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Exact wave functions for excitations of the ν = 1
3 fractional quantum Hall state

from a model Hamiltonian
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We study fractional quantum Hall states in the cylinder geometry with open boundaries. We introduce solvable
Hamiltonians for which we are able to obtain exact results. We give a simple construction of the ground state,
quasiholes, quasielectrons, and the magnetoroton branch of excited states for spin-polarized electrons at filling
factor ν = 1/3 and spinless bosons at filling ν = 1/2. The wave functions are simple in the second-quantized
language. These model Hamiltonians have all the features we expect from composite fermion theory.

DOI: 10.1103/PhysRevB.85.155116 PACS number(s): 71.10.Pm, 73.43.Cd

I. INTRODUCTION

Electrons in a two-dimensional gas state under a strong
magnetic field display a wealth of distinct states of matter.
Among these are the incompressible liquids which manifest the
fractional quantum Hall effect (FQHE) with striking physical
properties including the existence of fractionally charged
quasiparticles. The magnetic field perpendicular to the sample
leads to the formation of the macroscopically degenerate
Landau levels whose filling factor ν can be controlled by
the electronic density and/or the magnetic field value. The
FQHE phenomenon appears for special rational values of ν

where the electronic system forms an incompressible liquid
with only gapped excitations. By changing the magnetic
flux applied to the system one may nucleate quasiholes
or quasielectrons. Several theoretical approaches have to
be combined to obtain an understanding of the FQHE.
Historically the physics of the most prominent state at ν = 1/3
in the lowest Landau level (LLL) was understood by Laughlin
by writing down an explicit many-body wave function for
the ground state.1 While this Laughlin wave function is not
the exact ground state of electrons interacting through the
Coulomb potential, it is nevertheless the ground state of a
model Hamiltonian with a hard-core potential, and all evidence
points to adiabatic continuity between this special model
and the physical situation. The physics can thus correctly
be understood from studies of the model wave function. The
wave-function approach has been generalized successfully in
the composite-fermion (CF) construction2 for many of the
observed fractions. This construction also gives trial wave
functions for excited states. However, these are not eigenstates
of any simple local Hamiltonian and they do not become exact
eigenstates in any known limit of the FQHE problem. Even
within the CF construction it is possible to use several slightly
different constructions that still capture the correct FQHE
physics. For the hard-core interaction, even if the Laughlin
wave function is the exact ground state, then the simplest
excited states (quasielectron and magnetoroton states) are not
known analytically.

From a practical point of view it is important to note
that all these model wave functions are formulated in the
first-quantized language, i.e., as explicit functions of particle
coordinates, and that they are not simple in the natural
language of standard many-body theory, which is the Fock
space formulated through occupation numbers of quantum

states. It implies that computation of expectation values of
observables has to be done by Monte Carlo integration rather
than by analytical means.

While true samples displaying the electronic FQHE are
small planar pieces of semiconductor devices, it is theoretically
useful to consider other geometries such as the sphere or
the torus. In this paper, we study the FQHE in the cylinder
geometry which is compatible with the Landau gauge. We
impose periodic boundary conditions along the circumference
L of the cylinder, and the number of orbitals is finite due to
a hard-wall condition at the ends of the cylinder. We consider
both spinless fermions and bosons with hard-core interactions
in the LLL. The physics is then governed by the ratio of
the magnetic length � = √

