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Fermionic functional renormalization group investigation of Luttinger liquids
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Luttinger-liquid parameters are extracted from ground-state energy calculations using a fermionic functional
renormalization group (fRG) scheme similar to that proposed by Andergassen et al. [Phys. Rev. B 73, 045125
(2006)]. A different way of interaction renormalization is proposed and compared to the method in this reference.
The proposed new interaction renormalization produces superior numerical results for chemical potential as
well as compressibility, while the Luttinger parameter K is obtained quantitatively similar in both interaction
renormalization schemes. It is demonstrated that a consistent extraction of Luttinger-liquid parameters from the
numerically calculated ground state within fRG meets several severe numerical issues, partly related to the fact
that the truncated fRG is not a conserving approximation.
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I. INTRODUCTION

The theoretical understanding of one-dimensional (1D)
fermionic quantum systems stems mostly from bosonization
and conformal field theory.1,2 It was shown that in 1D the
Fermi-liquid concept of quasifree fermions, which proved to be
so enormously successful in higher dimensions, breaks down
and must be replaced by the Luttinger-liquid (LL) concept of
quasifree bosons.3 Within a bosonized theory, the spectrum
and correlation functions can be expressed in terms of a few
basic Luttinger-liquid parameters, and correlation functions
can be shown to decay algebraically at large distances.1

The power-law exponents of the correlation functions may
be related to the parameters which determine the finite-
size dependence of the low-energy spectrum of the Luttinger-
liquid Hamiltonian using conformal field theory.2,4

Effects of impurities in LL may be studied using renor-
malization group techniques5,6 or, alternatively, conformal
field theory methods using boundary operators.7 Again, the
scaling dimensions of boundary operators can be related to
the finite-size scaling properties of the low-energy spectrum.
The predictions of bosonization and conformal field theory in
conjunction with the renormalization group analysis can be
compared to microscopic models using exact methods such
as Bethe ansatz or high-precision numerical methods such as
DMRG.8–10

More recently, a new fermionic method, the functional
renormalization group (fRG),11–14 has been advocated as a
useful tool for the description of one-dimensional Fermi
systems.15 This microscopic method allows calculations of
correlation functions for rather large inhomogeneous systems
with and without spin degrees of freedom. As a consequence,
determination of impurity exponents is possible, a goal at
present hardly achievable with other methods. In a series
of papers, Luttinger-liquid parameters were extracted from
the power-law decay of various correlation functions.16,17 The
necessary approximations in the fRG procedure were chosen
judiciously for this purpose. Furthermore, in Refs. 16 and 17,
the Luttinger-liquid parameter K , which characterizes the
strength of interactions in a homogeneous LL, was related
to the renormalized interactions of the fermionic system using
the Luttinger model.

The purpose of this paper is to look at the fRG description of
Luttinger liquids from a different perspective than the papers
cited above. Here, we want to assess how well various fRG
approximation schemes describe the finite-size structure of the
ground-state energy. As was pointed out above, the finite-size
dependence of a Luttinger liquid is determined by the same
Luttinger-liquid parameters as the correlation functions. While
the fRG procedure developed in Refs. 16 and 17 certainly was
not designed with this goal in mind, in view of the conformal
symmetry of the one-dimensional system under consideration,
a consistent approach should be able to describe the ground
state along with the impurity exponents. It is not our goal here
to advocate fRG as a particularly precise and/or competitive
way to calculate ground-state energies of Luttinger liquids, but
rather to study the consistency of the (truncated) fRG in view
of symmetries and conservation laws using Luttinger systems
as an example.

It is well known18 that due to the necessary truncations,
the fRG procedure is not particle number conserving. Non-
conserving approximations may lead to inconsistencies in
the determination of the number of particles.19 However, the
functional renormalization group is a grand canonical method
and, therefore, formulated for fixed chemical potential. Since
we want to study systems at various filling factors, we need
a procedure to determine the chemical potential for given
fillings. Except at half-filling, the chemical potential must
be determined numerically within the fRG approach, which
proves to be a significant source of numerical uncertainty.
This can be partly related to the nonconserving character of
the fRG procedure.

