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Existence of bulk chiral fermions and crystal symmetry
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We consider the existence of bulk chiral fermions around points of symmetry in the Brillouin zone of
nonmagnetic three-dimensional (3D) crystals with negligible spin-orbit interactions. We use group theory to
show that this is possible, but only for a reduced number of space groups and points of symmetry that we tabulate.
Moreover, we show that for a handful of space groups the existence of bulk chiral fermions is not only possible
but unavoidable, irrespective of the concrete crystal structure. Thus our tables can be used to look for bulk chiral
fermions in a specific class of systems, namely, that of nonmagnetic 3D crystals with sufficiently weak spin-orbit
coupling. We also discuss the effects of spin-orbit interactions and possible extensions of our approach to Weyl
semimetals, crystals with magnetic order, and systems with Dirac points with pseudospin 1 and 3/2. A simple
tight-binding model is used to illustrate some of the issues.
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I. INTRODUCTION

Electrons in the vicinity of the K points in graphene1,2

have linear dispersion relations and behave like massless chiral
fermions. More concretely, the dynamics of electrons around
these points is governed by the relativistic, two-dimensional,
massless Dirac Hamiltonian H0 ∼ σxkx + σyky , and many of
the exotic electronic properties of graphene stem from this
fact.3 This also turns graphene into a potential laboratory for
two-dimensional relativistic dynamics, incorporating massless
fermions, gauge fields, and curved gravitational backgrounds.4

Moreover, optical lattices that could be used to simulate
relativistic systems with trapped cold atoms can be fashioned
after graphene,5 with control over the properties of the
system.6,7 Obviously three-dimensional analogs of graphene
are potentially very interesting.

Strictly speaking, the massless Dirac Hamiltonian H0

describes only the low-energy orbital dynamics of electrons
in graphene. As reviewed in Sec. III, spin-orbit coupling in
graphene gives fermions a very small mass.8 This mass is
so small that for most practical purposes the spin and orbital
degrees of freedom decouple and H0 provides an effective
description of an enormous variety of phenomena.3

In this paper we will consider three-dimensional (3D)
analogs of graphene, i.e., crystals with orbital electron dynam-
ics governed by the 3D two-component massles Dirac Hamil-
tonian H0 ∼ v�σ · �k, also known as the Weyl Hamiltonian. This
Hamiltonian describes massless chiral fermions, right handed
for v > 0 and left handed otherwise. Henceforth we will use
the term “orbital Weyl point” to refer to points around which
the low-energy dynamics in the absence of spin-orbit couplings
is described by the 3D Weyl Hamiltonian, with an additional
twofold degeneray due to electron spin. We will also speak of
“bulk chiral fermions,” keeping in mind that, as in graphene,3

they are exactly chiral in the limit of vanishing spin-orbit
interactions. Also note that it is pseudospin, not electron spin,
which is parallel (or antiparallel) to �k in the chiral limit and
that, in these systems, pseudospin is purely orbital in origin.

These should be distinguished from other systems where
the total Hamiltonian, including electron spin and spin-orbit
interactions, adopts the form of the Weyl Hamiltonian. These
include surface states in topological insulators9 as well as novel

three-dimensional “Weyl semimetals.”10–15 The spectrum of
these systems, unlike those of graphene and its 3D analogs
considered in this paper, remains gapless for arbitrary values
of the spin-orbit couplings. Actually, some Weyl semimetals
have strong spin-orbit interactions.12 Possible extensions of
our methods to Weyl semimetals will be considered in the last
section.

It is well known that Weyl points have topological
properties,16–18 and no fine tuning or symmetries are usually
necessary for their existence. But symmetry, even if not
necessary,19 can sometimes be sufficient for the existence of
Weyl points. That is what we show in this paper, where we
investigate the role played by the space groups of crystals with
time-reversal symmetry (TRS) in the existence of orbital Weyl
points.

