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Renormalization-group potential for quantum Hall effects
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The phenomenological analysis of fully spin-polarized quantum Hall systems, based on holomorphic modular
symmetries of the renormalization group (RG) flow, is generalized to more complicated situations where the spin
or other “flavors” of charge carriers are relevant, and where the symmetry is different. We make the simplest
possible ansatz for a family of RG potentials that can interpolate between these symmetries. It is parametrized
by a single number a and we show that this suffices to account for almost all scaling data obtained to date. The
potential is always symmetric under the main congruence group at level two, and when a takes certain values,
this symmetry is enhanced to one of the maximal subgroups of the modular group. We compute the covariant
RG β function, which is a holomorphic vector field derived from the potential, and compare the geometry of this
gradient flow with available temperature driven scaling data. The value of a is determined from experiment by
finding the location of a quantum critical point, i.e., an unstable zero of the β function given by a saddle point of
the RG potential. The data are consistent with a ∈ R, which together with the symmetry leads to a generalized
semicircle law.
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I. INTRODUCTION

The low-energy physics that emerges at large scales from
strongly interacting electrons in a background magnetic field
and confined to two dirty dimensions, i.e., the quantum Hall
effect (QHE), is not accessible by the conventional perturbative
expansion of the local microscopic theory. Similar problems
arise in high-energy physics, where self-interacting gauge
bosons give rise to an insoluble set of highly nonlinear
differential equations. One of the earliest and most successful
methods developed to circumvent this problem used to be
called “phenomenological,”1 a precursor of what today is
called effective field theory (which includes all quantum
field theories in need of an ultraviolet cutoff). The essence
of this idea is to use some of the global properties of the
theory—in the case of chiral models (i.e., low-energy QCD
and current algebra) the geometry of the global symmetries
that are observed in the hadronic spectrum. These are always
approximate and may be broken in some phases, giving rise
to pseudo-Goldstone bosons (the pions) rather than massless
bosons.

The “phenomenological” approach to the QHE is similar
in spirit, since it exploits emergent symmetries to harness the
phenomenology of the system, but the symmetries are very
different. Since these are found to be infinite, discrete, non-
Abelian and holomorphic, a new set of mathematical tools is
required as well as a profoundly geometric understanding of
the renormalization group (RG) that we now describe.

A. Renormalization

An RG flow is a vector field on the space of those
parameters that are relevant at the chosen energy scale.
The QHE is parametrized by the conductivity tensor σ ij , or
equivalently its inverse, the resistivity tensor ρij = (σ−1)ij .
These transport tensors are nontrivial because the background
magnetic field breaks parity (time-reversal) invariance, whence
the off-diagonal Hall coefficient is permitted by the generalized
Onsager relation. A conventional Hall bar exhibiting fractional

plateaux is usually a high-mobility (μ ∼ 103–106 cm2/Vs)
low-density (n ∼ 109–1011 cm−2) GaAs/AlGaAs heterostruc-
ture that confines all charge transport to a single isotropic layer
of size Lx × Ly , aligned with a current I in the x direction
so that R∗x = (L∗/Ly)ρ∗x . The Hall resistance RH = ρH =
ρyx = −ρxy is quantized in the fundamental unit of resistance,
h/e2 = 25.812807557(18) k�, while the dissipative resistance
RD = ρxx/� is rescaled by the aspect ratio � = Ly/Lx .

We choose to label the low-energy parameter space by
the complexified resistivity ρ = ρxy + iρxx = −ρH + iρD ,
or equivalently by the complexified conductivity σ = σxy +
iσ xx = σH + iσD . These complex coordinates take values in
the upper half of the complex plane, H(σ ) = {σ ∈ C|�σ =
σD > 0}, because the dissipative conductivity (resistivity) is
positive. The reason for not including the real line in our
definition of the parameter space will soon become clear.

The tangent vectors β1 and β2 to the RG flow on the two
dimensional space of conductivities are the physical (Gellman-
Low) β functions, which measure how fast the parameters
(couplings) renormalize when the scale parameter � changes:

β1 = dσH

dt
, β2 = dσD

dt
, t = ln(�/�0).

Very little can be said, in general, about the properties of
RG flows, except that the topology of the flow is determined
by the fixed points. The flow ends at infrared (IR) stable fixed
points (⊕), which in the quantum Hall case are the plateaux
observed at rational values σ⊕ = σH ∈ Q of the complexified
conductivity. This set P ⊂ Q of IR fixed points are therefore
the only real values that should be included in the physical
parameter space, H⊕ = H ∪ P . Furthermore, physical (con-
travariant) β functions have simple zeros at quantum critical
points σ⊗ ∈ H⊕ for the localization-delocalization transition.
Every member of this set E ⊂ H⊕ of critical points must be
a proper saddle point of the flow, i.e., there should be both
attractive and repulsive directions.

In Ref. 2, it was proposed that a lot more can be said
about RG flows in the QHE. Careful examination of the fixed
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point structure (i.e., the set P ∪ E of stable and semistable
fixed points) probed by scaling experiments reveal that there
appear to be emergent symmetry groups � acting on the
parameter space by fractional linear transformations γ (σ ) =
(aσ + b)/(cσ + d). The group elements γ ∈ � are given by
integers a, b, c, and d satisfying det γ = det(a,b; c,d) = ad −
bc = 1, and some additional constraints that distinguishes
the different sub-groups of the full modular group PSL(2,Z).
These so-called modular symmetries can be used to constrain
the RG flow, rendering them essentially unique in maximally
symmetric cases.

In the absence of a rigorous derivation of the emergent
symmetry � from indisputable microphysics, we have no other
guide than experiment to aid us in the identification of �.
The full modular group is the simplest conceivable emergent
symmetry, but it is not of direct physical interest because it
does not agree with data, as we shall discuss at length below. It
is, however, the starting point for the mathematical discussion
of these symmetries. Our presentation mirrors the conventional
one found in mathematics, which systematically develops the
theory of modular transformations from the group theory of
PSL(2,Z) and its subgroups. This may seem unnatural from
a physics point of view, since PSL(2,Z) is not a physical
symmetry, but appears to be the only way to obtain a clear
picture of these symmetries and how they are related. This
is crucial in our work, since we are looking for a framework
that interpolates between the different effective theories that
are relevant for systems with different low-energy degrees of
freedom.

B. Modular symmetry

This type of symmetry is not without precedent in con-
densed matter physics. Kramers-Wannier duality is a discrete
Z2-symmetry DKW that acts on the parameter space of the
classical Ising model. It swaps the high-temperature phase
with the low-temperature phase, which means that it is its
own inverse, DKW = D−1

KW or D2
KW = 1. This is the prototype

of the duality transformation that makes modular symmetries
interesting.

The first and most important observation2 is that any
�-symmetry partitions the parameter space into universality
classes, with each phase “attached” to a unique (plateau) fixed
point ⊕ on the real line. This follows from the mathematical
fact that compactifying the topology of the space on which
a modular group acts gives precisely the physical parameter
space H⊕. Hall quantization is therefore an automatic and
unavoidable consequence of modular symmetry. This is the
first example of a remarkable confluence of quantum Hall
physics and modular mathematics.

These quantum symmetries only emerge at temperatures
that are so low, compared to the scale of the effective
low-energy modes of the quantum condensate, that thermal
fluctuations are swamped by quantum fluctuations. So, un-
like space-time or gauge symmetries, these global discrete
parameter space symmetries are not exact, and we need to
know how approximate they are. The appropriate theoretical
framework for addressing this question is effective field
theory (EFT), which is a systematic expansion in the inverse
mass scale that separates the microscopic physics (here
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FIG. 1. (Color online) Two experimental tests of the universal
data encoded in a modular symmetry. (a) Measurements of 	ρH =
ρH (GaAs/GaAlAs) − ρH (Graphene) for the second Hall plateau
ρ⊕ = ρH = 1/2 [h/e2] has verified universality at the per trillion
level (adapted from Ref. 3). (b) The location of the 3 ⊗ 4 quantum
critical point, predicted by modular symmetry to be at ρ⊗ = (7 +
i)/25 [h/e2] (the relevant part of the modular phase diagram is shown
in the inset),2 has been verified experimentally at the per mille level
(adapted from Ref. 5).

quantum electro-dynamics in a disordered medium in a strong
background field) from the large scale physics being probed
by transport experiments. It is presumably the leading term
in this expansion that is � invariant. Higher-order terms may
break the symmetry, but are suppressed by inverse powers of
the mass gap. If � were exact, the locations of all fixed points
would be given by rational numbers, so the proximity of the
experimental values to the predicted rational values is a very
sensitive test of the symmetry. Two experiments of this type
are shown in Fig. 1.

Figure 1(a) shows that universality, which is the key concept
powering the RG approach to EFT, has been verified in
the QHE to an unprecedented accuracy.3 Any nonuniversal
contribution to the plateau value was found to be less than a
few parts per trillion. This is the reason that the QHE will
be used as one of the corner stones in the new SI system of
metrology under construction. These experiments have also
found that the plateaux values are rational at the per billion
level.

If we interpret this as experimental evidence for a modular
symmetry, then other consequences of modular symmetries
should also be very accurate and provide further tests of the
modular model. For example, the fixed point set of each �

cannot be manipulated: all the plateaux and quantum critical
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points following from � must be included.2 As soon as one
quantum critical point is pinned down the location of all the
others is fixed by the symmetry. In maximally symmetric cases,
which includes the spin polarized system, there is no freedom
at all: the exact location of all fixed points follow directly from
the symmetry. Only recently have scaling experiments probed
sufficiently low temperatures for this idea to be properly tested,
even in the simplest case of the fully spin-polarized QHE.4

Figure 1(b) compares an experiment5 determining the
location of the quantum critical point in the delocalization
transition between the the third and fourth Hall plateaux
(3 ⊗ρ 4 in our notation), with the location predicted by the
emergent modular symmetry identified two decades ago.2,4

With the lowest temperatures around 10 mK we expect that
any modular symmetry is fully emerged and controlling all
universal aspects of transport activity. The agreement at the
per mille level inspires further confidence in the modular idea.
Observe that the only trace that appears slightly displaced from
the theoretical value ρ⊗ is obtained at the highest temperature
(≈0.5 K), and that it exhibits a very poorly articulated Hall
quantization. This suggests that the system is not deeply into
the quantum domain when the temperature exceeds a few
hundred milli-Kelvin, and therefore is in a regime where the
modular symmetry is expected to fail. It is therefore rather
surprising how accurate it still appears to be. Given a proper
understanding of the separation of scales in this system, it
would be possible to estimate how accurate the EFT is, and
therefore to quantify how approximate the symmetry is as a
function of scale.