In order to assess the precision of various fRG ap-
proximations, we compare fRG results with Bethe ansatz20

calculations and perturbative results of Ref. 21. Already,
second-order perturbation theory allows a good description of
the finite-size scaling properties of the ground-state energy of a
one-dimensional Fermi system. From these results, Luttinger-
liquid parameters can be extracted with good precision as
was demonstrated by comparison with exact Bethe ansatz
calculations and high-precision numerical DMRG results.

We determine the ground-state energy using fRG using
different approximation schemes. In addition to the special
vertex approximation studied in Refs. 16 and 17, we investigate
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a new renormalization scheme for the interaction. This renor-
malization scheme is consistently formulated in coordinate
space for a finite system, while the interaction renormalization
in Refs. 16 and 17 is done for an infinite system in Fourier
space for momenta on the Fermi surface only. From the
finite-size scaling properties of the ground-state energy, we
then determine the Luttinger-liquid properties.

The article is organized as follows. In Sec. II, the fermionic
model is defined, and LL theory is reviewed for our pur-
poses. In Sec. III, we describe the details of our functional
renormalization group (fRG) method. In particular, the new
interaction renormalization scheme is described and compared
to the scheme of Ref. 16. In Sec. IV, we present our numerical
ground-state calculations and analyze them in terms of LL
theory. A summary is presented in Sec. V.

II. ONE-DIMENSIONAL ELECTRON RING

A one-dimensional ring of interacting spinless fermions is
modeled by the lattice Hamiltonian

H =
L∑

j=1

[−t(e−iϕ/Lc+
j cj+1 + eiϕ/Lc+

j+1cj )

+Uc+
j cj c

+
j+1cj+1], (1)

and we assume periodic boundary conditions c
(+)
L+1 = c

(+)
1 for

the electron creation and destruction operators c+
j and cj ,

respectively. The number of possible electron sites on the ring
is L; the ring is assumed to be filled with N electrons, i.e., the
filling factor is given by nf = N/L. The hopping amplitude t

is set to 1 in the following in order to set the energy scale. The
ring is threaded by a magnetic flux ϕ described by the Peierls’
factor e−iϕ/L, and the electrons interact via nearest-neighbor
density-density interactions with strength U .

At small enough interaction U , a system described by
the Hamiltonian (1) enters the Luttinger-liquid phase. Using
bosonization3 and conformal symmetry arguments,4 it can be
shown that to order 1/L the ground-state energy of a Luttinger
liquid without impurity can be written in the form

E0 = ε0L + πu

2L

[
−1

3
+ 1

K
N2 + K

(
J − ϕ

π

)2
]

(2)

with J = 0 for odd number of particles and J = ±1 for even
number of particles (J = +1 for positive flux and J = −1
for negative flux). Therefore, the ground-state energy can be
characterized by three basic parameters: the energy per site
ε0, the Luttinger-liquid parameters K , and the velocity u.
The parameter K characterizes the interaction strength: K = 1
for noninteracting particles, K > 1 for attractive interactions,
and K < 1 for repulsive interactions. The Luttinger-liquid
parameters must be calculated from a microscopic model using
analytical methods (e.g., Bethe ansatz) or numerically (e.g.,
DMRG). In the following, we will use such methods in order
to benchmark the fRG calculations.

The magnetic flux induces a persistent electronic current
I , which can be determined from the ground-state energy by
differentiation with respect to magnetic flux I = − ∂E0

∂ϕ
due to

the Hellmann-Feynman theorem.22 From Eq. (2), one obtains

I = uK

L

(
J − ϕ

π

)
. (3)

Obviously, the sign of the persistent current depends on the
parity of number of particles.

In previous studies of LL systems using fRG,16,17 the LL
parameters were extracted from the correlation functions.
Here, we want to extract them from the finite-size scaling
properties of the ground-state energy (2) assuming that the
system enters the LL regime within the parameter regime
considered here.

III. FUNCTIONAL RENORMALIZATION GROUP

In this section, we briefly explain our functional renor-
malization scheme and point out differences and relations to
previous work.17,23,24 Our scheme is similar to the setup in
Ref. 24, however, here we include the interaction renormaliza-
tion and correct details of the derivation of flow equations. The
flow equations for the self-energies agree with results given in
Refs. 23 and 24. However, the flow equation for the nearest-
neighbor interaction has not been considered previously in this
form.