h̄c/eB and the finite size L of the
system. This quantity �/L is analogous to the aspect ratio of
a torus. Indeed if we consider a FQHE droplet in the cylinder
geometry it is squeezed into a one-dimensional Luttinger-type
system for �/L → 0, while it is stretched into a crystal-like
state in the opposite limit �/L → ∞. This was studied by
Rezayi and Haldane3 by means of the Laughlin wave function
for filling ν = 1/3. The latter case is known as the Tao-
Thouless4,5 or “thin torus” (TT) limit L → 0. At leading order
the interactions become a problem of electrostatics.6–8 The
ground state is then a crystal state with a periodic pattern fixed
by the filling factor ν. Many physical properties of this limit
have to do with the FQHE physics but the relationship is not
complete.6,7 By truncating the hard-core interaction in powers
of λ = exp(−2π2�2/L2), we construct simple Hubbard-like
one-dimensional Hamiltonians for which we are able to
find infinitely many exact eigenstates. All these states are
simply formulated in terms of occupation numbers, i.e., in
second-quantized language. They are obtained by operating
upon a “root” configuration with squeezing operators that
bring closer groups of particles. The root configuration is
one of the electrostatic ground states found in the TT limit.
However, the squeezing operation generates states that are no
longer simple Slater determinants for fermions or permanents
for bosons. Notably we give explicit formulas in second
quantization for the quasielectron and the magnetoroton on
top of the fermionic ν = 1/3 ground state and its bosonic
analog at ν = 1/2. The root configuration of the magnetoroton
shows that it can be viewed as a quasihole-quasielectron bound
state. The quasihole states are also exact eigenstates with the
degeneracy given by their Abelian fractional statistics. With a
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finite number of electrons in a finite area, the Fock space is
finite dimensional and it is then feasible to obtain numerically
the spectrum of the Hamiltonian. This approach is valid
for arbitrary Hamiltonians including the Coulomb two-body
interactions appropriate for electrons in semiconductor devices
as well as hard-core interactions for neutral atoms in rapid
rotation. We show by this method that there is a range of values
of the aspect ratio �/L = O(1) for which the FQHE physics is
recovered: the CF scheme of many-body eigenstates is valid.
Interestingly the state counting is altered in the TT limit when
looking at excited states: the TT limit is not smooth in general.

In Sec. II, we explain the truncation scheme of the
interactions. In Sec. III, the construction of exact eigenstates
is detailed. In Sec. IV, we give explicit second-quantized
formulas for the quasielectron and the magnetoroton. Section
V discusses the relationship with FQHE physics by use of exact
diagonalizations. Finally, Sec. VI presents our conclusions.

II. TRUNCATION SCHEME

We use the Landau gauge with Ax = 0 and Ay = Bx, where
B is the strength of the applied magnetic field and eigenstates
can be taken with definite momentum along the y axis. We
consider spinless fermions or bosons in the LLL and impose
periodic boundary conditions along the y direction with a
finite extent L: ψ(y + L) ≡ ψ(y). The momentum k is then
quantized: k = 2πn/L, where n is an integer. This defines the
cylinder geometry, the radius of the cylinder being L/2π . The
LLL one-body wave functions are given by

φn(x,y) = Znλn2√
L�

√
π

e−x2/2�2
, Z ≡ e(2π/L)(x+iy). (1)

It is important to note that the power n of the complex Z

coordinates can be positive or negative. A generic many-body
wave function is thus a polynomial in the Z’s and Z−1’s of the
particles:

�(Z1, . . . ,ZN ) = P(Z1, . . . ,ZN )
∏

i

e−x2
i /2�2

. (2)

The Laughlin wave function in the cylinder geometry has been
written by Rezayi and Haldane:3

�(m) =
∏
i<j

(
Z

1/2
i

Z
1/2
j

− Z
1/2
j

Z
1/2
i

)m

, (3)

where we have omitted the ubiquitous exponential factor. The
filling factor is then ν = 1/m with m odd (even) for fermions
(bosons).

The Hilbert space is truncated by imposing |n| � Nmax.
Since the Gaussian factor implies that there is spatial local-
ization of orbitals the system has “quasi” hard walls at |x| =
2πNmax�

2/L and there are 2Nmax + 1 orbitals. Incompressible
FQHE states are realized for a special matching of the
number of particles and the number of orbitals which involves
the so-called shift quantum number. This set of boundary
conditions breaks explicitly the translation symmetry. It also
creates two physical boundaries that can support edge modes
of FQHE states. With only one noncontractible loop around
the cylinder, this geometry is different from the previously
well-studied sphere, torus, or disk geometries.