The main results of this paper are summarized in Tables I
and II. Only crystals with one of the 19 space groups in these
tables can have orbital Weyl points at points of symmetry.
Moreover, crystals with space groups in Table I must have
orbital Weyl points at the listed points, irrespective of the
actual crystal structure. For crystals with space groups in
Table II the situation is only slightly different: At the listed
points both orbital Weyl points and nondegenerate bands with
quadratic dispersion relations are possible. These results are
relevant to nonmagnetic 3D crystals with sufficiently weak
spin-orbit interactions and to cold atoms in optical lattices.

The rest of the paper is organized as follows. Our main
results, contained in Eq. (2) and Tables I and II are explained
in Sec. II. Section III considers the effects of spin-orbit
interactions on the orbital Weyl points, and a simple tight-
binding model is constructed and analyzed in Sec. IV. Possible
extensions of our approach to Weyl semimetals, crystals with
magnetic order, and other types of Dirac points are considered
in Sec. V. An outline of the methods used to obtain Tables I
and II is given in the Appendix.

II. ORBITAL WEYL POINTS AND CRYSTAL SYMMETRY

Our strategy is based on the fact that the form of the
Hamiltonian in the vicinity of a point of symmetry �K1

is strongly constrained by the symmetries of the point in
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TABLE I. Cubic, tetragonal, and orthorhombic space groups
with orbital Weyl points. The small IRs are all 2d (except for R3

of 212 and 213, which is 4d) and refer to the symmetry points
P ( 1

4 , 1
4 , 1

4 ), R( 1
2 , 1

2 , 1
2 ), A( 1

2 , 1
2 , 1

2 ), and W ( 3
4 , 1̄

4 , 1̄
4 ), with components

in the conventional basis of Ref. 26. The stars have two vectors
( �K1, − �K1) for body-centered (I ) lattices and a single vector �K1 ≡
− �K1 for simple (P ) lattices.

Space group IRs

214 I4132 O8 P1,P2,P3

213 P 4132 O7 R1,R2,R3

212 P 4332 O6 R1,R2,R3

199 I213 T 5 P1,P2,P3

198 P 213 T 4 R1,R2,R3

098 I4122 D10
4 P1

096 P 43212 D8
4 A1,A2

092 P 41212 D4
4 A1,A2

024 I212121 D9
2 W1

019 P 212121 D4
2 R1

question.20–23 These include GK1 —the little group24,25 of
the vector �K1—and combinations of TRS with space group
elements. Since we are interested in systems with very weak
spin-orbit interactions, we will consider first the structure
of the orbital or spin-independent part of the Hamiltonian.
The transformation properties of orbital wave functions are
described by single-valued26 representations of the space
group.

As explained in the Appendix, we have carried out a survey
of all the single-valued irreducible representations of the 230
space groups at points of symmetry in the Brillouin zone
(BZ). We find that, for most space groups, the constraints
on the form of the Hamiltonian around points of symmetry
are incompatible with the structure of the Weyl Hamiltonian.
The comparatively few exceptions are listed in Tables I and
II. In all cases, two electronic bands transforming according
to a single-valued irreducible representation (IR) of GK1 are
degenerate at the point of symmetry �K1. Near the point of
symmetry, i.e., for �K = �K1 + �k, the degeneracy is broken by

TABLE II. Hexagonal and trigonal space groups with orbital Weyl
points. The small IRs listed are all 2d and refer to the symmetry points
K( 1̄

3 , 2
3 ,0) and H ( 1̄

3 , 2
3 , 1

2 ), with components in the conventional basis

of Ref. 26 The stars have two vectors ( �K1, − �K1) in all cases.