The effective average action �k[φ∗,φ] for a fermionic
many-body system fulfills the exact renormalization group
equation11,25

∂

∂k
�k[φ∗,φ] = −1

2
Tr

{[
�

(2)
k [φ∗,φ] + Rk

]−1 ∂Rk

∂k

}
. (4)

Here, �
(2)
k is the inverse propagator as defined more ex-

plicitly in the Appendix, Rk is a suitable cutoff function,
and φ(τ ) = (φ1(τ ), . . . ,φL(τ )) an L-component Grassmann
field, which depends on the imaginary time τ . In order to
solve this functional differential equation, we introduce an
approximation in terms of an effective potential Uk , i.e., we
prescribe that the functional allowed for the effective average
action is given by

�k[φ∗,φ] =
∫ β

0
dτ

L∑
j=1

φ∗
j (τ )

∂

∂τ
φj (τ ) + Uk(φ∗(τ ),φ(τ )).

(5)

In particular, the effective potential does not depend on
derivatives of the Grassmann fields φ(τ ). This assumption
restricts the form of Uk to polynomials in the Grassmann fields
φ:

Uk(φ∗,φ) = a0;k +
L∑

i,j=1

aij ;kφ
∗
i φj

+
L∑

i,j,l,m=1

aijlm;kφ
∗
i φjφ

∗
l φm + . . . . (6)

The coefficients a;k of the Grassmann polynomials are called
“running couplings.” By inserting this expansion of the
effective average action on both sides of Eq. (4), one obtains a
generally infinite set of differential equations for the running
couplings. This set must be suitably truncated in order to be
manageable.

155113-2



FERMIONIC FUNCTIONAL RENORMALIZATION GROUP . . . PHYSICAL REVIEW B 85, 155113 (2012)

To this end, we neglect couplings beyond those written out
explicitly above in Eq. (6). While the truncation is necessary in
order to keep the set of equations manageable, a problematic
consequence is that the theory becomes nonconserving.18 In
order to further simplify, we assume that the nearest-neighbor
interaction in the Hamiltonian (1) will only renormalize into
nearest-neighbor couplings, i.e., does not lead to longer-range
effective couplings due to renormalization. This leads to the
following ansatz for the effective potential:

U (φ∗,φ) = a0;k +
L∑

j=1

ajj,kφ
∗
j φj + aj,j+1;kφ

∗
j φj+1

+ aj,j−1;kφ
∗
j φj−1 +

L∑
j=1

Uj ;kφ
∗
j φjφ

∗
j+1φj+1. (7)

Finally, we Fourier transform the Grassmann fields, using

φj (τ ) = 1√
β

∑
n

eiωnτφj ;n, φ∗
j (τ ) = 1√

β

∑
n

e−iωnτ φ∗
j ;n

(8)

with the Matsubara freuencies ωn = (2n + 1)π/β, and only
extract equations for the Fourier components φj ;0. This trun-
cation is called static approximation.26 In this approximation
and for a special choice of the cutoff function Rk (given in
the Appendix), we obtain the following set of differential
equations for the various couplings (details of the derivation
are presented in the Appendix): (i) for the ground-state energy
E0 = a0 + μN ,

ȧ0,k = 1

π
Re

[
ln det

(
1

k
g−1(ik)

)]
; (9)

(ii) for the self-energies,

ȧii;k = 1

π
Re[Ui−1;kgi−1,i−1(ik) + Ui;kgi+1,i+1(ik)],

ȧi+1,i;k = −Ui;k

2π
[gi+1,i(ik) + g∗

i,i+1(ik)], (10)

ȧi,i+1;k = −Ui;k

2π
[gi,i+1(ik) + g∗

i+1,i(ik)] = ȧ∗
i+1,i;k;

(iii) and for the effective interaction,

U̇i;k = − 1

2π

{
U 2

i;kgi,i+1(ik)g∗
i,i+1(ik) + U 2

i;kg∗
i+1,i(ik)gi+1,i(ik)

}− 1

π
Re
{
U 2

i;kgi,i+1(ik)gi+1,i(ik) − U 2
i;kgi,i(ik)gi+1,i+1(ik)

+Ui−1;kUi,kgi−1,i(ik)gi,i−1(ik) + Ui;kUi+1;kgi+1,i+2(ik)gi+2,i+1(ik) + Ui−1;kUi+1;kgi−1,i+2(ik)gi+2,i−1(ik)

−U 2
i;kg∗

i,i(ik)gi+1,i+1(ik)
}
. (11)

The overdot indicates a derivative with respect to k and
g−1

lm (ik) = (alm;k + ikδlm). While the propagator matrix g is
a full matrix, only its band diagonal part is actually necessary
for the solution of the flow equations.