We investigate the properties of hard-core interactions that
are known to display the FQHE. For spinless fermions this
is the hard-core Laplacian of delta function introduced by
Haldane.9 There is ample numerical evidence that the Coulomb
interaction in the LLL shares the same FQHE physics as this
hard-core limiting case. For spinless bosons this is the local
delta-function interaction which is an accurate representation
of the s-wave scattering of ultracold bosonic atoms.

In second-quantized language we have in the fermionic case

HF = 1

4

∑
{ni }

[(n1 − n3)2 − (n1 − n4)2]λ(n1−n3)2+(n1−n4)2

× c†n1
c†n2

cn3cn4 , (4)

while for bosons we find

HB =
∑
{ni }

λ(n1−n3)2+(n1−n4)2
b†n1

b†n2
bn3bn4 , (5)

where the sum is restricted to n1 + n2 = n3 + n4. Creation
and annihilation operators are denoted by acn,c

†
n for fermions

and bn,b
†
n for bosons. We have set the overall energy scale to

unity. Many-body eigenstates of this problem can be classified
according to their total momentum K = ∑

i ki along the y

direction. From now on, we measure the momentum in units of
2π/L. Note that the two-dimensional problem looks now like
a one-dimensional chain of particles hopping on sites indexed
by the momentum n. This is due to the fact that the guiding
center coordinates are quantum-mechanically conjugate in
the LLL.

The interaction can be naturally expanded in powers of λ:

H =
∑

n

λnHn. (6)

In the TT limit λ → 0 we expect the physics to be dominated
by the first few terms of this expansion.8 The order λ0,1

for bosons and λ1,4 for fermions are electrostatic repulsion
terms. Such truncated Hamiltonians without any hopping
have been studied in detail.6,7 They have crystalline ground
states whose structure is entirely defined by electrostatic
energy considerations. They are a special case of repulsive
Hamiltonians obeying a convexity condition as a function of
the range of the interactions.10,11 Such Hamiltonians display a
devil staircase of ground states as a function of the filling factor
which is reminiscent of the FQHE series of fractions.6,7 In the
TT limit, the ground state is then a Slater determinant built
from the classical minimum energy configuration (a permanent
for bosonic states). However, the true FQHE problem, even for
pure hard-core interactions, deviates from purely electrostatic
models already at low order in λ due to the appearance of
hopping with conserved center of mass.12 It is thus natural to
focus on the truncated Hamiltonians that consistently include
the first nontrivial hopping terms. In the fermionic case we
thus define

HFermi
9 = λ

∑
i

nini+1 + 4λ4
∑

i

nini+2 + 9λ9
∑

i

nini+3

−3λ5

[ ∑
i

c
†
i ci+1ci+2c

†
i+3 + H.c.

]
. (7)
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The corresponding Bose Hamiltonian is given by

HBose
4 =

∑
i

ni(ni − 1) + 4λ
∑

i

nini+1 + 4λ4
∑

i

nini+2

+ 2λ2

[ ∑
i

b
†
i b

2
i+1b

†
i+2 + H.c.

]
. (8)

In these equations the momenta are written as a site index
i: bi,b

†
i (ci,c

†
i ) are bosonic (fermionic) operators and ni is

the occupation number. We have studied by extensive exact
diagonalization these truncated models. We find that there is
a range of the aspect ratio for which the physics of CFs holds
completely. For example, in Fig. 2 we display the excited states
at filling ν = 1/3; they are in excellent correspondence with
the full Hamiltonian. Some numerical evidence for CF/FQHE
physics is discussed in Sec. V. Here we focus on exact
eigenstates that can be obtained analytically in closed form.