Space group IRs

182 P 6322 D6
6 K3

181 P 6422 D5
6 K3,H3

180 P 6222 D4
6 K3,H3

179 P 6522 D3
6 K3

178 P 6122 D2
6 K3

177 P 622 D1
6 K3,H3

154 P 3221 D6
3 K3,H3

152 P 3121 D4
3 K3,H3

150 P 321 D2
3 K3,H3

�k-dependent terms and the Hamiltonian takes the form

H (�k) = vxσxkx + vyσyky + vzσzkz + O(k2), (1)

where vx = vy for uniaxial crystals and vx = vy = vz for cubic
crystals. After appropriate rescalings of the components of �k
for nonisotropic crystals, this is just the Weyl Hamiltonian
H ∼ v�σ · �k, with the sign of v equal to the product of the signs
of vi . The points of symmetry and IRs where this happens
are listed in the last column of Tables I and II in standard
notation.26

TRS reverses the sign of �K . In those cases where − �K1 is
not equivalent to �K1, we get a copy of the Weyl Hamiltonian
at the mirror point − �K1 and fermions have, in addition
to the pseudospin index associated with the Pauli matrices
σi , a “valley” index. As shown in the Appendix, the total
Hamiltonian is then given by the 4 × 4 matrix

H (�k) = v

(
�σ · �k 0

0 �σ · �k

)
+ O(k2). (2)

This describes two degenerate massless fermions of the same
chirality, right handed for v > 0 and left handed otherwise.
Somewhat surprisingly, we find that this doubling continues
to take place even when − �K1 ≡ �K1, i.e., for TRS-invariant
momenta. In that case, Eq. (2) describes two distinct fermions
of the same chirality at the same point in the BZ. There is still
a valley index but, unlike in graphene, it cannot be associated
with two different points in the BZ. This happens for the six
space groups with simple (P) Bravais lattices in Table I.

The groups in Table I have one important feature in
common: The IRs in the last column of the table include all the
IRs at the point of symmetry. This means that, at that point, all
the bands must form degenerate pairs with Weyl Hamiltonians.
In other words, any crystal with space group in Table I will
have bulk chiral fermions described by Eq. (2), irrespective
of the concrete crystal structure. On the other hand, the space
groups in Table II have, besides the listed small IRs K3 and H3,
which are two-dimensional (2d) and give rise to orbital Weyl
points, other 1d small IRs (K1,K2,H1,H2) not related to Weyl
points. In this case, both orbital Weyl points and nondegenerate
bands with quadratic dispersion relations are possible at the
listed points of symmetry.

We close this section by pointing out some special features
in Tables I and II. The first one is that all the groups in Table I
are subgroups of the first entry,27,28 the cubic space group
214 I4132 and, despite the use of different conventional names
(P,R,A,W ), they also share the point of symmetry. Indeed,
the Cartesian coordinates for all the points in Table I can be
written as

�K1 =
(π

a
,
π

b
,
π

c

)
(3)

in terms of the unit cell constants, with b = c for uniaxial
crystals and a = b = c for cubic crystals. As a result, one can
begin with any 3D lattice with space group 214 and reproduce
all the cases in Table I by suitable deformations. The second
somewhat surprising feature is that all the stars have just one
or two vectors. As a consequence, these crystals have only one
or two orbital Weyl points degenerate in energy. This should
be contrasted, for instance, with the case studied in Ref. 12,
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where 24 Weyl points (away from points of symmetry) are
present at the Fermi energy.

III. SPIN-ORBIT INTERACTIONS

Strictly speaking, our analysis so far applies only to “spin-
less electrons.” It is well known that spin-orbit interactions
in graphene open a gap and give fermionic excitations a
small mass.8 In the case of graphene, the intrinsic spin-orbit
Hamiltonian is proportional to σz ⊗ sz ⊗ τz, where sz and
τz are Pauli matrices for electron spin and valley indices,
respectively. Around each valley, the Hamiltonian can be
written in terms of 4 × 4 matrices,

H0 + Hso =v(αxkx + αyky) + β�, (4)

where αi = σi ⊗ 1s , β = ±σz ⊗ sz, and � is the strength of the
spin-orbit coupling. The matrices satisfy the Clifford algebra

{αi,αj } = 2δij , {αi,β} = 0, β2 =2. (5)

This identifies Eq. (4) as the Dirac Hamiltonian for four-
component fermions with mass m = � and spectrum E± =
±√

�2 + v2k2.
For the space groups in Tables I and II, the most general

k-independent spin-orbit Hamiltonian compatible with spatial
symmetries and TRS takes the form