For the solution of the set of coupled ordinary differential
equations given above, one needs the following set of initial
conditions. They are derived from the Hamiltonian (1) in the
Appendix:

a0;k0 = 1
4LU − 1

2Lμ, (12)

aii;k0 = U − μ, (13)

ai,i+1;k0 = −e−iφ/L, (14)

ai+1,i;k0 = −eiφ/L, (15)

Ui;k0 = U, (16)

where k0 is a large but finite constant from which the
renormalization flow starts. The initial flow from k = ∞
to k0 is already included in the initial conditions given
above. For a chain without impurity, the above large set of
coupled differential equations simplifies considerably due to
translational symmetry. In particular, the matrices g−1 acquire
a Toeplitz form. For such matrices, determination of the
determinant and inverse is easily possible as explained in the
Appendix. We define ρk ≡ aii;k and αk ≡ ai,i+1;k and obtain

the following set of four coupled differential equations: (i) for
the ground-state energy,

ȧ0 = 1

2π

L∑
m=1

ln

[
1 + 1

k2
(ρk + 2 Reβk,m)2

]
; (17)

(ii) for the self-energies,

ρ̇k = 2Uk

π
RePk(0), α̇k = −Uk

2π
[Pk(−1) + P ∗

k (1)]; (18)

(iii) and for the effective interaction,

U̇k = −U 2
k

π

(
1

2
Pk(−1)P ∗

k (−1) + 1

2
Pk(1)P ∗

k (1) − Pk(0)P ∗
k (0)

+ Re
[
3Pk(−1)Pk(1) − P 2

k (0) + Pk(3)Pk(−3)
])

(19)

with

Pk(m) = e−imϕk

(ik + ρk)
√

1 − 1
A2

k

(
O

|m|
k + Om

k

OL
k e−iLϕk

1 − OL
k e−iLϕk

+O−m
k

OL
k eiLϕk

1 − OL
k eiLϕk

)
. (20)

For an infinite system, Eq. (20) simplifies to

Pk(m) = O
|m|
k

(ik + ρk)
√

1 − 1
A2

k

. (21)
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We have used the following abbreviations βk,m =
αk exp(im 2π

L
), Ak = (ik + ρk)/(2|αk|), ϕk = arg(αk), and

Ok = Ak(
√

1 − 1/A2
k − 1). The results hold if |Ok| < 1,

which is fulfilled during the flow. The set of flow equations
(17)–(19) will be referred to as “fRG scheme I” in the
following.

In the renormalization scheme for a translationally in-
variant system proposed by Andergassen et al.,17 further

approximations are made. The flow equations (11) for the
interactions Ui;k are Fourier transformed and then projected
onto the Fermi surface, i.e., only momenta on the Fermi
surface are considered during the flow. In contrast, such
an approximation is not done in Eq. (19). Furthermore, the
equation for Ui;k is decoupled from the flow equations for
the self-energies [see Eq. (10)] by using noninteracting self-
energies. This leads to a flow equation, which can be solved
analytically,

U̇k = − U 2
k

4π2 sin2 kF

∑
ω=±k

∫ 2π

0
dm

[
(cos m − cos kF )2

(iω + ρ0 + 2α0 cos m)2
− [cos m − cos(2kF )]2

[iω + ρ0 + 2α0 cos(m + kF )(iω + ρ + 2α cos(m − kF )]

− 2(sin m sin kF )2

(−iω + ρ0 + 2α0 cos m)(iω + ρ0 + 2α0 cos m)

]
. (22)