C. Modular RG flow

Since the actions of the renormalization and the modular
groups must be consistent, �-symmetry forces the RG flow into
a straight jacket.2,6 Not only are the RG fixed points, including
the quantum critical (saddle) points, mapped into each other, so
are the β functions. This means that the flow rates everywhere
in one phase are mapped into the flow rates in any other phase,
and the flows observed experimentally in the spin-polarized
QHE appear to satisfy this prediction as well.4 In particular, it
follows that the critical exponents λ±, which are the (inverse)
flow rates in the principal directions near a critical point,
are “superuniversal”: they are always the same, independent
of which quantum phase transition is considered.2,6 This
is consistent with measurements of the relevant exponent
(λ+ > 0) for different Hall transitions7 as well as numerical
“experiments.”8 The irrelevant exponent (λ− < 0) appears to
be all but impossible to measure, but numerical work reveals
the striking possibility that λ− = −λ+.9

This is evidence of an analytic structure that has been used
to identify the exact geometry of the RG flow.6,10 We can
combine the two real β functions into one complex function
βσ = β1 + iβ2, but this β function can not be holomorphic
since holomorphic (complex analytic) functions do not have
proper saddles, as required by physics. This is seen by
expanding a holomorphic function near a (simple) vanishing
point z0. There is only one real eigenvalue λ = λ+ = λ−,
which cannot vanish since z0 would then not be a simple zero.
Consequently, z0 can be a source (λ > 0) or a sink (λ < 0) for
the flow, but not a saddle point.6

In another example of the convergence of quantum Hall
physics and modular mathematics, this is not an additional
constraint, since holomorphic modular contravariant (physi-
cal) vector fields do not exist at all. This follows from the
observation6 that βσ transforms as a contravariant vector field
when σ → σ ′ = γ (σ ) under a modular transformation γ ∈ �:

βσ ′ =
(

dσ ′

dσ

)
βσ = (cσ + d)−2βσ ,

where the modularity constraint ad − bc = 1 has been used. A
nonsingular holomorphic function that transforms like this is
called a modular form of weight w = −2, and the most basic
fact of modular mathematics is that no form with negative
weight exists. In other words, physics and mathematics are in
agreement that such functions should not exist.

The spectrum of holomorphic modular forms is very
sensitive to the choice of symmetry group �. If we want the
form to be covariant under the full modular group PSL(2,Z),
then the lowest possible weight is w = 4. For the subgroups,
found to be of relevance to the QHE the lowest weight is
w = 2. Since the covariant β function has this weight,

βσ ′ =
(

dσ

dσ ′

)
βσ = (cσ + d)+2βσ ,

βσ can be both modular and holomorphic.6 The combination
of these constraints gives an extremely rigid structure to the
EFT without which we would have no hope of proceeding
along this path. Real modular functions exist, but are all but
impossible to work with.

If the EFT does have a complex structure respected by an
emergent modular symmetry, then we are in unprecedented
circumstances that allow the exact determination of global
properties of the RG flow. There are two independent argu-
ments favoring this, one experimental and one theoretical.

D. Holomorphic RG flow

Observe first that a physical parameter space should be
an ordinary Riemannian manifold with metric G, which in
our context must also be � symmetric, i.e., a real modular
form of weight (w,w) = (2,2). The natural geometry of H⊕ is
hyperbolic and the canonical metric is the Poincaré metric.
This is the Kähler metric with components GH = GH =
∂σ ∂σK = 1/σ 2

D , where K = ln(σD|f (σ )|2) is a �-invariant
Kähler potential and f is, up to a phase (“multiplier system”),
a holomorphic modular form of appropriate weight (w = 1/2).
K is a physically reasonable potential, in the sense described
in this section, if f is the Dedekind η function, but we do
not need detailed knowledge of the metric here. Since we are
assuming that a nonsingular EFT exists for finite values of
σ , this metric is nonsingular at critical points and therefore
invertible, and we have

βphys = βσ = Gσσβσ . (1)

For finite values of σ , we can therefore quarantine nonholo-
morphicity of the physical β function to the metric. So-called
“holomorphic anomalies” may appear at singular values of σ ,
but they will not concern us here. If βσ is holomorphic the
pseudoexperimental fact that λ− = −λ+ follows from Eq. (1),
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no matter what nonsingular value the physical metric takes at
the critical points.

A second argument in favor of a holomorphic βσ follows
from our expectation6 that this vector field is a gradient flow.
This means that

βσ = −∂σ
 , (2)

where ∂σ = ∂/∂σ and the RG potential 
 ∈ R is a kind of
“vacuum entropy” that counts the number of (effectively)
massless degrees of freedom at critical points.

The existence of these potentials has been proven for two-
dimensional unitary quantum field theories11 where they are
known as “C functions.” Quantum Hall dynamics is essentially
two-dimensional since the phase space of incompressible
quantum fluids is effectively two-dimensional (the spatial
coordinates are canonically conjugate, as in Onsager’s vortex
dynamics). Furthermore, a similar result is expected to hold in
any dimension, so we may reasonably expect that the theorem
applies.

This so-called “C theorem” guarantees that an RG potential
exists that smoothly interpolates between conformal fixed
points, which are critical points of the potential, and that the
physical β function is obtained from the gradient vector field
generated by this potential using a metric on parameter space
that will not concern us here. Suffice it say that it can be
calculated directly from the EFT, if this is known. Since it is
smooth and positive definite it does not affect the topology of
the RG flow, only the absolute values of the flow rates. By
construction this β function is completely normal: it vanishes
at critical points (where the tangents of the potential are flat),
and the critical exponents are given by the principal curvatures
of the potential at these saddle points.

While Zamolodchikov’s proof is quite explicit, computation
of his RG potential requires access to various correlations
functions, i.e., essentially the full effective action. Since this is
not available for the QHE a more oblique approach is needed.
This is provided by Friedan’s proof of the C theorem,12 which
uses only general properties of spectral functions. This proof
shows explicitly that the C function counts degrees of freedom,
at least near the critical points where it equals the central charge
of the conformal (scale-invariant) field theory. We recall some
elementary properties of the spectral form. In two dimensions,
symmetries of space time reduce the spectral function ρ to a
single scalar function, which by causality (unitarity) is positive
definite. This function measures the density of degrees of
freedom in the given theory, with poles at single-particle states
and cuts at the continuum, which sum to unity. If the theory
is changed so that a new set of low-energy states become
relevant, then this theory has a different spectral function.
We can imagine that these two theories belong to a single,
one-parameter family of effective actions by a suitable choice
of basis (lagrangian parameters or coupling constants), giving
a family of spectral functions ρa ∈ R (a ∈ R) that interpolates
smoothly between the two theories. The corresponding family
of RG potentials 
a is obtained by integrating the spectral
function. Friedan’s dissection of this potential shows that it
must be a positive real function, and the C theorem shows
that the RG flow must be a gradient flow, i.e., “downhill.” As
long as the effective theory is well behaved this should be
true in any dimension since it avoids limit cycles and other

pathologies of the flow. The existence of these potentials
is a very useful simplification, since it lifts the geometric
analysis of renormalization from vector to scalar fields, and
RG potentials will therefore be the starting point for our
generalized analysis presented below.

To this reasonable list of properties we add that the
RG potential should be “holomorphically factorized,” which
means that


(σ,σ ) = ln |ϕ|2 = ln ϕ(σ ) + ln ϕ(σ ) . (3)

It is really the partition function Z(σ,σ ) = |ζ |2 = ζ (σ )ζ (σ )
that factorizes into a holomorphic and antiholomorphic parts,
but the terminology is inherited by the “thermodynamic”
potentials derived from lnZ . The vacuum energy, for example,
is F (σ,σ ) ∝ lnZ(σ,σ ) = ln ζ (σ ) + ln ζ (σ ), and we expect the
“vacuum entropy” 
(σ,σ ) to “factorize” in the same way. This
is automatically the case at quantum critical points (because
of the local conformal symmetry), and it also agrees with the
flows observed in spin-polarized quantum Hall systems where
a holomorphically factorized potential appears to account for
all available scaling data.

It now follows from Eq. (2) that the covariant β func-
tion should be the logarithmic derivative of a holomorphic
potential ϕ:

βσ = −ϕ′(σ )

ϕ(σ )
, βσ = −ϕ′(σ )

ϕ(σ )
. (4)

For a system with modular symmetry, this implies that 
a is a
real-valued modular function that is finite in the finite part of
H, and βσ is a holomorphic weight 2 modular form. A modular
function is not, strictly speaking, a weightless modular form,
since it must have a pole somewhere, but since we are studying
the system at strong coupling it is physically reasonable to
push this singularity to infinity, where the model decouples
and we expect the σ model to be irrelevant. The existence of
these potentials is automatic in modular mathematics, since
weight w = 2 forms actually do derive from holomorphic
potentials, showing again how remarkably well suited modular
mathematics is for the task at hand.