III. EXACT EIGENSTATES

The Laughlin wave function, Eq. (3), is the exact zero-
energy ground state of the full hard-core Hamiltonian equa-
tions (4) and (5). It is no longer an exact eigenstate of
the truncated Hamiltonians introduced above. However, the
ground state at the same filling factor is still at zero energy.13

The zero-energy property holds in fact for all values of λ. It is
readily explained by noting alternate formulas for the truncated
models:

HFermi
9 = λ

∑
i

C
†
i Ci + 4λ4

∑
i

nini+2

+ λn−Nmaxn1−Nmax + λnNmaxnNmax−1, (9)

HBose
4 =

∑
i

B
†
i Bi + 4λ

∑
i

nini+1 + n−Nmax

(
n−Nmax − 1

)
+ nNmax

(
nNmax − 1

)
, (10)

where we have defined

Ci = ci+2ci+1 + 3λ4ci+3ci, Bi = b2
i+1 + 2λ2bibi+2. (11)

It is the extended nature of the Bi and Ci operators that leads
to the apparition of boundary terms in Eqs. (9) and (10).

The ground state of the truncated Hamiltonian is given by

�GS = SF |1001001 . . . 1001〉 (12)

in the Fermi case at ν = 1/3 and

�GS = SB |1010 . . . 0101〉 (13)

in the Bose case at ν = 1/2, where SF,B are squeezing
operators defined by

SF =
∏
n

(1 + 3λ4cn−1c
†
nc

†
n+1cn+2),

(14)
SB =

∏
n

[1 − λ2bn−1(b†n)2bn+1].

It is a matter of trivial algebra to show that these states are
annihilated by the ladderlike operators Ci and Bi for all i

and then it follows immediately that they are zero-energy
eigenstates of the truncated Hamiltonian equations (9) and

(10) since the boundary terms are also annihilated by the
choice of the root configuration. To accommodate a unique
ground-state root configuration in a finite number of orbitals
requires precisely the flux vs number of particles that includes
a nontrivial shift: 2Nmax = m(N − 1) at filling ν = 1/m. If
we add more orbitals, then we can construct a family of states
by adding extra zeros at the boundaries of the system. This
is at no energy cost and is a reflection of the center-of-mass
degeneracy in the LLL.

In the TT limit λ → 0 and the squeezings are suppressed.
As a consequence, the states become simple Slater determinant
(permanent for bosons). For all other values of the aspect
ratio these states are nontrivial polynomials that have the
underlying algebraic structure known for the Laughlin state.14

These polynomials can be expanded in the monomial basis
with the partial ordering known as “dominance” order on
the particle configurations that are allowed. In our case the
squeezings are only nearest neighbor, while the full Laughlin
polynomial involves squeezing at arbitrary distances. We note
that more generally the Fock space decomposes into blocks
through the action of the hopping term in Eqs. (4) and (5) and
that the stable subspaces are much smaller than in the case of
complete interactions, allowing exact diagonalization to reach
larger system sizes.

If we add extra zeros anywhere in the root configurations,
then these states remain zero-energy eigenstates. They are
the gapless quasihole excitations with the correct counting
for the standard Laughlin state with two edges. Indeed for n

quasiholes inserted into a root configuration the number of
states is that of n bosons into N orbitals, which is the correct
counting of Abelian quasiholes on the sphere.

It is simple to construct an infinite number of exact
eigenstates of the truncated models by considering

� = S|root〉, (15)

where the root configuration is still annihilated by the
ladderlike operators Ci ,Bi . For example, it is possible to pile up
bosons at both ends of the systems in arbitrary numbers. Such a
state will have high energy but will remain an exact eigenstate.
In general, we expect that it will be the member of an excitation
branch with extremal value of the total momentum.

