (e(®)])
= aaje nETE T, (1) (v, (6)

LJ
from which the dynamics of all observables can be calculated.
For further details see Ref. 38.

In Ref. 38 we investigated the case of two electron spins
coupled to a common nuclear spin bath. In what follows,
however, we consider the case of two separate baths as depicted
schematically in Fig. 1. In the first case, the two electron spins
are assumed to be very close to each other so that both interact
with the same group of nuclear spins, whereas in the present

Jex

FIG. 1. Illustration of the one-bath and the two-bath model
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case they are spatially more separated, leading to an interaction
with an individual group. The realistic situation of a double
quantum dot will, of course, lie between these two extreme
cases.

As already mentioned, in the present paper we apply the
LSA to the two-bath system. In the following subsections we
give a detailed discussion of the model with a particular focus
on its limitations.

A. The long spin approximation

Let us consider two separate spin baths of equal size with
homogeneous couplings to one of the two electron spins each

and introduce i = Z / I, j» where the I are the N; nuclear
spins the jth electron spm 1nteracts Wlth This means that
N = N; + N, and Zl ! 1 = 11 + 12, where, for simplicity,
we will consider Ny = N, in what follows. Now the squares
of the total spin of each bath are separate conserved quantities.
Moreover, the same holds for the square of any sum over a
subset of spins of each bath,

[7.{K}] =0, ()

where we have, for the sake of brevity, denoted the set of all
the latter operators of the jth bath as {12 JZ}. The corresponding
quantum numbers {K;} can be used to characterize specific
Clebsch-Gordan decompositions of each bath.

The initial state |oc) is given by a direct product between the
initial state of the electron spins |a,) and the initial state of the
baths |, ). Provided the two dots are spatially well-separated,
the two resulting baths have to be considered as practically
uncorrelated. Hence, the state of the nuclear baths is again a
direct product between the states of the two baths, |8;). In
general, such a state reads

B =Y B

I;,m; {K;}

[1.73] =

T m K Y, ®)

where |1;,m ;,{K;}) are the eigenstates of 12.1f the respective
bath is now strongly polarized, the number of contributing
multiplets in Eq. (8) drastically decreases.’® If we are close
to full positive or negative polarization, we can drop the
quantum numbers {K;} and consider the initial state to be
given by |I,m;) with m; ~ 1. Due to Eq. (7), no “cross
terms” between different multiplets contribute to the dynamics
and all physics is then captured in the LSA Hamiltonian

AD L L A0

Hisp=—=—38 -1+ =5,

b+ 1S - S5, 9
i T ) + 18 9)

sketched in Fig. 2. The coupling constants AY)/2I result
directly from Eq. (3) by considering [;; =1/2: As all
couplings Al(.J ) are chosen to be equal to each other, Eq. (3)

yields A = AW /N;. The quantum number ; ranges from 0
to N;/2. As our model is based on highly polarized baths, we
choose the maximal value. Together with N; = N5, this yields
AY) = AW 21, Although the LSA Hamiltonian is not exactly
solvable the approximation of the baths by single long spins
reduces the dimension of the problem so that exact numerical
diagonalizations are possible on arbitrary subspaces even for
comparatively large baths.
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FIG. 2. The two baths are approximated by two long spins.

Accounting for the J* symmetry, the nuclear state |c,)
explicitly reads

lay) = |I,M —m —i)|L,i). (10)

Here, M denotes the quantum number associated with J* and
m the one related to S*. The parameter i is introduced in order
to account for the deviations from m; = £1I. Hence, it has to
be chosen in the vicinity of I or (M — m — I), respectively.
Note that for an initial state, which is a simple product state
like Eq. (10), all dynamics is caused by the flip-flop terms

LStS; + 8578 =85 - 85383 (1

in H or Hyga, respectively. This is exactly the part of the
Hamiltonian that is eliminated in most of the approaches by
applying a strong magnetic field to the central spin system (see
Refs. 31-36). In Refs. 30 and 38 we also concentrated on the
dynamics that are purely due to the flip-flop terms.

