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Repulsion-to-attraction transition in correlated electron systems triggered by a monocycle pulse
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We study the time evolution of the Hubbard model driven by a half-cycle or monocycle pulsed electric field
F (t) using the nonequilibrium dynamical mean-field theory. We find that for properly chosen pulse shapes the
electron-electron interaction can be effectively and permanently switched from repulsive to attractive if there is
no energy dissipation. The physics behind the interaction conversion is a nonadiabatic shift δ of the population
in momentum space. When δ ∼ π , the shifted population relaxes to a negative-temperature state, which leads to
the interaction switching. Due to electron correlation effects δ deviates from the dynamical phase φ = ∫

dtF (t),
which enables the seemingly counterintuitive repulsion-to-attraction transition by a monocycle pulse with φ = 0.
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I. INTRODUCTION

Controlling the interparticle interactions in a correlated
electron system by applying intense laser fields is a challenging
and exciting perspective, which may lead to states of matter
that do not exist in equilibrium. For example, if one could
effectively change the electron-electron interaction from the
original Coulomb repulsion to an attraction, this may induce
an s-wave superconducting state with very high transition
temperature (optimally ≈0.1 bandwidth),1,2 or the BCS-BEC
crossover.2,3 It will also enable us to study phenomena
characteristic of nonequilibrium quantum systems, such as
transient states after an interaction quench.4–6 The control
of interparticle interactions is in fact possible in cold-atom
systems,7 where one can manipulate the interaction in a
wide range from repulsive to attractive using the Feshbach
resonance that dominates the scattering length,8 but such a
technique cannot be applied to electron systems.

One way to control the interaction is to create a population
inversion in metallic bands corresponding to a negative-
temperature (T ) state.9,10 This implies an effective switching
of the interaction from repulsive to attractive, since a density
matrix e−H/T for a Hamiltonian H with temperature T < 0
corresponds to the one for the inverted −H with −T > 0.11,12

While a (partial) population inversion itself is a common
phenomenon (e.g., in laser productions), the interaction con-
version is a genuine correlation effect in nonequilibrium.
Ideally, the laser fields that drive the system should be
“pulsed” waves since, first, the available intensity is generally
much higher for ultrafast pulses13–15 than for continuous-wave
lasers, and second, continued heating can be avoided. These
considerations raise a fundamental question: can irradiation
by a single-cycle pulse put a system into a negative-T state
that survives for a long time after the pulse?

In this paper, we show that it is possible to induce a
population inversion in metallic systems using a properly
shaped monocycle or half-cycle pulse, and that in the ab-
sence of energy dissipation, the system will thermalize in
the negative-T state after the pulse. By solving the driven
Hubbard model with the nonequilibrium dynamical mean-field
theory (DMFT),16,17 we will demonstrate that pulse fields
F (t) with proper asymmetry between the positive [F (t) > 0]
and negative [F (t) < 0] parts trigger a repulsion-to-attraction

transition. Such asymmetric pulses can readily be generated
thanks to the recent progress in laser techniques,18–20 while
their potential application to correlated systems has remained
unexplored, in contrast to symmetric, many-cycle pulses.21,22

Our strategy is to induce a nonadiabatic shift (denoted
by δ) in the momentum distribution of the electrons by the
asymmetric monocycle pulse (see Fig. 1). If we can achieve
δ � π (half of the Brillouin zone), the system is brought to a
negative-T state [Fig. 1(c)], which amounts to a change of the
interaction from repulsive to attractive. In a one-body picture,
one expects that each electron acquires from the pulse field a
dynamical phase

φ = ea

h̄

∫ ∞

−∞
dtF (t) (1)

with e the elementary charge and a the lattice constant
(hereafter we set e = a = h̄ = 1). This causes a momentum
shift k → k + φ, so that we simply have δ = φ. An immediate
question is: can a monocycle pulse with

∫
dtF (t) = 0 (as

dictated by Maxwell’s equation23) induce a nontrivial shift
of the population? We show that it is in fact possible in
interacting systems, where the nonadiabatic shift δ exhibits
a clear deviation from φ due to correlation effects. This allows
us to achieve δ � π even when