IV. QUASIELECTRONS AND MAGNETOROTONS

The principal Laughlin fractions at ν = 1/m fractions
also support elementary gapped excitations in the form of
the quasielectron which is obtained by removing one flux
quantum. On the sphere15 this state appears as a ground
state with total angular momentum L = N/2. On the cylinder
we find accordingly a set of quasidegenerate states with
Ktot = −N/2 · · · + N/2. The member of this branch with
extremal value of K is given by

�QE = SF |11000100100 . . . 001〉 (Fermi), (16)

�QE = SB |2001010 . . . 01〉 (Bose), (17)

and these states are readily seen to have energy λ (respectively,
2) in the Fermi (respectively, Bose) case. This is due solely to
the boundary energies in Eqs. (9) and (10). This state cannot
remain the lowest energy state in its momentum sector if we go
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PAUL SOULÉ AND THIERRY JOLICOEUR PHYSICAL REVIEW B 85, 155116 (2012)

FIG. 1. (Color online) Evolution of the low-lying levels as a
function of λ for K = N = 5 bosons. The momentum is chosen
to select the extremity of the magnetoroton branch. The exact wave
function, Eq. (18), is the ground state in this subspace isolated by
a sizable gap from excited states, for a large range of values of λ.
However, in the TT limit (left) there are many more low-lying states
that no longer obey the CF counting.

to the TT limit because end points pay an energetic penalty. As
a consequence, there are several level crossings when L → 0
(see Fig. 1). More generally the CF counting rules that allow
one to identify a multiplet of levels are no longer valid in the
TT limit.

If we do not change the flux but stay at the special Laughlin
filling ν = 1/3 the excited states are dominated by the low-
lying magnetoroton branch of excitations.16 On the sphere it
extends up to L = N and the extremal member is again an
exact eigenstate given by

�MR = SF |11000100100 . . . 0010〉 (Fermi), (18)

�MR = SB |2001010 . . . 010〉 (Bose). (19)

This state has the same energy as the quasielectron since
the only difference is that there is an added quasihole at
the other extremity of the system. This is exactly what we
expect from the physical picture of the magnetoroton.16,17

This exciton branch is a quasielectron-quasihole bound state
and the extremal member of the branch corresponds to the
maximal possible separation between the two elementary
entities allowed by the geometry of the system. It is possible
to obtain a set of states with K = N − 1, N − 2 . . . that are
degenerate and are members of the MR branch by adding zeros
in the root configuration above. These exact states do not fully
exhaust the MR branch, which is seen to exist both in the
hard-core model and in its truncation (see Fig. 2). The other
members of the MR branch are present in exact diagonalization
studies but they are no longer very simple. They are now inside
a subspace spanned by the hopping term and this subspace is
no longer of dimension one.

V. COMPOSITE FERMION PHYSICS

It remains to be seen if the special truncated Hamiltonians
share the same FQHE as the complete hard-core interactions.
This is feasible by comparing the results of exact diagonal-
ization studies for these two cases. In the cylinder geometry
the exact many-body eigenstates are classified by their total
momentum K and the CF theory gives us simple rules for the
appearance of specially stable states in the full spectrum. This

K

E

E

E

(a)

(b)

(c)

FIG. 2. (Color online) The ten lowest-lying eigenstates as a
function of the total momentum K for N = 8 particles. In (a)
electrons are considered with the hard-core interactions at ν = 1/3
and λ = 0.82. The same problem with truncated interactions, Eq. (9),
is displayed in (b). In (c) bosons with truncated interactions, Eq. (10),
at ν = 1/2 and λ = 0.7. Several branches of composite fermion levels
can be identified. Arrows show CF particle-hole states with extremal
momentum (Ref. 2). The left arrow points to the magnetoroton branch.

is the CF spectroscopy approach, which has been successful in
showing that the Coulomb interaction shares the same FQHE
physics as the hard-core interaction.