B. Homogeneous couplings on long time scales

In Ref. 38 we considered the one-bath model illustrated
in the upper panel of Fig. 1 for homogeneous couplings and
initial states with a very low bath polarization pj, := (N —
2Np)/N of (1/N). Here, Np denotes the number of flipped
spins in the bath. The central spin dynamics shows periodic
behavior. This clearly has to be regarded as an artifact caused
by the homogeneity of the couplings. For short time scales,
meaning times much smaller than the recurrence time, the
results for decoherence times found there compare well with
experimental values.

As explained above, within the LSA we assume the cou-
plings to be homogeneous and the baths to be highly polarized.
However, high polarizations naturally lead to long time scales
for the electron spin decoherence times. Consequently, it has
to be analyzed to what extent the two assumptions of the LSA
contradict each other. In Ref. 30 we already investigated this
question with respect to the nuclear spin dynamics, where we
considered a Gaudin model, as corresponding to one of the first
terms in Eq. (1). We found that, qualitatively, inhomogeneities
become less important with increasing polarization. Typically,
in such a context, one would give a quantitative argument by
evaluating the fidelity (to be precisely defined below) rather
than studying the dynamics on a qualitative level. However,
with respect to the nuclear spin dynamics considered in Ref. 30
this does not make sense, obviously, as the bath consists of
many spins so that a certain value of (/?) can be realized by a
whole set of nuclear states.
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FIG. 3. (Color online) The time-averaged fidelity is plotted
against the number of flipped spins in the bath (left panel) and
against the bath magnetization (right panel). We consider a randomly
correlated initial bath state with coefficients in [—1,1] for N =
12,20,30. The fidelity strongly increases with increasing polarization.
Furthermore, it decreases with an increasing number of bath spins,
where the decrease gets weaker as the baths become larger.

In the following, we again consider a usual Gaudin model
and investigate the time-averaged fidelity F with respect
to homogeneous and inhomogeneous couplings via exact
diagonalization. This is given by

1 T
F= —/ dt| (Unel|Un) |, (12)
T Ji—o

with Uy, and Uy, being the time evolution operators for the
homogeneous or inhomogeneous Hamiltonian, respectively.
We choose an initial state that is a direct product between an
electron spin pointing upward and a randomly correlated bath
state. This is a superposition of all possible states with (in our
case) real random coefficients, which we choose in the interval
[—1,1]. Randomly correlated states lead to highly reproducible
results and can, therefore, be regarded as generic.>*

The results are shown in Fig. 3. We fix three different system
sizes of N = 12,20,30 bath spins for a reasonably long period
T =400 /A). In the left panel, we plot F' against Np. In
order to get a better comparison between the different system
sizes, in the right panel we show the same data plotted against
the bath polarization p,. Obviously, the fidelity is strongly
increasing with the bath polarization. Furthermore, it decreases
with an increasing number of bath spins. Note that the different
curves approach each other with increasing number of bath
spins.

The highest experimentally feasible polarizations are
around 80%, as reported in Ref. 40. On first sight, the results
shown in Fig. 3 indicate that even for such high polarizations,
considering homogeneous couplings on comparatively long
time scales is restricted to extremely small systems. This
would strongly contradict the purpose of the LSA. However,
it turns out that the fidelity is an extremely sensitive measure
underestimating the applicability of the LSA: In Fig. 4 we
plot the spin dynamics for inhomogeneous and homogeneous
couplings for Np = 4 < p;, = (1/3), corresponding to a very
low fidelity of F = 0.055194. Such a small value clearly
suggests that the dynamics in the inhomogeneous and the
homogeneous case are fundamentally different. The amplitude
of (S.(¢)) decaying to zero without any recurrence on the
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FIG. 4. Central spin dynamics for inhomogeneous and homoge-
neous couplings for N =12 and Np =4 < p, = (1/3), as corre-
sponding to F' = 0.055194. Just as described in the legend of Fig. 3,
we consider a randomly correlated initial bath state with coefficients
in [—1,1]. In both cases the spin is oscillating around a very similar
mean value, where the amplitude is significantly larger for the case of
homogeneous couplings. Hence, even in this extreme case of a very
small fidelity, the dynamics are still somewhat similar to each other.

considered time scales would be an example of a natural
expectation for the first case (compare, e.g., the results
presented in Refs. 3 and 39 with those of Refs. 38 and 41).
Furthermore, one would guess that the time-averaged values
of (5;(¢)) in the inhomogeneous and the homogeneous case
strongly differ from each other. However, as can been seen
from Fig. 4, neither of these expectations are met. This means
that even very small fidelities correspond to a rather good
qualitative agreement of the dynamics. Considering highly
polarized baths, as done within the LSA, it is therefore justified
to choose homogeneous couplings even on comparatively long
time scales.