In short, we have argued that a physical RG potential
is given by a holomorphic modular function ϕ(σ ), as in
Eq. (3). While the argument was conceived in the context
of the spin-polarized QHE, as presented here there appears to
be no obstruction, physical or mathematical, to considering
more general situations. It is therefore our purpose to test this
conjecture in the widest available context. In other words,
emboldened by the success in the spin-polarized case, we seek
other situations where the effective theory may be harnessed
by an emergent modular symmetry. The first step is obviously
to consider other quantum Hall experiments, where additional
degrees of freedom are relevant. This includes situations where
spin is not fully polarized, multilayered systems, graphene,
etc., collectively referred to as “multicomponent quantum Hall
systems” in the following. In order to develop the vocabulary
needed to discuss their symmetries, it is advantageous to first
summarize some basic facts about parameter space symme-
tries, modular transformations and RG flow geometry in the
next section. Equipped with the appropriate mathematics, we
then proceed to a detailed symmetry analysis of the observed
phenomenology of some multicomponent systems in Sec. III.
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II. SYMMETRIES AND RG POTENTIALS

Mathematically, the full modular group �(1) = PSL(2,Z)
is the simplest of the modular symmetries, but it does not agree
with the scaling data in quantum Hall systems. It is, however,
the starting point for the conventional mathematical discussion
of these symmetries, reviewed here, which systematically
develops the theory of modular transformations from the group
theory of �(1) and its subgroups. This may seem unnatural
from a physics point of view, since �(1) is not a physical
symmetry, but it gives a clear picture of how these symmetries
are related. This is crucial in our work, since we are looking for
a framework that interpolates between the different effective
theories that are relevant for systems with different low-energy
degrees of freedom.

We are fortunate that modular symmetries, i.e., subgroups
� ⊂ �(1), appear prominently in many branches of mathemat-
ics, and therefore are extremely well studied. Since there are
infinitely many modular subgroups, it is also very fortunate that
scaling experiments severely constrain the physically relevant
symmetries. As already mentioned, � cannot be too large,
but it also cannot be too small, since it then does not have
natural candidates for the quantum critical points of the plateau
transitions. We can therefore confine attention to the most
symmetric situations that yield phenomenologically viable
RG flows, first considered systematically in the context of
quantum phase transitions in Ref. 13. This includes only “level
2” groups, which are the largest subgroups of �(1), as we now
explain.

A. Duality

�(1) = 〈T ,S〉 is generated by translations T (σ ) = σ + 1
and the simplest duality transformation S(σ ) = −1/σ , which
satisfy two (and only two) algebraic constraints: S2 = 1 =
(ST )3. They can be composed to give any integer value of
the matrix elements in γ = (a,b; c,d) ∈ �(1). This symmetry
turns out to be too strong for physical applications, at least the
ones considered here, so we consider the largest subgroups.
They are obtained either by weakening the translation symme-
try to T n(σ ) = σ + n for some integer n > 1, or by relaxing
the duality symmetry, or both.

By a duality D we mean a transformation analogous to
Kramers-Wannier duality, so that acting with D twice we get
back to the starting point (D2 = 1). Conjugating S with any
group element X gives a transformation DX = XSX−1 that
is self-dual because S is (S = S−1). The other constraint,
(ST S)(T ST ) = 1, suggests that R = ST S (the S conjugate
of T ), or equivalently its inverse W = R−1 = T ST , will
figure prominently together with S and T . On the upper half
plane, Rn(σ ) = σ/(1 − nσ ). The main congruence subgroup
at level two is �(2) = 〈T 2,R2〉, which means that the matrix
representation only contains matrices that reduce to the identity
mod 2 (i.e., a,d = 1; b,c = 0 mod 2).

There are four groups of modular symmetries “between”
�(1) and �(2), i.e., subgroups of �(1) containing �(2) as a
subgroup, which are called “level 2” symmetries. The largest
of these (it has index 2 in �(1), see, for example, Ref. 14
for a definition) is �P = �2 = 〈ST ,T S〉. It is too large for
our physical applications since it does not admit a physical

potential. If it did the gradient of this potential would be a
weight w = 2 modular form, and no such form exists for this
group. �(1), which contains this subgroup, is eliminated from
further consideration by the same argument.

If we want to keep all translations generated by T , then the
group is unique: �T = 〈T ,DR〉 = 〈T ,R2〉. This is essentially
(up to outer automorphisms) the spin-polarized quantum Hall
group. Keeping instead the original duality S requires that
we double the translations to T 2, giving the group �S =
〈T 2,S〉. Finally, the last of the groups at this level also has
less translation symmetry, �R = 〈R,DT 〉 = 〈T 2,R〉. These
three maximal symmetries are viable candidates for physical
symmetries because they have physical potentials. We shall
in fact see that these potentials belong to a �(2)-invariant
one-parameter family that interpolates between these points
of enhanced symmetry.

If one of these symmetries emerges at low energy for a given
physical situation, it is most easily recognized by identifying
the parities of the attractors on the real line, i.e., the parities of
the plateaux values ⊕ = p/q. The modular group �(1) does
not distinguish between the parities of the fractions p/q ∈ Q,
so all rational numbers are equivalent under this symmetry.
�(2), on the other hand, respects the parities of both p and
q, so it partitions the rationals into three equivalence classes.
Each of the index 3 groups partition the rationals into two
equivalence classes. With “o” representing odd integers and
“e” representing even integers:

�T = �0(2) = 〈T ,R2〉 : {q ∈ e} ∪ {q ∈ o},
�R = �0(2) = 〈T 2,R〉 : {p ∈ e} ∪ {p ∈ o},
�S = �θ (2) = 〈T 2,S〉 : {pq ∈ e} ∪ {pq ∈ o} ,

where we have included synonymous group names favored by
mathematicians.

A symmetry � identifies points in H, tesselating it with
copies of the fundamental domain F� , which can be chosen to
be any subset of H where distinct points cannot be connected
with transformations in �. The larger the symmetry the smaller
the fundamental region is, and if � has index μ in �(1), thenF�

contains μ copies of F1 = F�(1). Fundamental domains F1 and
F2 for the main congruence groups �(1) = PSL(2,Z) and �(2)
are shown in Fig. 2, and fundamental domains for congruence
subgroups of index μ = 3 are shown in Fig. 3.

The boundary of a fundamental domain may contain
conifold points where the symmetry has “folded” a local
disk into a conical shape. When this occurs, the fundamental
domain is a conifold, i.e., a generalized manifold with conical
singularities that look locally like cones. This happens at points
that are fixed by some group element X, and the deficit angle
of the cone is (1 − 1/n) 2π , where n is the order of the group
element, Xn = 1.

F1 has two such points. Since i = √−1 = ⊗ is fixed by
the order 2 group element S (S2 = 1), the deficit angle is π .
Similarly, since j = exp(2πi/3) = ⊗⊕ is fixed by the order
3 group element ST ((ST )3 = 1), the deficit angle is in
total 4π/3.

We will always choose a fundamental domain that contains
“the point at infinity.” This point i∞, and possibly some of its
real images, are called cusps (�), and by definition modular
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FIG. 2. (Color online) Fundamental domains F1 and F2 for
the main congruence groups �(1) = PSL(2,Z) and �(2), showing
conifold points of order two (⊗ ∈ H) and three (⊗⊕ ∈ H), and the
real cusps (� ∈ R). Not shown is the inequivalent cusp at infinity
(i∞ = �).

forms must not grow too fast near these points. IR stable (⊕)
and UV unstable fixed points (�) of the RG flow are cusps.

The pale critical points shown in Fig. 2 are excluded
from the fundamental domains to avoid double counting:
(a) j + 1 � j = ⊗⊕ since T ∈ �(1) and (b) 2 � 0 = � since
T 2 ∈ �(2). The dashed parts of the boundary are excluded for
the same reason. Consider for example the solid semicircular
boundary arc between 0 and 1 in Fig. 2(b), given paramet-
rically by z(θ ) = [1 + exp(iθ )]/2 with θ ∈ (0,π ). Using the
product of the generators of �(2) this maps to T 2R2(z) =
(2 − 3z)/(1 − 2z) = [3 − exp(−iθ )]/2, which parametrizes
the dashed semicircular arc between 1 and 2. Since z = 1
is the fixed point of T 2R2, the dashed arc is a mirror image of
the solid arc, both originating at this point.

Regions enclosed by dashed and solid lines are images
of the hyperbolic triangle �(i,j,∞). For aesthetic reasons
we have displayed F1 = �(i + 1,j,∞) ∪ �(i + 1,j + 1,∞),
rather than the more conventional choice �(i,j − 1,∞) ∪
�(i,j,∞). F2 is six times as big (12 triangles) as F1

(2 triangles) because �(2) has index μ = 6 in �(1). In the
hyperbolic (Poincaré) metric all triangles have the same area,
but clearly not in the Euclidean metric used in these diagrams.

Similarly, the dashed boundaries and pale critical points
shown in Fig. 3 are excluded from the fundamental domain to
avoid double counting: (a) 2 � 0 = � since T 2 ∈ �R , (b) i +
2 � i = ⊗ since T 2 ∈ �S , and (c) (3 + i)/2 � (1 + i)/2 =
⊗ since T ∈ �T . FR , FS , and FT are three times as big (6
triangles) as F1 because �R , �S and �T have index 3 in �(1).

0 1 2

0

R

a

0 1 2

0

S

b

0 1 2 1 3 2 2

0

2

T

c

FIG. 3. (Color online) Fundamental domain (a) FR for �R (b) FS

for �S (c) FT for �T . Conifold points ⊗ ∈ H and real cusps � are
exhibited, the inequivalent cusp i∞ = � is not.

The subgroups considered here can only have conifold
points of order 2. We shall see that β functions must vanish
at these points, but the converse is not true, i.e., β functions
can vanish at points that are not fixed by the group. Only in
maximally symmetric cases (μ = 3) are RG and � fixed points
the same. We use the icon ⊗ to represent these critical points,
whether they are fixed points of the group or not.