∫
dtF (t) ∝ φ = 0 by choosing

the pulse shape appropriately. We reveal conditions for the
pulse shape that lead to the population inversion, and construct
a ‘phase diagram’ for the pulse-driven Hubbard model. We
emphasize that the interaction conversion robustly persists
after the pulse has passed, at least in an isolated system
without energy dissipation. This contrasts with the previously

(a) (b) (c)

FIG. 1. (Color online) Schematic band pictures for the pulse-
induced phase shift. (a) Initial system in equilibrium, (b) right after the
pulse excitation, with the population shifted in momentum space by
δ, and (c) the system finally thermalized with a negative temperature
when δ � π .
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proposed scenario for the repulsion-to-attraction transition
using continuous-wave fields.12

II. MODEL AND METHOD

We take, as the simplest model for correlated electrons, the
single-band Hubbard model driven by an electric field with the
Hamiltonian

H (t) =
∑
ij,σ

tij exp

(
−i

∫ Ri

Rj

d r · A(t)

)
c
†
iσ cjσ + Hint(U ),

(2)

where tij is the hopping between sites at Ri and Rj , the electric
field F(t) = −∂ A(t)/∂t is expressed in terms of the vector
potential A(t), and c† (c) creates (annihilates) an electron. For
the interaction we take the particle-hole symmetric form

Hint(U ) = U
∑

i

(
ni↑ − 1

2

) (
ni↓ − 1

2

)
, (3)

where U (�0) is the repulsive Coulomb interaction with niσ =
c
†
iσ ciσ . We apply a pulsed wave at t = 0, and switch off the

field at t = τ . For the DMFT, we consider a hypercubic lattice
with the Gaussian density of states D(ε) = 1√

πW
e−ε2/W 2

,16

and apply the field in the diagonal direction with F(t) =
F (t)(1,1, . . .). The band is assumed to be half-filled. Through-
out the paper, we use the bandwidth W as the unit of energy,
and take the initial temperature to be T = 0.1.

III. RESULTS

A. Noninteracting system

Let us start with the noninteracting system. We focus on
the momentum distribution defined by f (k,t) = −iG̃<

k (t,t) =
−iG<

k+A(t)(t,t), where G<
k (t,t ′) [G̃<

k (t,t ′)] is the (gauge-
invariant24) lesser Green function. For the noninteracting
system, the lesser Green function is given by

G<
0k(t,t ′) = if0(εk) exp

(
−i

∫ t

t ′
dt̄εk−A(t̄)

)
, (4)

where f0(ε) = 1/(eε/T + 1) is the Fermi distribution, and
εk the band dispersion. After the pulse excitation (t > τ ),
the momentum distribution becomes f (k,t) = f0(εk−φ) with
φ = −A(τ ) = φ(1,1, . . .). Note that the effect of the pulse
field on the final state amounts to a momentum shift φ (1).
For a π shift (φ � π ), the electrons occupy the band top
with f (k,t) ∼ f0(−εk), which is characterized by an effective
temperature Teff = −T < 0. Thus a π shift (which may be
viewed as a partial Bloch oscillation) is the condition that
leads to a negative-T state in the noninteracting system.

B. Interacting system

Now let us move on to the interacting case. There, we
can identify the repulsion-to-attraction transition from the
total energy Etot(t) = 〈H (t)〉: After the pulse excitation, a
(nonintegrable) isolated system is supposed to approach
a thermalized state25 with some effective temperature Teff and
a total energy Etot(τ ) (which is conserved after the pulse is over

a

0 τ
0

t

F
t

b

0 ατ                    τ

t

FIG. 2. (Color online) Schematic temporal profiles of a half-cycle
pulse (a) and a monocycle pulse (b) for which α controls the
asymmetry.

at t = τ ). A thermal state with a positive temperature always
gives Etot < 0 at half-filling for the interaction term (3), while
one with a negative temperature gives Etot > 0. This suggests
that the total energy plays the role of an “order parameter” for
the repulsion-to-attraction transition. If and only if Etot(τ ) > 0
the system arrives at a negative-T state (Teff < 0), in which
case the density matrix is given by