Hso = 1
4 (�xσx ⊗ sx + �yσy ⊗ sy + �zσz ⊗ sz) ⊗ 1τ , (6)

where �x = �y for uniaxial crystals and �x = �y = �z for
cubic crystals. Actually, this valley-independent form of the
spin-orbit interaction is valid on the basis (e1,e2,ie

∗
2, − ie∗

1)
of orbital wave functions introduced in the Appendix. If one
uses the more conventional basis (e1,e2,e

∗
1,e

∗
2), then one has

to append the valley matrix τz to the x and z components in
Eq. (6). Note that, in the conventional basis, instead of Eq. (2),
we would have Eq. (A6).

The spectrum of the total Hamiltonian v�σ · �k + Hso can
be computed numerically, and one finds that, in general, gaps
are generated and all fermionic excitations acquire masses.
Cubic crystals, where Hso is isotropic and depends on a single
parameter �, are an exception and can be treated analytically.
In this case the spectrum is given by

E−
± = −�

4
±

√(
�

2

)2

+ v2k2,

E+
± = �

4
± vk (7)

and contains massless excitations. This spectrum is radically
different from that of the Dirac Hamiltonian appropriate for
2D graphene. Note, in particular, that the linear bands E+

± ,
together with E−

+ , form a triplet (see Fig. 1), following the usual
rules for addition of angular momenta with L = S = 1/2 and
�J = �L + �S. This is only natural: assembling pseudospin and

spin into a four-component object is equivalent to taking the
Kronecker product of two j = 1/2 irreducible representations
of the SO(3) rotation group, and this product decomposes
according the rules of angular momentum composition.26

Thus, unlike in 2D where strong spin-orbit interactions
simply destroy the orbital Weyl points and turn massless
fermions into massive excitations, here we also get Dirac
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FIG. 1. (Color online) Effects of spin-orbit coupling on the
orbital Weyl point of a cubic crystal (top) and graphene (bottom) in
arbitrary units.

points with J = 1. In the next section we will present a model
that in the absence of spin-orbit coupling has, besides orbital
Weyl points, Dirac points with pseudospin 1. The points with
pseudospin 1 would be split by strong spin-orbit interactions
into Weyl points with J = 1/2 and novel Dirac points with
J = 3/2. Subduction of IRs (Refs. 25 and 26) can be used in
principle to extend the analysis to noncubic groups.

Henceforth we will assume that spin-orbit interactions
are weak and can be ignored. In this limit the dynamics
is well described by the 3D Weyl Hamiltonian—albeit with
an additional twofold degeneracy due to spin—and, as a
consequence, the systems considered in this paper may share
some of the properties of Weyl semimetals.

IV. A TIGHT-BINDING EXAMPLE

As a practical application, we present a tight-binding model
with space group 214 I4132(O8), the first entry in Table I.
According to our previous analysis, any lattice with this
space group must have orbital Weyl points at P . Here we
consider a lattice with four atoms per primitive unit cell, with
Cartesian coordinates �r1 = (a/8)(1,1,1), �r2 = (a/8)(1,1̄,3),
�r3 = (a/8)(3,1̄,5), and �r4 = (a/8)(3,1,7).29

With each atom we associate a Bloch function

	i(�k) =
∑
�tεT

ei�k·(�ri+�t)ϕ(�r − �ri − �t), (8)
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where the sum runs over all the points in the Bravais lattice and
ϕ(�r) is an s-wave atomic orbital. Each atom has three nearest
neighbors (NNs), with bonds parallel to the three Cartesian

planes. In terms of the reduced Cartesian components of
the wave vector �k = (2 π/a)(kx,ky,kz) the NN tight-binding
Hamiltonian is given by

H (�k) = t

⎛
⎜⎜⎜⎝

0 e(iπ/2)(kz−ky ) e(iπ/2)(ky−kx ) e(iπ/2)(kx−kz)

e−(iπ/2)(kz−ky ) 0 e(iπ/2)(kx+kz) e−(iπ/2)(kx+ky )

e−(iπ/2)(ky−kx ) e−(iπ/2)(kx+kz) 0 e(iπ/2)(ky+kz)

e−(iπ/2)(kx−kz) e(iπ/2)(kx+ky ) e−(iπ/2)(ky+kz) 0

⎞
⎟⎟⎟⎠ , (9)

where t < 0 is the hopping parameter and the diagonal
on-site energy has been set to zero. The Hamiltonian can be
diagonalized numerically and the resulting bands are shown in
Fig. 2.