Each symmetry � ⊂ �(1) determines a unique pair of phase
diagrams, depending on whether the cuspoidal fixed point
i∞ � 1/0 = � is attractive or repulsive. If � acts on the
parameter space of a model, the space of conductivities, say,
then this is the repulsive UV fixed point (i∞ = �) around
which a perturbative expansion is usually developed. But if
� is acting on the inverse transport tensor (the resistivity),
then it may be an attractive IR fixed point (i∞ = ⊕). Given
this one bit of information � determines the topology of
the phase diagram. This is particularly easy to see in the
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maximally symmetric cases where � = �X (X = R,S,T ). The
phase diagram is dictated by which phases and which phase
transitions are possible. If i∞ is an attractive (repulsive) fixed
point, then a transition

f = p/q = ⊕ ← ⊗ → ⊕′ = p′/q ′ = f ′ > f

exists for �T if q and q ′ are even (odd) and δ = 2(1), �R if p and
p′ are odd (even) and δ = 1(2), and �S if pq and p′q ′ are even
(odd) and δ = 1(2), where δ = det(f ′; f ) = det(p′,p; q ′,q) =
p′q − pq ′. These “diagnostic rules” follow immediately from
the parity properties of the group, so the symmetry determines,
and is determined by, the fixed point structure.

Since the index 3 symmetry groups �(2) ⊂ �X ⊂ �(1)
(X = R,S,T ) all have physical potentials they are the focus
of our phenomenological analysis. These potentials belong to
a �(2)-invariant one-parameter family constructed next.

B. Analytic structure

We have, so far, concluded that we need to investigate
the existence and uniqueness of meromorphic potentials and
holomorphic vector fields that are automorphic under some
modular symmetry. The structure of a meromorphic function
f (z) is completely determined by the points where it is
not finite, i.e., its zeros and poles. By the order np of a
point zp in H, we mean the leading (lowest) power of the
Laurent expansion at that point, i.e., f (z) ∝ (z − zp)np + · · · .
If np = 0, then f (zp) is finite ( �=0,∞) and zp is a regular point.
If np is positive (and finite), then f (zp) vanishes and zp is a
simple (np = 1) or multiple (np > 1) zero. If np is negative
(and finite), then f (zp) is singular and zp is a simple (np = −1)
or multiple (np < −1) pole. If np = ±∞, the function is not
meromorphic.

For functions that transform with weight w under a modular
group, the order of points on the boundary of the fundamental
domain is not always obvious. Consider first the cusp i∞,
which is the only cusp for �(1). We cannot Laurent expand
f (z) in z − i∞, so by the order n∞ we mean in stead the
leading power of an expansion in a suitable finite local variable.
Because level N subgroups contain T N , modular forms at level
N are periodic with period 2πN , and can therefore be Fourier
expanded in qN = exp(2πiz/N ). The order n∞ is the leading
order in this qN expansion.

For N > 1, there are additional cusps on the real line that
are images of the cusp at infinity. The order nc of a weight w

function f (z) at a cusp zc = γc(i∞) is defined as the leading
order of the qN expansion of (cz + d)−wf [γc(z)]. For example,
at level N = 2 the order n0 of f (z) at the origin 0 = S(i∞)
is the leading power of z−wf (−1/z) expanded in powers of
q2 = exp(iπz).

Cauchy’s theorem can be applied to a meromorphic
function that transforms with weight w under a subgroup
of index μ. By choosing a contour along the edge of F ,
taking care to circumnavigate the cusps and conifold points
counterclockwise and recalling that conifold points contribute
less than a full arc, it follows from Cauchy’s theorem that14

nB + nF = μw

12
, (5)

where nF is the contribution from the finite part of H. nB is the
contribution from special points (that are fixed by elements of

the group) on the boundary of the fundamental domain,

nB =
∑
c∈∂F

nc + n⊗
2

+ n⊗⊕
3

,

where n⊗ is the total order of all conifold points of order 2
and n⊗⊕ is the total order of all conifold points of order 3 [⊗⊕
contributes iff the symmetry is �(1) or �P ]. Any other singular
points p are in the finite part of F , and

nF =
∑
p∈F

np

is the total order of these points. The contribution from nF will
typically be severely constrained, or even eliminated, by the
physical requirements of RG potentials and flows. This sum
rule is very useful since it allows us to classify the possible
analytic behavior of scalar and vector fields (potentials and β

functions), i.e., the fixed points and singularities of effective
field theories with � symmetry.

For the full modular group �(1), the contributions to the
sum rule are

n∞ + n⊗
2

+ n⊗⊕
3

+ nF = w

12
.

Subgroups at level 2 of index 3 have two inequivalent cusps,
one at i∞ and another at either 0 or 1, and one conifold point
of order two. The sum rule is therefore

n∗ + n∞ + n⊗
2

+ nF = w

4
(∗ = 0,1).

For low values of w, this sum rule is quite difficult to satisfy.
For example, since the β function has weight 2 and the cusp
orders and nF are integers, we must have a critical point at ⊗
(i.e., a simple zero contributing n⊗ = 1). Furthermore, since
this function should derive from a physical potential, we are
led to consider the simplest possible analytic structure that sat-
urates the sum rule, (n0,n∞,n⊗,nF ) = (0,0,1,0). Remarkably,
such entire and essentially unique β functions do exist, as we
shall see below.

The only subgroup at level 2 of index 6 is the main
congruence group �(2), which has three inequivalent cusps
at 0, 1 and i∞, but no conifold points. In this case, the sum
rule is

n0 + n1 + n∞ + nF = w

2
,

which is a little easier to satisfy than the index 3 case. For
example, there are now two possible entire β functions, which
either has a simple zero at one of the cusps and no other zeros,
or a simple zero in the finite part of F and no other zeros.

C. A potential family

The modular groups we have been discussing,
�(1),�P ,�R,�S,�T ,�(2), have canonical potentials14 (also
called invariant or automorphic functions):

ϕ1 = (λ2 − λ + 1)3λ−2 (λ − 1)−2,

ϕP = (λ + j )3(λ − j ′)−3, ϕR = λ (λ − 1)−2, (6)

ϕS = λ (λ − 1), ϕT = λ−2(λ − 1), ϕ2 = λ = (θ2/θ3)4,

where

j = e2πi/3, j ′ = −j 2 = eπi/3.
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TABLE I. Analytic structure of some modular functions and forms at level 2. A star (∗) represents a “finite” but uninteresting value of the
appropriate uniformizing variable. βa = iπ (θ4

3 − aθ4
2 ) is “physical” if a �= 0,1,∞, in which case it has a critical point that is on ∂F if a is real.

The last column contains the position of the saddle point of the potential, or equivalently, the location of the simple zero of the β function
derived from this potential. J has a double pole at i∞ and triple zeros at both the conifold points j and j ′ = −j 2, thus saturating the sum rule.
Similarly, ϕP has a triple zero at j and a triple pole at j ′, thus saturating the sum rule.

a w μ μw/12 σ = 0 n0 σ = 1 n1 σ = i∞ n∞ σ = i ni σ = j,j ′ nj,j ′ nB nF ⊗ ∈ F

J 0 1 0 ∞ −1 ∞ −1 ∞ −1 1 0 0 3 0 0
ϕP 0 2 0 1 0 1 0 1 0 −1 0 0, ∞ ±3 0 0
ϕR −1 0 3 0 ∞ −2 0 1 0 1 2 0 −1 0 0 0 1 + i

ϕS 2 0 3 0 0 1 ∞ −2 0 1 −1/4 0 −1 0 0 0 i

ϕT 1/2 0 3 0 0 1 0 1 ∞ −2 −2 0 1 0 0 0 (1 + i)/2
λ 1 0 6 0 1 0 ∞ −1 0 1 1/2 0 −j, j ′ 0 0 0
ϕa a 0 6 0 0 ∞ 0 ∗ ∗ σ⊗(a)
θ 4

2 −∞ 2 6 1 ∗ 0 ∗ 0 0 1 ∗ 0 ∗ 0 1 0
θ4

3 0 2 6 1 ∗ 0 0 1 1 0 ∗ 0 ∗ 0 1 0
θ4

4 1 2 6 1 0 1 ∗ 0 1 0 ∗ 0 ∗ 0 1 0
βa a 2 6 1 (1 − a)∗ 0 a ∗ 0 1 0 ∗ 0 ∗ 0 0 1 σ⊗(a)
βR −1 2 3 1/2 ∗ 0 ∗ 0 1 0 ∗ 0 ∗ 0 1/2 0 1 + i

βS 2 2 3 1/2 ∗ 0 ∗ 0 1 0 0 1 ∗ 0 1/2 0 i

βT 1/2 2 3 1/2 ∗ 0 ∗ 0 1 0 ∗ 0 ∗ 0 1/2 0 (1 + i)/2

The analytic structure of these potentials, together with some
other functions that will make an appearance below, are listed
in Table I.

The �(1)-invariant function ϕ1 is Klein’s famous J

invariant, J = (4/27)ϕ1 . It has been expressed in terms of
the �(2)-invariant function λ, which is the ratio of the Jacobi
θ functions θ2(σ ) = ϑ2(0,q) and θ3(σ ) = ϑ3(0,q). The elliptic
ϑ functions ϑi are most conveniently given by their Fourier
expansions:

ϑ1(u,q) = 2q1/4
∞∑

n=0

(−1)nqn(n+1) sin[(2n + 1)u],

ϑ2(u,q) = 2q1/4
∞∑

n=0

qn(n+1) cos[(2n + 1)u],

ϑ3(u,q) = 1 + 2
∞∑

n=1

qn2
cos(2nu),

ϑ4(u,q) = 1 + 2
∞∑

n=1

(−1)nqn2
cos(2nu).

Since q = exp(πiσ ) = exp(πix) exp(−πy), these sums con-
verge very rapidly for reasonable values of y = �σ and are
therefore well suited for numerical work, especially graphics.