ρ ∝ exp

(
− 1

Teff

[ ∑
k,σ

εk+φc
†
kσ ckσ + Hint(U )

])

= exp

(
− 1

|Teff|

[ ∑
k,σ

εkc̃
†
kσ c̃kσ + H̃int(−U )

])
. (5)

Here we have introduced a gauge transformation

ciσ → c̃iσ = e−i(φ+π)(1,1,...)·Ri ciσ

with H̃int(−U ) = −U
∑

i(ñi↑ − 1
2 )(ñi↓ − 1

2 ) (with ñiσ =
c̃
†
iσ c̃iσ ) to cancel the phase shift in the kinetic energy. The

above equation implies that the state can be viewed as a thermal
state with a positive T and an attractive interaction −U < 0.
This is the basic mechanism behind the repulsion-to-attraction
transition driven by the pulse. Note that the condition for the
interacting system is Teff < 0, as opposed to the noninteracting
counterpart φ � π .

To make our argument more precise, we consider two types
of pulses. One is a half-cycle pulse [Fig. 2(a)], and the other
is a monocycle pulse [Fig. 2(b)]:

Fhalf-cycle(t) = A

τ
s

(
t

τ

)
, (6)

Fmonocycle(t) = A

ατ
s

(
t

ατ

)
− A

(1 − α)τ
s

(
τ − t

(1 − α)τ

)
. (7)

Here A controls the amplitude of the pulse, s(x) (� 0) is a pulse
shape function that has support in 0 � x � 1 with

∫ 1
0 dxs(x) =

1, and α (0 < α < 1) controls the asymmetry of the monocycle
pulse, with α = 1

2 corresponding to the symmetric case [F (τ −
t) = −F (t)]. The dynamical phase (1) is φ = A (φ = 0) for
the half- (mono)cycle pulse.

C. Half-cycle pulse

We first consider the half-cycle pulse (6). The simplest case
is the limit τ → 0, corresponding to a delta-function pulse
[F (t) → Aδ(t)]. In this case, the momentum shift is δ = φ, so
that the order parameter reads

Etot(τ ) = Ekin(0) cos φ − iJ (0) sin φ + Eint(0),
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FIG. 3. (Color online) Phase diagram in the (U,A) plane for the
Hubbard model driven by the half-cycle cosine pulse. The regions
surrounded by solid curves represent the pulse-induced, attractively
interacting phase, while the dashed curves are loci of the shift δ =
(2n + 1)π . The inset shows the phase diagram in the (U,τ ) plane for
A = π .

where Ekin(t), J (t), Eint(t) are the kinetic energy, current, and
interaction energy at time t , respectively. Since J (0) = 0 in
the initial state and φ = A for the half-cycle pulse (6), we can
identify the condition for the repulsion-to-attraction transition,

Ekin(0) cos A + Eint(0) > 0, (8)

which is completely determined by the equilibrium state. The
criterion is quite general, so should be applicable to systems
with any fillings in any dimensions if one puts the origin of
the energy to be the one at T = ±∞. In Fig. 3, we show the
attractively interacting regions by the hashed areas. Attractive
regions appear periodically in the amplitude A of the pulse
as a series of lobes around A � (2n + 1)π (n = 0,1,2, . . .).
Each lobe has the tip at Uc = 2.186, which turns out to
be smaller than the critical U for the Mott transition,16 so
that the transition always occurs in the metallic regime. The
repulsion-to-attraction conversion is obviously distinct from a
heating effect, since it appears and disappears repeatedly as
one increases the amplitude A of the pulse field.

To study how the system evolves in time, we have
numerically solved the model (2) with the nonequilibrium
DMFT.17 As an impurity solver for DMFT, we mainly employ
the continuous-time quantum Monte Carlo method26 with the
weak-coupling expansion generalized to nonequilibrium.27 To
capture the long-time (t � 20) behavior in the very weak-
coupling regime (U � 1.2) we use the iterative perturbation
theory,16,28 which is known to give quite accurate results up to
a long time29 for such small U at half-filling.