III. ELECTRON SPIN DYNAMICS

In the following, we restrict ourselves to the limit
Jux/(A/21) > 1, where we defined A = A + A® . Here,
the dynamics is dominated by the electron-spin coupling term
and the baths act as a perturbation. As a consequence, long
decoherence times, enabling us, e.g., to fully entangle the
two electron spins, have to be expected. We will distinguish
between a “strong coupling” and an “ultrastrong coupling”
limit. In the first case an only moderately large exchange
coupling, Jx/A ~ 1, is considered so that the condition
Jex/(A/21) > 1 is realized mainly through the length of the
bath spins, whereas in the second case we choose a very
strong exchange coupling, meaning that here we already have
Jox/A > 1. As I| = I, azero “detuning” A := A® — AW s
associated with a system invariant under inversions 1 <> 2.3
Physically, a detuning different from zero corresponds to
dots of different geometry combined to a double quantum
dot. Throughout the paper we will consider the dynamics on
subspaces with fixed magnetization. It therefore suffices to
investigate the z components of the spins. Furthermore, due to
their strong coupling, the dynamics of the two electron spins
can be read off from each other even for A # 0. Therefore, we
always focus on the time evolution of the first electron spin.
Note that the energy scale is given by (A /27) and consequently
the time will be given in units of Al /m A.
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FIG. 5. Electron-spin dynamics for the strong and the ultrastrong
coupling case Je/(A/21),Jex/A =350, with A =0 in the left
column and A # 0 in the right one. We consider / = 120 and
M, = 0.17. The initial state is given by |a) = |[{W)|M — [,1). As
illustrated by the dotted lines, we choose the point at which the
amplitude does not change anymore as the decoherence time. We find
very regular dynamics, where the decoherence times are obviously
larger in the case of broken inversion symmetry A # 0. Furthermore,
the oscillations do not fully decay in the ultrastrong coupling case.

A. Basic dynamical properties

In order to give a basic impression of the dynamics, in
Figs. 5 and 6 we fix Jex/(A/21) = 350 for the strong and
Jex/A = 350 for the ultrastrong coupling case and plot the
dynamics of the first electron spin for / = 120. We consider the
relatively low “magnetization” M, := M /(21 + 1) = 0.17.
This means that we concentrate on initially nearly antiparallel
baths. We study the inversion invariant case A = 0 as well as
A # 0. All initial states considered in Figs. 5 and 6 have an
antiparallel electron spin configuration |e,) = |{1{}). In Fig. 5,
we consider an initial nuclear state with a maximally negative
z component of the first bath spin, 71. This corresponds to
i =1 in Eq. (10). We clearly see that in the ultrastrong
coupling limit, the time evolution for initial states of the
above-mentioned form does not fully decay. Indeed, for small,
inversion invariant systems this is also the case in the strong
coupling limit. Varying i slightly away from 7, the dynamics
in the ultrastrong coupling case does not show any qualitative

02 4 6 8 0 2 46 810
¢ [10°hI/(TA)]

FIG. 6. Electron spin dynamics for the strong coupling case
Jex/(A/21) =350 and A = 0.015. We consider / = 120 and M, =
0.17. The initial states are given by |o) = [ U)|M — 1 +i,] —i)
with i = 1,2,3,4. We find dynamics with an envelope, decaying in a
quite similar way to the one for i = 0 shown in Fig. 5. However, here
additional beatings occur. Their number is equal to i.
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change. As can be seen in Fig. 6, this is also the case
for the envelope of the dynamics in the strong coupling
limit. However, here additional beatings occur. Surprisingly,
there is a clear empirical rule concerning these additional
low-frequency oscillations: If the z component of the first bath
spin deviates by i from the maximal negative value, |o,) =
IM — I +i,I — i), the dynamics shows exactly i beatings. In
Fig. 6, the case of broken inversion symmetry is considered,
where the beatings are particularly pronounced. At present,
we are not able to explain this effect. However, it seems that
nontrivial dynamical regularities are typical for central spin
models with homogeneous couplings. Indeed, in Ref. 38 we
reported on a rule for the one bath model, which relates the
number of flipped spins in the initial state of the bath to the
number of local extrema in the oscillations of the central spins.
Also, the dynamics has been calculated on a fully analytical
level, and we have not been able to give an explanation of these
regularities.