J ∝ ϕ1 and ϕP are too singular to give rise to a modular
form of weight w = 2. There are, in fact, no weight 2 forms at
all with the symmetries of these potentials, so both �(1) and its
largest (index μ = 2) subgroup �P are too large for physical
applications and we need consider them no further.

The index three (μ = 3) subgroups are just barely small
enough to admit weight 2 forms, but only one each, with a
single critical points (simple zero) that is forced to coincide
with a fixed point of the group. An RG flow diagram
with symmetry �R , �S , or �T is therefore extremely rigid,
predicting the exact location of all critical points. The index
six (μ = 6) potentials are more flexible, since there are two

independent ones. They give rise to a two-dimensional space
of weight 2 forms, which we can choose to span with two of
the Jacobi θ functions, say θ4

2 and θ4
3 . Thus it follows from

modular symmetry alone that θ4
4 must be a linear combination

of these, a fact discovered by Jacobi and recorded in his famous
identity θ4

4 = θ4
3 − θ4

2 .
The purpose of all this mathematical machinery should now

becoming clear. Of the six possible potentials at level two, ϕ1
and ϕP are unable to satisfy the physical constraints placed
on their analytic structure. The simplicity and similarity of the
remaining four potentials is striking, and suggests an obvious
way to embed them into a single, one-parameter family of
physical potentials. Consider first the general �(2)-invariant
RG potential 
 = ψ + ψ obtained by a linear superposition
of the maximally symmetric potentials in Eq.(6):

ψ(σ ) = cR ln ϕR + cS ln ϕS + cT ln ϕT , cR,S,T ∈ C.

This family interpolates smoothly between the maximally
symmetric cases, but there are too many parameters for it too be
useful as it stands.13 We can ignore an arbitrary normalization
factor that only affects flow rates, not their shapes, leaving
two (complex) parameters. However, since ϕR , ϕS , and ϕT

are simple rational functions in the fundamental �(2) modular
function λ, the level two symmetric family of quantum Hall RG
potentials reduces to (we choose a convenient parametrization
for a)


a ∝ ln λ(λ − 1)a−1 + c.c. (7)

D. Modular RG flows

From Eq. (4) it immediately follows that the β function

βa,σ = −∂σ
a(σ ) ∝ 1 − aλ

λ − 1

λ′

λ
= iπθ4

3 (1 − aλ) (8)

by construction satisfies all physical requirements, thus prov-
ing the existence of a one-parameter family of physically viable
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FIG. 4. The flow of the vector field βa is �(2) symmetric for any
value of the parameter a ∈ C. When a = −1,1/2,2 the symmetry is
enhanced to an index 3 group, and when a = 0,1,∞ the β function
degenerates to a θ function, which is finite on the interior of the
fundamental domain and therefore has no quantum critical point.

β functions that interpolates between the enhanced symmetries
�R,T ,S . The second equality in Eq. (8), which follows from the
Jacobi identity and the fact that λ′/λ = iπθ4

4 , is particularly
useful for locating the critical point. Since θ functions are finite
on F (see Table I), β can only vanish if λ(σ⊗) = 1/a, which
can be inverted in terms of elliptic integrals of the first kind.
Consequently, the β function has a simple zero at

σ⊗ = λ−1(1/a) = iK ′(1/a)

K(1/a)
mod �(2) , (9)

as it should, and nowhere else (in the fundamental domain), as
it should.

The �(2) symmetry of 
a is enhanced when a takes certain
values (see Fig. 4): to �R when a = aR = −1, to �T when a =
aT = 1/2 and to �S when a = aS = 2. The corresponding β

functions reduce to particularly simple Eisenstein functions:6

βR ∝ λ + 1

λ − 1

λ′

λ
∝ 1 + 24

∞∑
n=0

nqn

1 + qn
,

βS ∝ 2λ − 1

λ − 1

λ′

λ
∝ 1 − 24

∞∑
n=0

(2n + 1)q2n+1

1 + q2n+1
,

βT ∝ λ − 2

λ − 1

λ′

λ
∝ 1 + 24

∞∑
n=0

nq2n

1 + q2n
.

βT has a Fourier expansion in q2 = exp(2πiσ ) because T ∈
�T , while βR and βS are Fourier expanded in q because the
smallest translation in �R and �S is T 2.

When a = 0,1,∞ the β function degenerates to one of the
Jacobi θ functions,

βa=0 ∝ λ′

λ(1 − λ)
= iπθ4

3 , βa=1 ∝ λ′

λ
= iπθ4

4 ,

βa→∞ → iπθ4
2 .

Since these are finite on the interior of the fundamental domain
the would-be quantum critical point has been pushed off the
physical (finite) part of parameter space. The uniqueness of
the interpolating potential 
a in Eq. (7) follows from the
physical requirements we place on the analytic structure of
the β function. We want a simple zero at the delocalization
critical point σ⊗ at a finite value of �σ , and the mildest
possible singularities allowed by modular symmetry. Rankin’s
theorems14 tell us that the weight of βσ can be carried by
the logarithmic derivative ∂σ ln λ = λ′/λ = iπθ4

4 of the level
two invariant λ, and that the remaining weightless factor is
a rational function of that invariant. By inspection of βR , βS

and βT it is clear that a fractional linear form is needed, but
no more in order to avoid nonsimple critical points. In other

words, βσ ∝ F (λ)∂σ ln λ ∝ θ4
4 F (λ) with

F (λ) = Aλ + B

Cλ + D
.

Since the weight 2 form θ4
4 is finite (no zeros or poles) on

H, any nontrivial analytic structure is carried by F . The
modular invariant λ has a simple pole in q on the fundamental
domain F2. This cannot be avoided since the only holomorphic
invariant is a constant. We now use the sum rule Eq. (5) for
modular forms that transform with weight w = 0 or w = 2
under �(2) (μ = 6):

n0 + n1 + n∞ +
∑

p

np = w

2
.

The possible zeros and poles of F (λ) are at λ = −B/A and λ =
−D/C. If the “particle-hole” symmetry β(λ) = β(λ) holds,
then A,B,C,D are restricted to be real and zeros and poles
can only appear along the semicircles where λ is real.15 The
requirement of having no poles except at the boundary H⊕ sets
−D/C = 0, 1, or ∞. Similarly, the requirement of having a
zero onH, sets −B/A �= 0,1,∞. If D/C = −1, there is a pole
in F at σ = 0, so n0(F ) = −1. However, this does not affect
the analytic structure since θ4

4 has a zero at σ = 0, so n0(θ4
4 ) =

1. The pole from F is therefore canceled, n0(βσ ) = 0, and this
type of β function can have the required critical point.

On the other hand, if D/C = 0 there is a pole in F

at σ = i∞, giving n∞(F ) = −1, but since n∞(θ4
4 ) = 0 this

contribution is not canceled, n∞(βσ ) = −1, and there must be
additional zeros to saturate the sum rule for the β function.
Since we only want one simple zero, this is not a viable form
of the β function. Similarly, if D/C = −∞ then n1(F ) = −1,
and since n1(θ4

4 ) = 0, this also requires additional zeros and is
therefore not a viable form for a physical β function.

Since the metallic conductivity point (σ → i∞) should be
a repulsive fixed point, the β function has the form

β ∝ − λ′

λ(1 − λ)
(Aλ/B + 1) = −iπθ4

3 (Aλ/B + 1),

up to an undetermined positive multiplicative constant, which
allows us to rescale A/B = −a, giving Eq. (8). This fixes βσ

to be the gradient of the ansatz potential exhibited in Eq. (7).
When a �= {aR,aT ,aS} = {−1,1/2,2} the flow is only �(2)

symmetric, and the critical point with finite imaginary part
(�σ > 0) is not a fixed point of the group. However, because λ

is real along the boundary of F2,14 p. 228, as long as a ∈ R, the
critical point is still on the semicircular boundary of F2. The
semicircle-law observed in the spin-polarized case, for which
a = aT = 1/2 ∈ R, is therefore an automatic consequence of
modular symmetry, as pointed out in Ref. 15.

Figure 5 shows a sequence of ten distinct RG flows,
obtained for real values of the parameter in the range
a ∈ [−10, + 10], with the choice i∞ = � (if i∞ = ⊕ the
direction of all arrows is reversed). The location of the quantum
critical point ⊗ (and some of its modular reflections) is
computed using Eq. (9), and as expected, they move along
boundaries of fundamental domains for �(2). Thick (blue)
lines are phase boundaries or separatrices.

For increasing values of a < 0, the quantum critical point
⊗ first moves straight down the vertical line �σ = 1 (a =
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FIG. 5. (Color online) �(2)-symmetric flows generated by 
a for
ten values of a ∈ [−10,10] (ε = 0.05). At a = −1,1/2, and 2, the
symmetry is enhanced to �R , �T , and �S . Thick blue lines are phase
boundaries or separatrices.

−10, − 1, − ε = −0.05), until it fuses with the repulsive
point � = 1 as a → 0−, denoted by ⊗⊕ = 1 in the a = 0
diagram. A further increase in a appears to split ⊗⊕ into three
parts (a = ε): a mirror pair of critical points ⊗ that move apart
along semicircles [as described in detail in Sec. II A: 0+ ← ⊗,
T 2R2(⊗) → 2−], leaving behind a new attractive point ⊕ = 1.
This attractor is attached to a new phase injected during the
split, which squeezes out the old phases (a = 1 − ε) as a

increases and eventually engulfs much of the diagram (a = 1).
At a = 1/2 this new phase provides the “real estate” needed to
enhance the translation symmetry from T 2 to T [and the total
symmetry from �(2) to �T ]. When the parameter reaches the
value a = 1 the exact opposite of a split occurs: mirror pairs
of critical points coalesce at ⊗⊕ = 0, and then move straight
up (a = 2, 10), leaving behind a repulsive fixed point � = 0.