One obtains17

Uk = U

1 − UH (k)
(23)

with

H (k) = − k

2π
+ 1

π
Re

⎡⎣(4 − μ2
0

)
k2 − 2iμ0

(
2 − μ2

0

)
k + μ4

0 − 6μ2
0 + 8

2
(
4 − μ2

0

)√
k2 − 2iμ0k + 4 − μ2

0

− iμ0

2
sinh−1 k − iμ0

2

+ μ4
0

2
(
4 − μ2

0

)3/2 tanh−1 4 + μ2
0 + iμ0k√(

4 + μ2
0 + iμ0k

)2 + 4(k − 2iμ0)2

⎤⎦ (24)

and μ0 = −2 cos kF . The set of equations used by Ander-
gassen et al.17 will be referred to as “fRG scheme-II” in the
following. The essential difference between both renormaliza-
tion schemes is that the fRG scheme-II uses a Fermi-surface
projection in the interaction renormalization.

Since the fRG is a grand canonical method, observables
depend on the chemical potential μ via the initial conditions
of the flow equations. However, in practice, we usually want
to perform a calculation at fixed particle number or filling
factor. At half-filling, the chemical potential is given by μ =
U because of particle-hole symmetry. This is derived in the
Appendix. For other filling factors, the chemical potential must
be determined numerically.

To this end, we use the relation N = −d�/dμ between
the particle number N and the grand potential � at fixed
temperature and volume. Therefore, the chemical potential
can be determined from the condition

nf = − 1

L

∂a0(μ)

∂μ
(25)

since � = a0,k=0. We will call a chemical potential obtained
from this condition μ1. At zero temperature, this can be
rewritten as ∂E0(μ)/∂μ = 0 using the fact that E0 = a0 +
μN .

Alternatively, one may use a condition based on Luttinger’s
theorem as proposed in Ref. 27: At zero temperature, the
chemical potential equals the energy of a particle on the Fermi

surface even in the presence of interactions. As a consequence,
the renormalized self-energy on the Fermi surface is given by

�(kF ) = �(πnf) = ρk=0 + 2αk=0 cos(πnf) = 0, (26)

which provides a relation between the density nf and the
chemical potential μ, on which ρ and α depend via the initial
conditions of the renormalization flow. We will call a chemical
potential defined by this condition μ2. (Note that in accordance
with the definitions of the previous section, the self-energy
contains the chemical potential as well as the free particle
energy.) Technically, Eq. (26) is derived from the condition
for the propagator G:∑

n

G(kn,t → 0−) = N. (27)

In principle, in a completely consistent theory, both
conditions (25) and (26) should produce the same results.
However, fRG is not particle number conserving,18 and the two
conditions produce different results.19,28 As a consequence,
we may obtain two different values for the chemical potential.
Therefore, it has to be decided which condition is more suitable
for practical fRG calculations.

At zero temperature and in a particle-number-conserving
theory, the quantity μ3 defined by

μ3 = E(N + 1) − E(N ) (28)
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2 , L = 2048
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4 , L = 4096 nf = 1

5 , L = 3125

nf = 1
3 , L = 2187

FIG. 1. Ground-state energy per site as a function of the interaction parameter U for filling nf = 1
2 , 1

3 , 1
4 , 1

5 . Full line: finite-size Bethe
ansatz; dotted line: first-order perturbation theory; double dotted dashed line: second-order perturbation theory; dashed line: fRG scheme-I;
double dashed dotted line: fRG scheme-II. For half-filling, results of both fRG schemes agree numerically within the resolution of this figure.

should also agree with the chemical potential μ. In truncated
fRG schemes, this is not the case, and Eq. (28) constitutes
another way to numerically determine a chemical potential.

IV. RESULTS AND DISCUSSION

In this section, the ground-state energy and its finite-size
dependence are determined numerically using the renormal-
ization schemes developed in the previous section. We analyze
the results in terms of the parameters of Eq. (2) and compare
with numerical results from finite-size Bethe ansatz as well
as perturbation theory. For convenience, a few necessary
Bethe ansatz formulas are collected in the Appendix. The
perturbative calculations are similar to Ref. 21.