In Fig. 4(a) we show how the double occupancy d(t) ≡
〈n↑n↓(t)〉, a measure of the interaction, evolves after the
delta-function pulse in an initially repulsive system (U = 1).
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FIG. 4. (Color online) Time evolution of the double occupancy
(a) and the current (b) after the delta-function-pulse excitation, which
are compared with the interaction quench (U → −U ) with U = 1.
Each arrow indicates the double occupancy in the corresponding
thermal state with the same total energy.

We notice that for A > 0.5π d(t) shoots well beyond the
noninteracting value d = 〈n↑〉〈n↓〉 = 0.25, which implies that
the electrons do indeed start to attract each other after the pulse,
as predicted from the criterion (8). The repulsion-to-attraction
transition is “perfect” for A = π , where the temporal evolution
of d is found to accurately agree with that for the interaction
quench, U → −U [Fig. 4(a)]. For this “π pulse”, the shift of
the momentum just changes the sign of the hopping (εk →
εk+φ = −εk), which is known to be equivalent to interaction
quench.12

Remarkably, after the pulse excitation d(t) relaxes quickly
to a steady state (t � 3). We have confirmed that it converges
to the thermal value dth [indicated by arrows in Fig. 4(a)]
for the equilibrium state having the same Etot. For A > 0.5π

the corresponding temperature (Teff) of the thermal state is
negative since Etot > 0. Note that dth is a nonmonotonic
function of temperature, so that d(t) decreases in time for
A = 0.2π .
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FIG. 5. (Color online) Snapshots of the corresponding momen-
tum distribution f (k,t)30 (black curves) at t = 0,0.8,1.6, . . . ,16 are
shown for A = 0.8π (a) and A = π (b). They converge to thermal dis-
tributions with Teff = −0.725 and Teff = −0.446 (thick red curves),
respectively. Dashed curves represent the initial distributions. The
horizontal arrows indicate the pulse-induced phase shift δ = φ = A.

On the other hand, the current J (t) [Fig. 4(b)] generated by
the momentum shift k → k + φ decays more slowly (t � 15)
for 0 < A < π than d(t). The slow relaxation is also seen in the
momentum distributions f (k,t)30 [Fig. 5(a) for A = 0.8π and
(b) for A = π ]. A similar separation of the relaxation times of
d(t) and f (k,t) has been observed in the interaction quench,6

and was attributed to the existence of a “prethermalized” state.5

Here the slow decay becomes particularly evident when the
momentum shift is not perfect (i.e., A �= π ). In this case the
system needs to adjust the momentum shift to π to achieve
a thermal state. Since the relaxation involves a violation
of the momentum conservation by Umklapp scattering, it
takes longer than the relaxation of the double occupancy via
particle-hole annihilations. The distributions eventually relax
to thermal states with Teff < 0 [red curves in Fig. 5(a) and 5(b)].

So far we have examined the delta-function pulse (τ → 0).
To be more realistic it is important to evaluate the effect of τ

on the transition. Here we take, as an example, a half-cycle
pulse with

s(x) = 1 − cos(2πx), (9)

which we call the “cosine pulse”. We can again use Etot(τ ) as an
indicator for the interaction conversion. In the inset of Fig. 3,

cosine2
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sine
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rectangular
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0.0
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0.3
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E
to

t
τ

FIG. 6. (Color online) The total energies at t = τ for the system
with U = 1 driven by monocycle pulses with A = π , τ = 40 plotted
for various pulse shapes as a function of the asymmetry parameter α.

we show how the critical interaction (Uc) of the repulsion-
to-attraction transition induced by the cosine pulse with A =
π depends on τ . For τ � 10, Uc(τ ) rapidly falls off from
Uc(τ = 0), while for larger τ it decays to zero very slowly. In
the adiabatic limit (τ → ∞) Etot(τ ) → Etot(0) < 0 for U > 0
and the repulsion-to-attraction transition naturally disappears.