Notice how this resolves the enigma of having a discon-
tinuous “jump” in symmetry at a = −1, 1/2, and 2, which at
first sight, seems mysterious and unphysical, especially since
the model acquires an infinite number of new noncommuting
symmetries. However, our discussion of the RG potential 
a ,
which generated the flows shown in Fig. 5, makes it transparent
that this “spontaneous symmetry generation” is no more
mysterious, discontinuous or “spontaneous” than ordinary
“spontaneous symmetry breaking.” The potential changes
continuously and smoothly as a function of a, interpolating
between different (infinite and non-Abelian) symmetries by
switching parts of the potential on or off, thus injecting,
expanding or shrinking phases as needed.13

Some of the diagrams in Fig. 5 are similar to those appearing
in Ref. 45, where a different interpolation between enhanced
symmetries based on “scaling functions” is investigated. We
defer a more detailed comparison to Sec. IV.

III. COMPARISON WITH EXPERIMENT

We wish to confront the proposed RG potential 
a [see
Eq. (7)] with available scaling data. The simplest cases, when
the spin is fully polarized or fully resolved, have previously
been identified as having the enhanced symmetries �T (aT =
1/2) and �R (aR = −1).2,4,10,13 The RG flows generated by

1/2 and 
−1 were found to be in excellent agreement
with available scaling data for both integer and fractional
transitions.17,18

Here, we extend this analysis to more general situations
that allow us to test if the proposed potential does interpolate
between the points of enhanced symmetry considered previ-
ously. Since we shall be discussing both flows in the complex
conductivity parameter σ and resistivity parameter ρ = S(σ ),
when confusion can arise the critical point ⊗ and the parameter
a will be indexed accordingly.

We are not at this time able to derive the value of a

from microphysical considerations. The question we address
here is whether it is possible to parametrize all, or almost
all, scaling data with a single real number a that fixes the
modular RG potential 
a , and therefore the location of all
quantum critical points and the geometry of all RG flow lines.
This “phenomenological” approach, explained at length in
the introduction, is extremely rigid and therefore eminently
falsifiable.
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FIG. 6. (Color online) Temperature driven flow data19 for
(a) the 0 ⊗σ 1 and (b) the 1 ⊗σ 2 transitions in an AlGaAs/GaAs
heterostructure with density n = 2 × 1011 cm−2 and mobility μ =
7.6 × 103 cm2/Vs. The insets show the location of the quantum
critical points in the conductivity phase diagram, compared with the
critical points of the interpolating RG potential 
0.89.

A. Spin split Landau level

Huang et al.19 have studied the conductivity transition
between the first and second Hall levels, which we denote
by 1 ⊗σ 2 and also the 0 ⊗σ 1 transitions, in a semiconductor
sample where the spin degeneracy of Landau levels is small but
resolved. The gap between the two spin flavors is determined
by the ratio of the electron effective mass and effective
g∗ factor in the sample. The sample is a AlGaAs/GaAs
heterostructure with density n = 2 × 1011 cm−2 and mobility
μ = 7.6 × 103 cm2/Vs.

For the 0 ⊗ρ 1 transition, they reported a critical magnetic
field value B× ≈ 14.7 T, a critical value of the diagonal
resistivity ρD(0 ⊗ 1) ≈ 37 k� ≈ 1.43 [h/e2], and that ρH

appears to be independent of B for the lowest temperatures
[see Fig. 6(a)]. However, the crossing point appears to be
moving down with decreasing temperature, and we estimate
that B×(0 ⊗ 1) ≈ 14.6 ± 0.1 T, which gives the critical value
ρ⊗ ≈ 1.007 + 1.439i [h/e2] for the 0 ⊗ρ 1 transition. This
is very close to the value ρ⊗ ≈ 1 + 1.439i [h/e2] obtained
from 
a with aρ ≈ −5.25. The corresponding value for the
conductivity flow parameter is aσ ≈ 0.84, and the phase
diagram is shown as an inset in Fig. 6(a).

For the 1 ⊗ρ 2 transition, they find that the critical magnetic
field value is B× ≈ 5.55 T. This gives a critical point on the
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FIG. 7. (Color online) Temperature-driven flow data for the 1 ⊗ 2
conductivity transition (adapted from Ref. 20), compared with the
theoretical flow generated by the interpolating RG potential 
0.93.
Thick (blue) lines are theoretical phase boundaries. Dashed blue lines
are separatrices.

semicircle shown in the inset in Fig. 6(b), which is almost
identical to the critical point of 
0.84 also shown in the same
diagram.

These results appear to show that there is a �(2) symmetry
emerging in this sample, with an RG potential 
0.84 whose
critical points are close to the observed values for the
0 ⊗σ 1 ⊗σ 2 transitions. Using the same sample as in the
experiment described above,19 Huang et al.20 have studied
the temperature scaling in more detail. The experiment probed
temperature driven RG flows, with temperatures sampled at
T = 0.94,0.68,0.49,0.31 K, and their data are reproduced in
Figs. 7 and 8 (adapted from Ref. 20).
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FIG. 8. (Color online) Temperature-driven flow data for the 0 ⊗ 1
conductivity transition (adapted from Ref. 20), compared with the
theoretical flow generated by the interpolating RG potential 
0.89.
Thick (blue) lines are theoretical phase boundaries. Dashed (blue)
lines are separatrices.
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The semicircular geometry of the flows strongly suggests
that the flow is following the separatrix connecting the plateaux
at σ⊕ = 1 and σ⊕ = 2, if we allow for a systematic error that
shifts σD up by 0.17 e2/h, in which case a real value of the
parameter a will suffice. This value is most easily determined
by finding the location of the quantum critical point σ⊗, and
comparing this with the best fit to 
a . If σ⊗ were known
exactly, we could simply compute the value of a using Eq. (9),
i.e., a = 1/λ(σ⊗). However, with the substantial uncertainties
in currently available data it is often better to make a global
comparison of all the scaling data, not just those near the
critical point, in order to find a reasonable value for a giving a
good overall fit.

For the 1 ⊗σ 2 transition, we find that a = 0.93 ± 0.01
gives a good fit to the data, as shown in Fig. 7 where the flow
generated by 
0.93 has been superimposed on the data from
Ref. 20. Notice that there is a cluster of data that is almost
stationary, and therefore should be very close to an RG fixed
point. This is indeed the case, as the global data fit gives a
quantum critical point ⊗ that almost totally eclipses this data
series.

For the 0 ⊗σ 1 transition, we find that a = 0.89 ± 0.04
gives a reasonable fit, as shown in Fig. 8 where the flow
generated by 
0.89 has been superimposed on the data from
Ref. 20. Notice that there is also in this case a cluster of data
that is more or less stationary, albeit not as convincingly as in
the previous diagram. These data points are indeed quite close
to the candidate critical point ⊗ identified from the rest of the
flow data, as expected if the global fit is reasonable.

In both diagrams, the thin solid (red) flow lines have
been chosen to illustrate that the data are consistent with
the potential. In Fig. 7, the fit is essentially perfect, even
with the small error bars we have estimated (since none
were published). Comparing these results with Fig. 6, there
appears to be a �(2) symmetry emerging in this sample, with
an RG potential 
a consistent across several quantum Hall
transitions. The small dispersion in a values is not surprising
given the precision of these experiments. Since we estimate
that B×(1 ⊗ 2) ≈ 5.54 ± .05 T, the uncertainty in aσ is ±0.1
in both transitions.

In addition to the the flows presented here, the transition
2 ⊗ρ 4 was also investigated in Ref. 20. They found a crit-
ical point at ρ⊗ = (7.75,3.54) ± 0.05 k� ≈ (0.300,0.137) ±
0.002 [h/e2], which corresponds to aρ = −1.76. The authors
remark that the plateau in ρD is not well developed, and note
that if we assume that the true value is ρD = 1/10 [h/e2], then
ρH = 3/10 [h/e2] (so ρ⊗ = (3 + i)/10 [h/e2]) corresponds
exactly to the parameter value aρ = −1, i.e., the enhanced
symmetry �R for the usual spin unresolved quantum Hall
effect, which is often observed at higher Landau levels.

B. Zeeman splitting

Hang et al.21 have studied the effect of Zeeman splitting in
the integer quantum Hall effect (IQHE) transitions in three
different samples (called A, B, and C) with various spin
degeneracies in the Landau spectrum. Sample A is the same
sample as in Refs. 19 and 20, analyzed in the previous section.
Sample B is a GaAs system with InAs dots, but neither the
mobility nor the density have been reported. Sample C is a
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FIG. 9. (Color online) Critical points for the transitions studied in
the samples A, B, and C discussed in the text, are in rough agreement
with the generalized semicircle law (data adapted from Ref. 21 Fig. 3).
In order to make a global comparison, some of the data have been
rescaled and translated to the proximity of the exhibited semicircle.
The margin of error is indicated by black crosses.

SiGe hole system with mobility μ = 1.69 × 104 cm2/Vs and
density n ≈ 2.2 × 1011 cm−2. Their data are reproduced in
Fig. 9. While the data are less than ideal, they do appear to
provide some evidence for a generalized semicircle law, which
asserts that all quantum critical points should appear on the
boundary of F . This is an automatic property of 
a flows if a

is real.
Only the plateau at ρ⊕ ≈ 2 is properly developed, while

the second visible plateau at ρH
⊕ ≈ 1 does not have a fully

developed zero of ρD , indicating that the scaling regime has not
been reached. Accordingly, the transitions deviate somewhat
from the expected semicircles, although they do appear to
indicate the common trend, with two transitions above and two
under the semicircle. The critical points are on the semicircles
to a reasonable accuracy, within a couple of the rather large
standard deviations in these experiments.

Their conductivity data allows us to compare the location
of the critical points in the transitions 0 ⊗ρ 1 ⊗ρ 2 for
sample A, giving 0 ⊗ρ 1 ≈ (0.31,0.44) ± 0.01 and 1 ⊗ρ 2 ≈
(0.75,0.47) ± 0.01. These correspond fairly well to the value
aσ = 0.895 ± 0.025, in agreement with the estimates aσ ≈
0.93 ± 0.01 and aσ = 0.84 ± 0.1 obtained for this sample in
the previous section.