We first discuss calculations of the ground-state energy
per site ε0. Figure 1 shows results for various filling factors
calculated for relatively large systems (from 2048 up to 4096

sites) so that finite-size terms are negligible (increasing the
system size by factor 1/nf would change the energy per
site ε0 at the order of 10−5). Both fRG schemes introduced
in the previous section produce quantitatively similar results,
which are, however, in slight disagreement with Bethe ansatz
calculations particularly for larger interactions U . Second-
order perturbation theory21 agrees with Bethe ansatz results
significantly better than fRG. At half-filling, fRG results
resemble first-order perturbation theory. It is also interesting
to observe that the differences between Bethe ansatz and
perturbation theory decrease with decreasing filling factor,
while the differences between Bethe ansatz and fRG are of
similar size for all fillings investigated. This point is discussed
further below.

Let us discuss possible reasons for these findings: As was
explained in the previous section, the huge set of coupled
ordinary differential equations, which is equivalent to the
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3

nf = 1
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nf = 1
5

FIG. 2. Chemical potential as a function of the interaction parameter U for filling nf = 1
3 , 1

4 , and 1
5 . For nf = 1

2 , it holds that μ = U . Plot
symbols as in Fig. 1.
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FIG. 3. Chemical potential (left) and number of particles (right) for filling nf = 1
5 as a function of the interaction parameter U . Plotting

symbols as in Fig 1. The squares show results obtained using condition (25).

functional flow equation, is truncated at second order. (This
is conventionally done to keep the calculation manageable.)
Furthermore, it is assumed that the renormalization flow
maintains the nearest-neighbor structure, and all longer-range
terms, which may develop during the renormalization, are
neglected. Additionally, one makes a static approximation.
This procedure eliminates terms which are second order in
the interaction26 and explains differences between fRG and
second-order perturbation theory. However, there is another
issue which is particularly important away from half-filling:
In order to obtain the ground-state energy, one needs to
determine numerically the chemical potential μ as well as
the particle number N for input into the initial condition (12)
and the relation E0 = a0 + μN . Both μ and N can only be
determined with numerical and systematic uncertainty, as will
be discussed in the following. These uncertainties in μ and
N are large enough to explain the differences between fRG
and perturbation theory shown in Fig. 1. Consequently, a
quantitative determination of ε0 within the fRG approach is
not easy. The advantage of fRG to be able to treat relatively
large system sizes is offset by the mentioned difficulties due
to the approximations involved.

An important ingredient of ground-state calculations away
from half-filling is the chemical potential, which we now
discuss separately. In the previous section, we introduced and
discussed two different conditions in order to determine the
chemical potential [Eqs. (25) and (26)]. In Fig. 2, we first
present chemical potentials calculated from the self-energy
using condition (26). We observe that, as expected from

Ref. 21, second-order perturbation theory agrees rather well
with Bethe ansatz calculations. The fRG scheme-I (dashed
line) is also in quite good agreement with the Bethe ansatz. In
contrast, the fRG scheme-II (used by Andergassen et al.) rather
strongly disagrees even with first-order perturbation theory.
This may be a consequence of the Fermi-surface projection
employed in the fRG scheme-II.

To obtain the chemical potential from condition (25), the
ground-state energy must be calculated as a function of μ.
In the left panel of Fig. 3, we compare results using both
conditions within fRG scheme-I for nf = 1

5 . Quantitatively,
the results produced by condition (25) are comparable to
second-order perturbation theory. However, it turns out that
if we relate particle number and ground-state energy via
condition (25) within our fRG truncation scheme, then the
parity conditions noted after Eq. (2) are not fulfilled. We finally
note that in fRG scheme-I the quantity μ3 defined in Eq. (28)
is numerically equal to the chemical potential μ1 [Eq. (26)].
In scheme-II, these two quantities are quite different, which is
probably a consequence of neglecting the self-energy feedback
in the renormalization of the interaction.

We may illustrate the inconsistencies observed between the
two conditions (25) and (26) in another way: If we determine
the chemical potential from Eq. (26), then the particle number
calculated from Eq. (25) appears not to be conserved for
different interaction strength.19 For filling nf = 1

5 , this is
demonstrated in the right panel of Fig. 3: the calculated total
number of particles is changing with the interaction strength
(the correct value 625 can be read off the figure at U = 0).
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FIG. 4. The quantity ε̃0 = ε0 + ( 1
2 − nf )μ as a function of the interaction parameter U for filling nf = 1

3 , 1
4 , and 1

5 . Plotting symbols as in
Fig. 1.
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FIG. 5. Compressibility as a function of the interaction parameter U for filling nf = 1
3 , 1

4 , and 1
5 . Plotting symbols as in Fig. 1.