B. Decoherence time and magnitude of the spin decay

In direct analogy to the investigations in Ref. 38, in the
following we investigate the scaling of the decoherence time
with the spin length. It is clear that such an investigation can
not yield perfectly reliable values, as the spin length is, of
course, restricted to comparatively small values due to the
limited computational power. Consider, for example, M, = 0.
Here, the dimension of the Hilbert space is given by (81 + 2),
limiting the length of the spins to values of the order of
I ~ 10%. Still, the results give a clear idea about the type
of scaling and allow for a qualitative comparison between dif-
ferent parameter regimes. In the following we concentrate on
initial states |a) = [t{)|M — I,I) for M, = 0.17. As already
explained, i has to be in the vicinity of I and the envelope
remains unaffected when varying i slightly away from its
maximal value. Hence, the results for |a) = [t{)|M — I,I)
can be regarded as generic. As can be seen from Fig. 5, in the
ultrastrong coupling limit (S5(7)) does not decay to a constant
value, but oscillations of quite regular shape remain; i.e., the
decoherence process is not complete. Therefore, we define the
time from which on the amplitude does not change anymore
than the decoherence time. Numerically, this is realized by
dividing the time axis in intervals with a length larger than the
period of the regular oscillations and determining the maximal
value in each interval. If this value does not change anymore
over a fixed number of intervals, the lower bound of the first
interval in which the respective value appeared is chosen as
the decoherence time. In the left panels of Fig. 5, this choice
is illustrated by the dotted lines.

In Ref. 38, it has been shown for the one-bath model that
the decoherence time scales with the size of the bath according
to a power law ~ N7". Indeed, we find the same behavior
for the present case. In Figs. 7 and 8, the decoherence times
for the strong and the ultrastrong coupling case are plotted
against the spin length / on a double logarithmic scale. For the
inversion symmetric case we consider Jex/(A/21),Jex/A =
350 and Jx /(A /21) = 175, where it obviously does not make
any sense to choose a second value for the ultrastrong coupling
limit. For the case of broken inversion symmetry we fix
Jex/(A/21),Jex /A = 350 and fix A = 0.015A,0.019A for the
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J_/(A/21)=350, A=0
I, J(A2D=175, A=0
J, [(A21)=350, A=0.015A
T |4 J_/(ARD)=350, A=0.019A
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FIG. 7. (Color online) Scaling of the decoherence time with
the bath spin length / on a double logarithmic scale for the
strong-coupling case. Different coupling ratios Jex/(A/21) and
detunings A are considered. We choose the initial state |a) =
MUY M — 1,I) for M, = 0.17. We find power laws ~/~" with v =
1.29 [Jex /(A/21) = 350,A = 0], v = 1.03 [Jex /(A/2]) = 175,A =
0], v=1.54 [J/(A/2])=350,A =0.015A], and v =1.65
[Jex/(A/21) = 350,A = 0.019 A]. Although the limit Jox /(A /21) >
1 is left unaltered, surprisingly the scaling changes with the coupling
ratio. Breaking the inversion symmetry leads to an increase of the
parameter v.

strong coupling and A = 0.0014,0.006A for the ultrastrong
coupling case. The values for the latter are chosen to be
particularly small, because, as exemplified in the bottom panels
of Fig. 5, the dynamics is highly sensitive with respect to a
change of the detuning and become completely coherent on
any relevant time scale for larger values.