The existence of linear bands at point P is obvious in Fig. 2.
We can use standard group theory techniques to confirm that
they actually are Weyl points, as predicted. The four Bloch
functions 	i form the basis of a reducible representation H
that can be decomposed into small IRs as H(	1, . . . ,	4) =
P2(e1,e2) + P3(u1,u2). Up to normalizations, the symmetry-
adapted vectors are given by e1 ∼ (1,β2, − 1,iβ2), e2 ∼
(−β2, − 1, − β2,i), with β2 = (1 + √

3)(1 − i)/2, and iden-
tical expressions for u1,u2 with β2 replaced by β3 = (1 −√

3)(1 − i)/2. Using a unitary transformation UP to change to
the symmetry-adapted basis and expanding around the point
P yields

U
†
P H (�k)UP = πt√

3

(
3
π

+ �σ · �k H23(�k)

H
†
23(�k) − 3

π
− �σ · �k

)
+ O(k2),

(10)

where H23(�k) is given by

H23(�k) = 1√
2

(
kz ω∗kx − iωky

ω∗kx + iωky −kz

)
(11)

P H N

+3

-3

0

FIG. 2. (Color online) Bands for the cubic lattice in the NN
approximation for t = −1. The bcc Brillouin zone with its points
and lines of symmetry can be seen in Fig. 3.

with ω = e2πi/3. There are thus two orbital Weyl points at
P with different energies ±t

√
3 and opposite chiralities. The

existence of orbital Weyl points of opposite chirality is of
course to be expected from fermion doubling,30 which requires
the net chirality of the BZ to vanish, although the fact that they
appear at coincident points is peculiar to this model. Note
also the linear couplings between the two points. Due to the
split in energies, these couplings contribute corrections O(k2)
to the 2 × 2 effective Hamiltonians around the orbital Weyl
points and do not spoil their structure. A similar expansion
around − �K1 confirms that, due to TRS, each orbital Weyl
point is degenerate in energy with another point of the same
chirality. Restoration of the lattice constant yields a Fermi
velocity vF = a|t |

2
√

3
. Note, however, that, as no symmetry

connects the orbital Weyl points with different chiralities and
energies, going beyond the NN approximation is expected to
give different Fermi velocities for them.

Figure 2 exhibits linear bands around the  and H points
as well. Their nature is, however, very different from that of
the orbital Weyl points at P . Let us consider, for the sake of
concreteness, the  point. In this case, the representations
associated with the Bloch functions decompose into IRs
of dimensions 1 and 3, H = A1 + T2. Transforming to the
appropriate symmetry-adapted basis and linearizing yields

U
†
H (�k)U = t

⎛
⎜⎜⎜⎝

3 0 0 0

0 −1 −iπkz iπky

0 iπkz −1 −iπkx

0 −iπky iπkx −1

⎞
⎟⎟⎟⎠ + O(k2).

(12)

Up to a constant energy, the 3 × 3 block can be written

HT2 (�k) = πt �J · �k, (13)

where (Ji)jk = −iεijk are spin-1 matrices. Thus, around this
Dirac point, electrons behave more like massless spin-1
particles, with spectrum E(�k) = 0, ± vF |�k| and vF = 1

2a|t |.
Indeed, one can check that, while the E = 0 component is
longitudinally polarized, the other two are transverse, just
like the propagating components of a photon. Pseudospin-1
Dirac points have been reported in some two-31–33 and three-
dimensional34 systems.