The critical points for the other samples are also approxi-
mately on the semicircle. For sample C, our estimates for the
value of a are different for the 1 ⊗ 2 and 2 ⊗ 3 transitions, but
this is to be expected since the spin configuration drastically
lowers the the splitting between higher Landau levels (see
Ref. 21, Fig. 1). The 2 ⊗ 3 transition therefore only enjoys
a �(2) symmetry, whereas the well resolved transition 1 ⊗ 2
obeys the full �T symmetry.

For sample B, similar remarks apply, but in this case the
0 ⊗ 1 transition reflects the spin-split symmetry �T , while
the 1 ⊗ 2 transition reflects the spin-unresolved symmetry �R

(compare Ref. 21, Fig. 1). As the best fit to the data we find
aσ ≈ 0.52 ± 0.4 for the 0 ⊗ 1 transition. From the 1 ⊗ 2 data,
we extract aσ ≈ −0.94 ≈ −0.94 + 0.46i. This means that the
flow is very close to the aσ = −1 flow near the semicircle, and
that the complex part of aσ only displaces the critical point
and the flow slightly from the center of the semicircle.

We interpret these experiments as providing supporting
evidence for the generalized semicircle law. For sample A, suf-
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ficient data are available for us to extract aσ = 0.895 ± 0.025
from the location of the critical points, and this is consistent
with aσ ≈ 0.93 ± 0.01 and aσ = 0.84 ± 0.1, obtained in the
previous section from the data in Refs. 19 and 20.

C. Overlapping spin subbands

Murzin et al.22 have studied a quantum Hall system in which
the spin splitting is small enough for spin split Landau levels to
overlap substantially. Their three samples (labelled S34, S40,
and S50) are heavily Si-doped GaAs layers with mobilities
μ ≈ (2.0–2.4) × 103 cm2/Vs and densities n = 3.9,4.6,5.0 ×
1011 cm2. They estimate the Zeeman splitting to be of the order
of 4 K, whereas the level broadening is much larger, of the
order of 100 K.

Data obtained above a few hundred milli-Kelvin are not
expected to be in the scaling domain, so we disregard the
high-temperature data (which start at T ≈ 12 K). The situation
is quite similar to the original experiment where scaling was
first observed in the QHE,23 and where this procedure was
justified, but it has only recently been pointed out that scaling
data exhibit a hypersensitivity to temperature that still does not
receive sufficient attention.4

The low-temperature data (down to T = 0.1K) are repro-
duced in Fig. 10 (adapted from Ref. 22), and compared to
the flow generated by 
a with a = 0.18 ± 0.01. Since the
experimental errors (which are not reported) must be at least
as large as the plot markers used in Ref. 22, Fig. 2, there is no
discrepancy between the data and the theoretical flow.

The theoretical critical points 0 ⊗σ 1 ≈ 0.66 + 0.47i

and 1 ⊗σ 2 ≈ 1.34 + 0.47i are reasonably close to the
corresponding experimental values σ0⊗1 = (0.5 ± 0.05,0.5 ±
0.02) [e2/h] and σ1⊗2 = (1.5 ± 0.05,0.5 ± 0.02) [e2/h],
based on a linear extrapolation of the σD maxima to zero
temperature.22

In Ref. 22, it was suggested that their data could be
interpreted as a hybrid flow composed of two spin components
scaling independently. However, the good agreement we have
found with the �(2) symmetric potential suggests that the
observed scaling simply follows from reduced spin splitting
that leads to near-degenerate Landau levels. The most obvious
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FIG. 10. (Color online) Low-temperature flow data for the 0 ⊗σ

1 ⊗σ 2 transitions in sample S34 (adapted from Ref. 22 Fig. 2),
compared with the theoretical flow generated by the interpolating RG
potential 
0.18. Thick (blue) lines are theoretical phase boundaries.
Dashed (blue) lines are separatrices.

consequence of this reinterpretation is that the location of
the quantum critical points is shifted away from the more
symmetric spin-polarized positions, as shown in Fig. 10.
This should be straightforward to verify by more accurate
experiments.

D. Layered heterostructure

Huang et al.24 have studied the 0 ⊗ρ 1 ⊗ρ 2 transitions
in a layered AlGaAs/InGaAs/GaAs heterostructure with mo-
bility μ = 1.0 × 105 cm2/Vs and carrier density n = 1.3 ×
1011 cm−2. Again the high-temperature data (above 1 K) are
not relevant for our study of the quantum phase transitions.

For the 1 ⊗ρ 2 transition, they observed a stationary flow
that they interpreted as being controlled by a critical point
σ⊗ ≈ 1.9 + 0.39i [e2/h]. In comparing this result with the
RG potential 
a , the best value we have found is aσ ≈ 0.992,
which gives σ⊗ ≈ 1.85 + 0.35i. However, in this case, the
experimental flow does not fit the theoretical flow. To avoid
having experimental and theoretical flow-lines crossing, the
data might be conjectured to fall on a semicircular separatrix,
but then the “semicircle” formed by the experimental data
points would be skewed and distorted, so this seems implau-
sible.

For the 0 ⊗ρ 1 transition, they report ρD
⊗ ≈ 20 k� ≈

0.77 [h/e2], and 0 ⊗ρ 1 ≈ 1 + 0.77i [h/e2]. This gives 0 ⊗σ

1 ≈ 0.62 + 0.48i, which corresponds to aσ ≈ −0.32, in con-
tradiction with the value a ≈ 0.992 we obtained above for
the 1 ⊗ 2 transition. The critical points of the two transitions
appear at values of σH that are too high for them to be related
by �(2) symmetry, i.e., they are not symmetric with respect to
the σH = 1 line.

The authors of Ref. 24 comment that these rather un-
expected results could be due to a variety of reasons:
inhomogeneity in the sample, mixing between Landau bands,
small spin-splitting, or temperatures too high for scaling to
be observed. In any case, this system does not appear to
belong to the family of RG flows generated by 
a , and
therefore highlights the need for a better understanding of
necessary and sufficient conditions for the emergence of
modular symmetries.

E. Remarks on graphene

A single layer (b = 1) of graphene has a quasiparticle
spectrum with a “relativistic” dispersion relation, i.e., they are
essentially Dirac fermions. Bilayer (b = 2) graphene has the
spectum of massive Dirac fermions. The free-particle Landau
problem gives integer quantum Hall (IQH) plateaux at

σ⊕ = σH = 4

(
N + b

2

)
, N ∈ Z, (10)

in natural units (e2/h). The factor 4 arises from twofold spin
and valley degeneracies in graphene.25

As originally noted in Ref. 26, if σ is replaced by σ/2 in
order to take account of either the spin or valley degeneracy,
then the fixed point structure of the QHE in single-layer
graphene appears to respect the modular symmetry �S . The
system can be argued to be a spin-polarized system, but
because of a Berry phase π picked up by Dirac fermions
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moving around the Dirac cone,25,26 the group �T should be
conjugated by a π -flux attachment ST S, which gives the
bosonic duality group �S .2,13,27 This reduces the translation
symmetry from T to T 2, and this leads to the correct periodicity
of four in Eq. (10).

In bilayer graphene, the Berry phase is 2π , which gives the
symmetry �R after the conductance is divided by two. This is
consistent with Eq. (10), except that the σ⊕ = 0 state is miss-
ing. Instead, there is a metallic state with a minimum conduc-
tivity. The zeroth Landau level state can be created by doping.

Recent advances in graphene sample fabrication have
revealed fractional quantum Hall (FQH) states28 as well as
anomalous IQH states that do not fit into the noninteracting
sequence given by Eq. (10). The anomalous states have been
related to symmetry breaking between the spin and valley
degeneracies of Dirac fermions at high magnetic fields,29 and
by now, almost all IQH states have been observed in graphene
devices at high magnetic fields.28,30–32 In particular, all the
broken-symmetry states of the N = 0 Landau level, giving
plateaux at σ⊕ = 0,1,2,3 and 4, have now been observed for
both single and bilayer graphene.31,33 There is also evidence
for all plateaux σ⊕ = 1, . . . ,16 for bilayer graphene,32 which
suggests that the strong field has completely “polarized” the
system, lifting the multicomponent degeneracy and returning
the symmetry to the conventional one-component group �T .
Recently, Ref. 33 reported fractions that are predominantly
multiples of 1/3, although some states are missing from the
N = 0 Landau level.

Unfortunately, scaling data for the plateaux transitions in
graphene are not yet available. There is some evidence that the
plateau-plateau transitions are in the same universality class as
in the usual spin-polarized QHE, reported in Refs. 34 and 35,
but they also find evidence that the insulator-plateau transition
is in a different universality class.

Nevertheless, the fixed points of the flows appear to be

consistent with the symmetry transmutation13,14 �S

σ/2→σ−−−−→
�T driven by an increasing magnetic field, leading eventually
to a single flavor of spin-polarized fermions without the
π -Berry phase due to a (spontaneous) mass gap. Clearly, this
kind of a scenario (or something more complicated) can be
achieved with the proposed ansatz, where a is a nonuniversal
sample specific parameter that depends on impurities, sample
chemistry, sample architecture, strength of the external mag-
netic field, Zeeman splitting, valley separation, etc.

Finally, we remark that if low-energy models of graphene
do enjoy modular symmetries, then they can, in principle, be
used as a diagnostic tool to characterize the material. Abanin
and Levitov36 have recently investigated another way to use
transport measurements to characterize materials exhibiting
the quantum Hall effect, including the number of layers in
a graphene sample. Since the total macroscopic conductance
measured in the two-terminal experiments considered by these
authors depends on sample geometry (e.g., the aspect ratio),
it is conceivable that this will conceal the properties of
the material (e.g., the electron density) and therefore render
the method unsuitable for sample characterization. Using a
semicircle relation between the conductivities they show that
this is not the case, so that their method can be used to
determine the number of layers in graphene, for example.