As expected, for the strong-coupling case, the decoherence
time is scaling much stronger than for the ultrastrong coupling
limit. Note that the values for the ultrastrong case are much
smaller only due to the fact that here the dynamics does not
fully decay. As can be seen from Fig. 7, in the strong-coupling

100 ——————
= | A=0
e A=0.001A
= A=0.006A
=
o
L
Q 1
! T00 200 300
1

FIG. 8. (Color online) Scaling of the decoherence time with the
bath spin length / on a double logarithmic scale for the ultrastrong
coupling case. We fix Jx/A = 350 and vary A weakly away from
zero. We choose the initial state |«) = |} )|M — [,1I)forM, = 0.17.
The curves are again fitted to power laws ~1~" with v = 0.79 (A =
0), v =0.49 (A =0.001 A), and v = 0.54 (A = 0.006 A). Note that
the absolute of the decoherence times are smaller than in the strong
coupling case because the dynamics does not fully decay. Breaking
the inversion symmetry leads to a decrease of v to v & (.5, which is
the value found in Ref. 38 for the one-bath model.
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limit the scaling does change significantly with the coupling
ratio Jex/(A/21). This is surprising as a small change in the
ratio leaves the limit Jo/(A/21) >> 1 unaltered and, hence,
one would expect the scaling to be insensitive against a change
of the coupling ratio. Furthermore, the absolute values of the
decoherence time clearly decrease with decreasing coupling
ratio Jex/(A/21) as expected. However, as a counterintuitive
effect, the scaling with the system size turns out to be weaker
for the smaller of the two ratios. Breaking the inversion
symmetry has a significant effect in the strong as well as the
ultrastrong coupling limit. In the first case, the exponent v
increases, whereas in the latter it decreases to v &~ 0.5. This is
the value derived in Ref. 38 for the one-bath model.

As explained in the preceding subsection, in the ultrastrong
coupling case the dynamics does not show full decoherence. If
the spin length 7 is small and we have A = 0, this is also the
case for only strongly coupled electron spins. We now analyze
the scaling of the decaying part of the dynamics as a function
of the magnetization and, in the ultrastrong coupling case, as
a function of the detuning A. Concerning the strong coupling
case the results are, obviously, only of fundamental interest.
Even in SiGe and carbon-based quantum dots (only around
4.7% of the Si isotopes are spin carrying,*> and in carbon
only 1%™*), the electron spins interact with a few thousands of
nuclear spins.

Note that our LSA model is valid only for relatively small
and relatively large magnetizations M,, which corresponds
to nuclear spin baths highly polarized in either the same or
opposite directions. However, in Fig. 9 we plot the amplitude,
defined as the difference between a local maximum and the
following local minimum, for the whole range of M,, which
corresponds to either parallel or antiparallel nuclear spin baths.

1=20; J_/(A/21)=350
1=20; J_/(A2D)=175

1=80; J_/A=350
o8| .
3
3 06f 1
=i
£ 04f :
<
0.2 :
% 2 4 6 80 05 1 15 2
-1 -1
10°M, A[10"A]

FIG. 9. (Color online) Scaling of the amplitude, given by the
difference of a local maximum and the following local minimum,
with the magnetization and the detuning for the cases, where the
dynamics does not fully decay. In the left panel we fix A = 0. For the
strong-coupling case we consider / = 20and J./(A/21) = 350,175.
For the ultrastrong coupling case we fix I = 80 and J../A = 350.
We choose the initial state |a) = |[f{}{)|M — [,1). In all cases we
find a linear dependence of the amplitude on the magnetization
with gradients a close to one. The values are given a = 0.97
[Jex/(A/21) = 350], a =0.92 [J/(A/21)=175], and a = 1.0
(Jex/A = 350). In the right panel we plot the the amplitude against the
detuning for M, & 0.17. Here we find a highly nonlinear dependence.
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We consider the strong as well as the ultrastrong coupling
case. For the first one we fix I = 20 and two values for the
coupling ratio Jex /(A/21) = 350,175. In both cases we find a
linear dependence with a gradient close to one, meaning that
the ratio does not significantly influence the decaying part.
Concerning the ultrastrong coupling case, we set I = 80 and
consider Jex/A = 350. The scaling is practically identical to
the one for the strong coupling case. As already discussed
in the preceding section, we found that for the ultrastrong
coupling case the decaying part is not only influenced by the
magnetization but also by the detuning. In the right panel of
Fig. 9, we plot the amplitude against the detuning for a fixed
magnetization M, = 0.17. In contrast to a variation of the
magnetization, here we find a highly nonlinear dependence,
which can not be fitted by some simple power law.