A look at Fig. 2 shows that, even if the Fermi level coincides
with one of the orbital Weyl points at P , band overlap will
cause the dynamics to be dominated by large electron (or
hole) pockets. The existence of band overlap can be traced in
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FIG. 3. (Color online) Brillouin zone for bcc crystals (Refs. 27
and 28).

this case to the threefold degeneracies in Fig. 2, which force
one of the bands arising from the orbital Weyl points to bend
over. As 3d IRs exist only for cubic groups, we may modify
the model by making the hopping parameters t⊥ associated
with bonds parallel to the OXY plane different from the rest,
t⊥ = ε t . This reduces the symmetry to the tetragonal subgroup
98 I4122 and eliminates the threefold degeneracies at  and
H . Figure 4 shows the bands for ε = 0.4. In the absence of
spin-orbit interactions the system would behave like a gapless
semiconductor with massless carriers for 1/4 and 3/4 fillings,
with positive or negative chirality depending on the filling.

V. DISCUSSION

In this paper we have studied the interplay between
crystal symmetry and the existence of bulk chiral fermions
in nonmagnetic 3D crystals with weak spin-orbit coupling.

P H N

+3

-3

0

FIG. 4. (Color online) Bands for the cubic lattice with a tetragonal
distortion (ε = 0.4) for t = −1.25. See the main text for details.

We have shown that the space group plays a determinant
role, as summarized in Tables I and II. As Weyl semimetals
depend on the existence of magnetic order or strong spin-orbit
interactions,15 we have explored an entirely different corner in
the space of candidate 3D crystals with bulk chiral fermions.
We have also considered the effects of spin-orbit interactions
and shown that, unlike in 2D, these may give rise to new critical
points supporting massless fermions for different values of the
pseudospin. For sufficiently weak spin-orbit interactions the
dynamics is well described by the 3D Weyl Hamiltonian and
the systems considered in this paper may share some of the
properties of Weyl semimetals.

There are two obvious uses for the information in Tables I
and II. First, one can look for orbital Weyl points in
nonmagnetic crystals with weak spin-orbit interactions and
space groups in the tables, either in theoretically computed
electronic bands or experimentally. The other use is the design
of 3D lattices with Weyl points. This may allow for a physical
realization of massless chiral fermions with cold atoms in
optical lattices. Note that the physical relevance as well as
the feasibility of detecting chiral fermions in actual crystals
will be affected by structure-dependent features such as the
position of the Fermi level and the amount of band overlap.
But knowing that the bulk chiral fermions have to be there is
obviously a good starting point. As shown in the example of
Sec. IV, we can then try to engineer the required properties by
modifying the initial system.

There are several possible extensions to this work. One is to
consider the existence of orbital Weyl points away from points
of symmetry. All the points in a line of symmetry, except for
the end points, have the same group GK1 . Therefore, symmetry
alone cannot imply the existence of bulk chiral fermions at a
particular point in the line, although it will indicate whether
this is possible at all. But it can, in some cases, imply the
existence along the line of “semi-Dirac” points, where the
dispersion relations are linear only for some directions. For
generic points in the BZ, symmetry alone has little to say and
a different kind of analysis may be useful.35,36

Sometimes, not two, but three bands become degenerate at
a Dirac point.34 This is the case with the  and H points in
the example of Sec. IV. This is possible for some cubic space
groups, and group theory can be used to determine the IRs
and points of symmetry where this may happen. As shown
in Sec. III, turning on spin-orbit interactions will give rise
to unusual Dirac points with pseudospin 3/2. Other, more
complicated, linear Hamiltonians37–39 are also possible and
may be physically relevant. Group theory can be used to
classify or even predict the existence of the different types
of Dirac point.