For general A and non-zero τ of the cosine pulse, Fig. 3
depicts the phase diagram for the pulse-driven Hubbard model.
The attractive regions now deform in a characteristic manner,
i.e., the tips of the lobes bend toward larger A, which becomes
drastic for τ = 40. The deformation of the phase diagram
implies a rather counterintuitive fact: for τ = 40 and U ∼ 0.9
the repulsion-to-attraction conversion occurs even for a trivial
phase φ = A = 2π . This suggests that the effective phase
shift δ that the correlated system acquires is not equal to φ

for nonzero τ . Using the extremal points of the total energy
satisfying ∂Etot(τ )/∂A = 0 (dashed curves in Fig. 3) as an
estimate for δ = (2n + 1)π , we can see the large deviations
of δ from φ = A = (2n + 1)π as U and τ grow. We attribute
this to a correlation effect: During irradiation with the pulse
the electrons scatter with each other, which causes broadening
of the momentum distribution. Consequently the shift in the
momentum is suppressed, and δ becomes smaller than φ.

D. Monocycle pulse

The result that δ �= φ suggests an experimentally much
simpler way to induce the repulsion-to-attraction transition
(δ � π ) by monocycle pulses (7) with φ = 0. The basic idea
is the following: since the effect of a half-cycle pulse very
much depends on its width, we can suitably choose the widths
of the first and second half cycles of a monocycle pulse so that
the total phase shift is �π . In Fig. 6, we plot the total energy
at t = τ for various types of pulse shapes. The shape function
of each pulse is defined by

s(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2
3 [1 − cos(2πx)]2 cosine2 pulse,
π
2 sin(πx) sine pulse,
4
π

√
1 − (2x − 1)2 semicircular pulse,

1 rectangular pulse,
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for 0 � x � 1. s(x) of the cosine pulse is defined as before
[Eq. (9)]. From the above argument, the asymmetry, here
represented by α, should be important, and we can indeed
see that Etot(τ ) becomes positive (implying a repulsion-to-
attraction transition) as soon as we go sufficiently away from
the symmetric pulse form (α = 1

2 ). To be more precise, the
momentum shift induced by the first half-cycle does not cancel
the one induced by the second half-cycle when the monopulse
is sufficiently asymmetric. Note that the cosine2 pulse gives
Etot(τ ) > 0 even at α = 1

2 , although its value is very small.
There is a slight difference in Etot(τ ) for the cases with α < 1

2
(i.e., the sharp pulse comes first, followed by the broad one) and
α > 1

2 , implying that the former is more suitable than the latter
to induce the attractive interaction. The order parameter Etot(τ )
also depends on the shape of the pulse. In the case of U = 1
and τ = 40, the larger the peak amplitude [s( 1

2 ) = 8
3 ,2, π

2 , 4
π
,1

for the cosine2, cosine, sine, semicircular, rectangular pulse,
respectively], the larger the Etot(τ ) around α = 1

2 . For even
shaper pulse shapes (cosine3, ...), Etot(τ ) at α = 1

2 starts to
decrease, so that the cosine2 pulse is an optimal shape in this
case.

IV. DISCUSSION AND OUTLOOK

Finally, let us discuss the experimental feasibility of
the pulse-induced repulsion-to-attraction transition proposed
here. Asymmetric monocycle pulses with qualitative features
comparable to the shapes considered here can be generated

experimentally.31 One way to detect the negative-T state is to
measure the time-resolved dc or optical conductivity, which
will become negative after the pulse irradiation due to energy
gain. Another possibility is to measure momentum-resolved
photoemission spectra, which can detect the shift in the
momentum distribution [Fig. 5(a) and 5(b)]. We require the
time resolution of the measurement to be fine enough that it
can detect the population-inverted state before it relaxes to a
more stable state through energy dissipation. The dissipation
typically occurs due to phonons whose time scale is of
the order of 0.1–1 ps,32 which allows one to access the
negative-T state using current ultrafast laser techniques with
a resolution ∼10 fs.14 Materials that have a metallic band
at the Fermi energy, well separated from the other bands,
are suitable candidates because of the absence of interband
transitions that destabilize the population-inverted state. As an
example, transparent conductors (e.g., Sn-doped In2O3

33) and
alkali-metal-loaded zeolites34 such as sodalite35 are materials
that exhibit this kind of band structure.
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