IV. COMPARISON WITH OTHER WORK

There have been various attempts to analyze the phase struc-
ture of the QHE, starting with a proposal by Khmel’nitzkii37

that identified a translation symmetry of RG flows in the IQHE.
This was motivated by a sigma-model of localization, which
was extensively elaborated by Pruisken et al.,38,39 but the target
space geometry does not appear to be rich enough to include
the FQHE.

Reference 2 proposed that a modular symmetry would be
capable of describing both the integer and the fractional Hall
effects by including dualities in addition to translations, as
described in the introduction. The three maximal index 3 sub-
groups �X (X = R,S,T ) of the full modular group PSL(2,Z)
were immediately identified as the largest symmetries of
physical interest. The group Aut�T , acting by holomorphic
fractional linear transformations on the complexified conduc-
tivity, was shown to give the correct phenomenology (fixed
point structure and superuniversality) of the spin-polarized
QHE. Since ρ = S(σ ), this is equivalent to having an emergent
�R symmetry (which is S conjugate to �T ) on the space of
resistivities, and �S was proposed as the relevant symmetry for
analogous transport problems with bosonic quasiparticles.2

The symmetry �(2) and interpolations between the en-
hanced symmetries �X (X = R,S,T ) were introduced in
Ref. 13, where the idea of an interpolating potential elaborated
here was also proposed. At roughly the same time, superficially
similar dualities40–42 acting on the filling fraction ν were
considered, and the resulting transformations are known
collectively as “the law of corresponding states.” Since ν

is essentially the plateau value σ⊕ = σH ∈ R, this approach
is oblivious to the complex structure that gives modular
symmetries most of their predictive power. These dualities
appear to disagree with experiment, unlike the complexified
duality identified in Ref. 2 that is in excellent agreement with
available data.4,10,16

Following the ideas in Ref. 40, Burgess et al.26 related
complexified modular transformations to dualities in the low-
energy (linear response) transport coefficients of an effective
Chern-Simons Landau-Ginzburg field theory. These dualities
follow from periodicity of the statistics angle of the charge
carriers in two dimensions, together with particle vortex
duality, assuming that only particles or only vortices take
part in low-energy charge transport. This gives �T symmetry
for fermionic charge carriers, and �S symmetry for bosonic
carriers. Note that dualities relate systems with different
(anyonic) statistics of charge carriers, but never bosonic
charge carriers with fermionic ones. These dualities were
further extended to the nonlinear regime of charge transport in
Ref. 43.

Burgess et al.44 have also considered generalized modular
symmetries acting on bilayer systems, assuming that each
single-layer system exhibits emergent modular symmetry in its
scaling behavior. In the most general case, a bilayer system has
two independent complex conductivities, one for each layer,
plus an interlayer conductivity. A genus two modular group
Sp(4,Z) then acts on a complex two-dimensional matrix of
conductivities (with positive imaginary part). If the bilayer
system consists of identical layers, then the scaling behavior
is expected to be the same as in a monolayer system, and the
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experimentally accessible total conductivity σ̃ for the bilayer
is just the double of the conductivity σ for a single layer.44

If the scaling properties of a system with a single fermionic
degree of freedom are determined by �T , then σ̃ = 2σ implies
that the scaling of a bilayer system is constrained by �R . One
example of this is observed when a spin-polarized system
changes to a spin-degenerate system, summarized by the

symmetry transmutation �R

σ→σ/2−−−−→ �T , which is induced by
decreasing the magnetic field.13,14 On the other hand, if the
scaling of a single bosonic degree of freedom is determined by
�S , then the scaling of the total conductivity σ̃ of a bilayer
system should respect a symmetry generated by T 4(σ̃ ) =
σ̃ + 4 and S̃(σ̃ ) = −4/σ̃ . This is verified by using the duality
transformations T 2 and S acting on σ = σ̃ /2. Although S̃ is
not a modular transformation, the substitution σ̃ → σ should
produce a modular scaling diagram. Reference 44 compares
these predictions with the fixed point structure observed
in multicomponent quantum Hall experiments. While the
experimental situations is still quite murky, there does not
appear to be any inconsistency.

Dolan45 has argued that one should expect the duality group
to be �(2) in systems with a small but nonvanishing difference
between adjacent Landau levels of different flavors (spin, layer,
etc.), so that there is mixing between the Landau levels. The
degenerate bilayer case is the limit of exact degeneracy, and the
single-layer case the limit where there is no mixing between
Landau levels. The transformation ST 2S is the 2π shift (or
flux attachment) in the statistics of the charge carriers,26 and
should therefore always be present in two dimensions. The
translation T N counts the degeneracy of Landau levels, since
the Hall conductivity transforms as T N (σH ) = σH + N . The
symmetry is therefore �(2) for fermionic charge carriers if one
assumes that the chemical potential cannot be tuned in the gap
between the different flavors of Landau levels. If both particles
and vortices carry charge, the situation is more complicated,
but since ST 2S is the periodicity in the statistics angle and
one expects that there is no mixing between Landau levels of
a single flavor of charge carriers, one should expect that the
charge transport phenomenon in two dimensions is at least
�(2) symmetric.

There have been two other attempts to construct families
of interpolating β functions for the QHE.45–47 They have
both retained the original idea from Ref. 2, elaborated in
Ref. 6, that the physical (contravariant) β function should
be automorphic under modular transformations with weight
w = −2. This is sufficient to give pictures of automorphic
vector fields that look similar to ours, since any automorphic
meromorphic function will by definition have this property.
They do not, however, consider the physical properties of
critical points, nor the experimental constraints discussed in
the introduction. Consequently, the conjectured β functions are
not well motivated, nor do they appear to have any reasonable
physical interpretation.

Dolan45,46 considered interpolations between the maximal
symmetries �X (X = R,S,T ) by postulating a family of
meromorphic functions that is conjectured to be the β function
for the RG flow. However, these “scaling functions” have
no physical foundation or interpretation. In particular, they
have poles where there should be critical points, i.e., where

a physical β function must vanish. Critical exponents are
therefore ill defined, and there is no physical scaling.

Georgelin et al.47 have also considered the symmetry �(2),
and proposed an interpolating β function that in our notation is
β ∝ (aλ − 1)/θ4

3 . They conclude (correctly) that the location
of the zero of this function is not predicted by �(2) symmetry,
but they seem ambivalent about the order of the transition
point, and since the function is holomorphic, it cannot be
physical. They do not consider the family of functions under
deformations of a, and do not discuss the points of enhanced
symmetries.

This is in sharp contrast to the idea proposed in Ref. 13
and pursued here. Our β function is derived from a physically
motivated and physically sensible potential, and therefore by
construction is well behaved everywhere on the interior of
parameter space. This includes the critical points where it has
simple zeros, and therefore well defined scaling and critical
exponents.

V. SUMMARY

A phenomenological analysis using global discrete modular
symmetries of RG flows has previously been successfully
applied to the spin-polarized QHE.4 Following a proposal
originally made in Ref. 13, we have here generalized this to
more complicated situations where spin or other “flavors” of
charge carriers are relevant. In some simple cases, including
the spin-polarized system, maximal subgroups of the modular
group PSL(2,Z) appear to account for the data, while other
systems are less symmetric.

Motivated by the C theorem, which offers an appealing
physical interpretation of the RG potential, and insisting on
some reasonable physical properties of this potential, we are
led to propose the simplest possible ansatz for a family of
potentials 
a that can interpolate between these symmetries
[see Eq. (7)]. 
a is parametrized by a single number a, up
to an undetermined normalization. The potential is always
symmetric under the main congruence group at level two, and
when a takes certain values this symmetry is enhanced to one
of the maximal subgroups of the modular group. The covariant
RG β function is a holomorphic vector field derived from 
a ,
and we have compared the geometry of this gradient flow with
available temperature driven scaling data.

Until substantial progress is made in deriving low-energy
effective field theories from the microphysics of quantum Hall
systems, a remains an uncomputable, nonuniversal, sample
specific number that parametrizes our ignorance about these
models. This is no different from other effective field theories,
and as usual this is not an obstruction to progress since the
parameter values can always be simply extracted from a few
experiments if the model is correct. In our case, the value of
a is most easily determined from experiment by finding the
location of a quantum critical point, i.e., an unstable zero of
the β function given by a saddle point of the RG potential. The
surprise is that a single parameter so far has sufficed to account
for almost all scaling data, in systems with widely different
microphysics but similar emergent modular symmetries.

Almost all the data (Refs. 2 and 4 and Figs. 6–10) are
consistent with a ∈ R, which together with �(2) symmetry
implies a generalized semicircle law. The semicircle law has
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in some cases been confirmed by experiment to be remarkably
accurate.48

We have argued that this family exhausts all possible RG
flows automorphic under the modular group, given some mild
constraints on the fixed point structure (the plateaux and
quantum critical points) of the global phase diagram of the
quantum Hall system. There are two other modular symmetries
at level 2, but neither �(1) nor �P have physical potentials.
Fortunately, there is also no experimental evidence that these
symmetries are of interest.

This is one example of a remarkable convergence of quan-
tum Hall physics and modular mathematics. Hall quantization
is, in fact, an automatic and unavoidable consequence of
modular symmetry. The geometry of holomorphic modular

symmetries just barely admits the existence of functions and
forms that we need in order to give a quantitative description
of the geometry of observed RG flows, but no more, and
unphysical holomorphic β functions are prohibited by the
symmetry.

The rigidity of holomorphic modular symmetries allows us
to harvest an infinite number of robust predictions: detailed
quantitative predictions that are so constraining that it seems
unlikely that they can be satisfied by any real physical
system. Nevertheless, almost all low-temperature quantum
Hall scaling data are so far in agreement with these predictions,
as shown in Ref. 4 for the spin-polarized case and for the fully
spin-degenerate case, and for some multicomponent systems
here.
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