In this paper we have analyzed all the single-valued irre-
ducible representations at points of symmetry in the BZ. These
are appropriate for orbital degrees of freedom. By considering
instead double-valued26 IRs we could study the existence of
Weyl points where the total Hamiltonian, including electron
spin and spin-orbit interactions, takes the form of the 3D
Weyl Hamiltonian. Thus, we could extend our analysis to
TRS-invariant Weyl semimetals. Double-valued IRs have been
recently applied to the study of Dirac semimetals.40

So far we have restricted ourselves to TRS-invariant
crystals. The reasons are mostly practical. The symmetries
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of crystals with magnetic order are classified by the 1651
magnetic space groups,26 instead of the 230 ordinary (Fedorov)
space groups that classify crystals with TRS. The amount
of work required to examine the points of symmetry and
irreducible corepresentations26 for all the magnetic groups
is, obviously, much greater. Moreover, unlike ordinary space
groups, there are few databases with the magnetic space groups
of crystals with magnetic order.

Nevertheless, some of the results in this paper can also be
applied to spinless electrons in crystals with magnetic order.
The reason is that, by construction, the 19 entries in Tables I
and II describe situations where the 3D Weyl Hamiltonian
is invariant under the “gray” or “type II” Shubnikov space
group26 associated with an ordinary (Fedorov) space group
by the addition of the TRS operation. Now, all the magnetic
space groups derived from the Fedorov space group with the
Belov-Neronova-Smirnova (BNS) settings27,28 are subgroups
of the gray group. As a consequence, the corresponding Weyl
Hamiltonian is automatically invariant under all the magnetic
groups derived from the ordinary space groups listed in our
tables. For instance, the Weyl Hamiltonians at the P point
of group 214 are automatically invariant under the derived
magnetic groups 214.68 and 214.69 (in the BNS settings).

One still has to check that the degeneracy of the two
bands at the point of symmetry, necessary for the existence
of the Weyl point, is maintained under the lower symmetry
of the magnetic space group. If this is not the case but the
effects of the magnetic order are small, the Weyl point will
survive but move away from the point of symmetry. The main
difference when dealing with crystals with magnetic order is
that we cannot exclude the possibility of finding bulk chiral
fermions around points of symmetry for space groups not
listed in Tables I and II. That happens whenever the Weyl
Hamiltonian is invariant under the magnetic subgroup of the
gray space group, but not under the gray space group itself.
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for help in using the Bilbao Crystallographic Server.27,28,41

This work is supported in part by the Spanish Ministry of
Science and Technology under Grant No. FPA2009-10612,
the Spanish Consolider-Ingenio Program CPAN (Grant No.
CSD2007-00042), and by the Basque Government under Grant
No. IT559-10.

APPENDIX

In this Appendix we outline the methods used to obtain
Tables I and II and Eq. (2). Symmetry operations belonging
to the space group G will be written g = {α|�v}, where α and
�v denote the rotational and translational parts respectively.26

Let {ei( �K)} be a basis of orbital wave functions that transform
linearly under the action of G, ei( �K) → ej (α �K)Rji(g), where
we sum over repeated indices. Invariance of the Hamiltonian
under G means that, for any wave function ψ , 〈H 〉ψ = 〈H 〉ψg

,
where ψg is the transform of ψ by the group element g.
Expanding this condition on the basis {ei( �K)} yields, in matrix

notation,

R†(g)H (α �K)R(g) = H ( �K), (A1)

where Hij ( �K) = 〈ei( �K)|H |ej ( �K)〉. Time reversal θ is an
antiunitary operation that acts on orbital wave functions by
complex conjugation, ei( �K) → ei( �K)∗ = ej (− �K)�ji , where
�ij is a unitary matrix,24,26 and reverses the momentum �K .
Invariance under θ implies

�†H (− �K)� = H ∗( �K). (A2)

We will also have to consider combined antiunitary operations
of the form θg. In this case invariance of the Hamiltonian
implies

T †(g)H (−α �K)T (g) = H ∗( �K), (A3)

where T (g) = �R∗(g). Equations (A1)–(A3) become power-
ful constraints on the form of the Hamiltonian when we take
�K = �K1 + �k in the neighborhood of a point of symmetry �K1

and consider a power expansion in �k.
Consider, for instance, Eq. (A1) with g restricted to the

little group of �K1, GK1 , i.e., α �K1 ≡ �K1

R†(g)H ( �K1 + α�k)R(g) = H ( �K1 + �k). (A4)

By definition, the matrix α belongs to the vector representation
V .24,25 If the basis functions {ei( �K)} belong to the small IR
R of GK1 , terms of order n in �k in an expansion of the left-
hand side of Eq. (A4) will transform according to the product
R∗ × R × [V ]n, where R∗ is the complex conjugate of R and
[V ]n denotes the nth symmetric power of the representation
V .24,25 Then one can use standard group theory techniques to
determine, order by order in �k, the most general form of the
Hamiltonian compatible with the symmetries of the vector �K1.