In fact we find that there is an exact mapping onto the
many-body states between the cylinder and the sphere given by
Zi = ui/vi , where ui = cos(θi/2)eiφi/2, vi = sin(θi/2)e−iφi/2

are the spinorial coordinates. The two ends of the cylinder
are mapped onto the two poles of the sphere. This may seem
odd because one may think that edge modes of the FQHE
states live on the boundaries of the cylinder and hence cannot
be accommodated on the sphere. However, consideration of
states with nonzero angular momentum leads to edge states,
the simplest example being the state with maximal momentum
obtained by compressing electrons in a ν = 1 droplet at the
north pole. For generic flux this eigenstate has a boundary
supporting the standard chiral boson modes. If we use the
relation from the sphere 2Nmax = 3(N − 1) appropriate for the
fermionic ν = 1/3 state, then the boundary conditions on the
cylinder forbid low-energy excitations and we find an isolated
ground state of zero energy (see Fig. 2).
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E E

FIG. 3. (Color online) The quasielectrons appear as a set of almost degenerate levels spanning K = −N/2 · · · + N/2. The left panel is the
spectrum of N = 10 bosons with truncated interaction and λ = 0.7. Arrows indicate states that are simple CF particle-hole excitations (Ref. 2).
The right panel shows the evolution of eigenstates at K = N/2 and N = 5 (for clarity) as a function of λ. The exact eigenstate, Eq. (16), has
an energy independent of λ and is no longer the lowest energy state in the TT limit.

We find generally that there is a range of parameter λ ∼
0.6–0.9 where the CF scheme of levels is valid. This interval
is not universal, it is weakly dependent upon the number of
particles as well as the Fermi/Bose character of the particles
involved. We have constructed CF wave functions up to N = 7
particles following Kamilla and Jain18 and we obtain excellent
agreement between energies and overlap for the low-lying
states. Quantitative details will be given in a forthcoming
publication. In Fig. 3, we observe the appearance of the first
branch of excitations corresponding to the promotion of one
CF into the second CF-Landau level extending up to Kmax = N

the number of particles: this is the magnetoroton branch.16,19

In the spherical geometry levels are classified by their total
angular momentum. The exciton branch has exactly one
multiplet for Ltot = N,N − 1, N − 2, . . . . On the cylinder the
conservation of Ktot corresponds to the conservation of only
the azimuthal angular momentum Lz but the total momentum
is broken by the Hamiltonians (4) and (5).

It is also possible to study other fractions of the hierarchy
such as ν = 2/5. We do not find simple exact states in this
case. While the gapped ground state readily appears in exact
diagonalizations, the eigenstate is not simple. However, the
simple hopping operator appearing in truncated problems
leads to a reduced set of Fock states related by squeezing.
The states created by condensation of quasielectrons have
the root configuration given by composite fermion wave
functions:20 for the ν = 2/3 Bose state, we find that it is
given by |root〉 = |201011011 . . . 0102〉. Again the TT limit
is not smooth: there are level crossings when L → 0 even
for the ground-state wave function. This is obvious since
this root configuration contains double occupancy states that
cannot go to low energy in the TT limit (in the Fermi case it
is two nearest-neighbor electrons at the end of the system).
This means that the cylinder geometry is different from this
point of view from the torus geometry where there is adiabatic

continuity for ground states of many FQHE states.6,7 Note that
even in the torus states counting rules in the Haldane statistics
do change in the TT limit.21 A recent work22 has proposed
a construction related to ours albeit in a periodic chain
geometry.

VI. CONCLUSION

Starting from hard-core interactions between spinless
fermions or bosons in the LLL we have defined a trun-
cated problem for which we have found infinitely many
exact eigenstates for the Laughlin principal filling fac-
tors ν = 1/m. These include some of the most important
states of the FQHE physics: the quasiholes, quasielectrons,
and magnetorotons. These exact eigenstates are simple in
second-quantized language and can be manipulated easily
for any system size analytically. The quasihole-quasielectron
bound-state nature of the magnetoroton is manifest in this
formulation.

To assess the relevance of our truncated problem to the real
world, we have numerically studied the FQHE on a cylinder
with open boundaries and we have shown that it is closely
related to the spherical geometry. For a range of aspect ratio
of the cylinder, we recover the FQHE physics as seen by
comparison with the CF theory. This means that the simple
exact states we have constructed capture the main physical
properties of the FQHE at these filling factors.
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