In Ref. 30 we demonstrated that a nonzero detuning is
very advantageous with respect to swapping and entangling
the nuclear spin baths. When it comes to the electron spin
dynamics, however, in general this is the case only the
ultrastrong coupling limit.

IV. ENTANGLEMENT DYNAMICS

We now close the discussion of the electron-spin dynamics
with an investigation of the entanglement between the two
electron spins. In order to quantify the nonclassical correla-
tions, we consider the concurrence defined by**

C(t) = max{0,v/h —Via — Vi — Vsl (13)

where A; are the eigenvalues of the non-Hermitian matrix
Pe(t)P.(t) in decreasing order. Here, p.(t) is given by (o, ®
0,)p;(t)(oy ® oy), where pJ(t) denotes the complex conjugate
of p.(t)—the reduced density matrix of the electrons as defined
in Eq. (6).

In the following, we ask to what extent it is possible to
entangle initially uncorrelated electron spins. Therefore, we
again consider initial states with electron spin configurations
[1t). In particular, we are interested in a lower bound for
the ratio Jex/(A/21), meaning that we adjust the couplings
Jex, A1, Az to the lowest possible ratio so that the concurrence
still becomes equal to one. As to be expected, the lower bound
lies in the ultrastrong coupling limit. However, surprisingly it
turns out that it is not determined by the ratio J.x/A, but only
by Jex/max{A,A,}. The concrete value of this ratio depends
on the initial state of the nuclear spins. An upper bound is
given by the (as explained above, unphysical) case of randomly
correlated states. As an empirical rule of thumb, here, we
find

Jex
— > 8.8. 14
max{Ay, Az} (9

In Fig. 10 we illustrate the rule by plotting the dynamics for
randomly correlated initial states with coefficients in [—1,1]
by considering parameters satisfying and violating Eq. (14).
We choose a rather small system of I = 40 and concentrate
on the case of broken inversion symmetry A = 0.019A. We
plot the time evolution for a low polarization of M, = 0.09 in
the left panel and fix a rather high polarization of M, = 0.86
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FIG. 10. (Color online) Time evolution of the concurrence be-
tween the two central spins for / = 40. We consider the case of a
low polarization (M, = 0.09) in the left panel and the case of a high
polarization (M, = 0.86) in the right panel. In both cases we choose a
detuning of A = 0.019 A and consider Jx /A, = 8.8, which satisfies
Eq.(14),and Jx /A, = 2.5, which violates Eq. (14). The nuclear spins
are in a randomly correlated state with coefficients in [—1,1] initially.
One clearly sees that if Eq. (14) is satisfied, the concurrence becomes
one, whereas for a stronger coupling to the baths, the electron spins
cannot be fully entangled.

in the right panel. It is visible that the maximal value of the
entanglement drops slightly under one if Eq. (14) is violated.

PHYSICAL REVIEW B 85, 155127 (2012)

V. CONCLUSION

In summary, we numerically studied the electron spin
and entanglement dynamics in a system of two strongly
coupled electron spins, each of which is interacting with an
individual bath of nuclear spins via the hyperfine interaction.
We applied the LSA introduced in Ref. 30, where the two
baths are replaced by two single long spins, and focused
on the limit of an exchange coupling much larger than the
hyperfine energy scale. Here we distinguished between a
strong and an ultrastrong coupling case. We demonstrated that
the decoherence time scales with the size of the baths according
to apower law. As expected, it turned out that the decaying part
decreases with increasing polarization. However, surprisingly
it also decreases with increasing detuning, provided the
electrons are bound ultrastrongly. Hence, with respect to
the electron-spin dynamics, the advantageous character of a
nonzero detuning, found in Ref. 30 for the time evolution of
the nuclear baths, can only be confirmed in the ultrastrong
coupling limit. Finally, we demonstrated that it is possible to
fully entangle the electron spins even for a comparatively weak
exchange coupling.
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