In particular, a necessary condition for the existence of
the Weyl Hamiltonian, which is linear in �k, is that the vector
representation V is contained in the product R∗ × R for some
2d IR (Ref. 42) R of GK1 . We have checked this condition on
all the single-valued 2d and 4d IRs at the points of symmetry of
the 230 space groups to obtain a first list of candidates.43 Polar
groups have been discarded from the outset, as they couple one
component of the momentum to the unit matrix and the result is
incompatible with the structure of the Weyl Hamiltonian. The
amount of work involved at this stage has been substantially
reduced thanks to the use of “abstract groups” in Ref. 26. In
essence, the abstract groups represent classes of isomorphic
little groups GK1 , and their number is much smaller than the
number of little groups.

In the next step each candidate IR has been checked for
invariance of the corresponding Hamiltonian under TRS. This
involves using Eq. (A2) whenever − �K1 ≡ �K1 and Eq. (A3)
if �K1 is not equivalent to − �K1 but there exists a space group
element g = {α|�v} ∈ G such that −α �K1 ≡ �K1. The IRs that
pass this last test are listed in the last column of Tables I and II.
These IRs have an important property: There is always a basis
where the matrices R(g) coincide, up to g-dependent phases,
with the j = 1/2 rotation matrices

R1/2(n̂φ) = exp

(
− i �σ · n̂ φ

2

)
, (A5)
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where φ is the angle around the unit vector n̂. As a
consequence, we can always transform to a basis where, up to
appropriate rescalings of the components of �k for nonisotropic
crystals [see Eq. (1)], the linear Hamiltonian takes the standard
Weyl form H ( �K1 + �k)  v�σ · �k.

When − �K1 is not equivalent to �K1, the basis at these two
points can be related by TRS. Choosing as basis at − �K1

the complex conjugate of the one at �K1, i.e., taking as 4d
basis (e1,e2,e

∗
1,e

∗
2), and using Eq. (A2), gives H (− �K1 + �k) 

−v�σ ∗ · �k. The off-diagonal blocks between �K1 and − �K1

vanish by translation invariance, and we have

H (�k) = v

(
�σ · �k 0

0 −�σ ∗ · �k

)
+ O(k2). (A6)

We can make the symmetry between �K1 and − �K1 obvious
by using the SU(2) transformation σy �σ ∗σy = −�σ to change

the basis at − �K1 so that the 4d basis is (e1,e2,ie
∗
2, − ie∗

1).
On this basis the Hamiltonian takes the form given in
Eq. (2).

The case − �K1 ≡ �K1 is more subtle, and we have two
possibilities. If R is a real 2d IR, then TRS applies (e1,e2)
onto itself, with e∗

i = ei . In this case, � = 1 and Eq. (A2)
requires H (−�k) = H (�k)∗, which is not satisfied by the Weyl
Hamiltonian. Thus 2d real IRs are excluded from Table I. For
complex and pseudoreal 2d IRs and for the real 4d R3 of
212 and 213, (e∗

1,e
∗
2) are linearly independent of (e1,e2). We

can take as 4d basis either (e1,e2,e
∗
1,e

∗
2) or (e1,e2,ie

∗
2, − ie∗

1),
and everything proceeds as in the previous case. The main
difference is that now the off-diagonal blocks need not vanish
by translation symmetry. However, a detailed case by case
analysis using space group and TRS invariance shows that the
off-diagonal terms are at least of O(k2). This completes the
proof of Eq. (2).
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