Similar inconsistencies can be observed when the number of
particles is calculated from condition (26) using μ1. As a
consequence, parity calculated using μ1 is not conserved for
different magnetic fluxes ϕ.

The initial condition for a0 [Eq. (12)] and the relation
between a0 and the ground-state energy E0 = ao + μN both
depend on the chemical potential and the number of particles.
As was just discussed in some detail, both these quantities can
only be determined approximately within the fRG schemes
(see Figs. 2 and 3). This in turn induces uncertainties for the
determination of the ground-state energy per site ε0. In order
to investigate this influence, we define the quantity

ε̃0 = ε0 + (
1
2 − nf

)
μ = �/L + μ/2, (29)

which should be less sensitive to uncertainties in the chemical
potential than ε0 itself. Results for filling nf = 1

3 , 1
4 , and 1

5
are shown in Fig. 4. We observe that fRG results for ε̃0

within scheme-I are consistently in agreement with first-order
perturbation theory. For ε0, we observed similar behavior at
half-filling, where the chemical potential can be determined
exactly.

Next, we extract the compressibility κ from the finite-size
dependence of the ground-state energy Eq. (2):

1

κ
= N2

L

∂2E0

∂N2
= πn2 u

K
. (30)

Numerical results for this quantity are presented in Fig. 5.
Again, one observes that fRG scheme-I appears to be quan-
titatively superior over fRG scheme-II. Here, fRG scheme-I
is in very good agreement with second-order perturbation
theory. Results obtained for the chemical potentials μ1 and

μ2 in scheme-I agree numerically. Like the number of
particles, also the compressibility (as an average of the
density-density correlation function) should be obtained the
same when calculated in momentum or real space. Therefore,
the observed differences between the two fRG schemes can
again be attributed to the Fermi-surface projection employed
in scheme-II.

Finally, we present results for the Luttinger-liquid parame-
ter K . This parameter may be extracted from the numerical
calculations using different approaches. First, there is the
relation to the finite-size dependence of the ground-state
energy given in Eq. (2):

K = πN

√
κ

L

∂2E0

∂ϕ2
. (31)

However, if the ground-state energy is not available as in the
calculations in Ref. 16, one needs another way to determine
K . In Ref. 16, it is proposed to use the relation

K =
√

1 − g/(2πu)

1 + g/(2πu)
, (32)

where g is a renormalized interaction. Details on the precise
determination of g are given in Refs. 16 and 27. It is important
to note that Eq. (32) is based on the Luttinger model. Just as for
the chemical potential, one expects that due to the truncations
involved in the different renormalization scheme formulas,
Eqs. (31) and (32) do not produce the same results.

In Fig. 6, we present results based on Eq. (32). In
order to bring out small differences, we here plot �K ,
i.e., the difference between Bethe ansatz results and various
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4

FIG. 6. Difference �K of the Luttinger parameter K calculated from Eq. (32) and finite-size Bethe ansatz as a function of the interaction
parameter U for filling nf = 1

2 , 1
3 , and 1

4 . Plotting symbols as in Fig. 1.
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FIG. 7. Difference �K of the Luttinger parameter K calculated from Eq. (31) and finite-size Bethe ansatz as a function of the interaction
parameter U for filling nf = 1

2 and 1
3 (full line). For comparison, corresponding results of Fig. 6 are shown again with plotting symbols as in

Fig. 1.

approximation schemes as a function of the interaction U and
for various fillings. For the Luttinger parameter K , results of
fRG scheme-II obviously agree better with Bethe ansatz than
those of scheme-I. A fit in the U interval (−1,2) indicates
that scheme-II agrees with Bethe ansatz up to the second
order in U , while scheme-I only agrees up to first order in
U . This fact motivated the authors of Refs. 16 and 17 to prefer
fRG scheme-II and its way to determine the interaction. They
suggest that fRG scheme-II provides a better description of K

due to its projection of the interaction on the Fermi surface.
At half-filling, one observes an increasing �K for the large
U interval, which may indicate the emergence of the phase
transition to a charge density wave, which only occurs at
half-filling.

Additionally, we show in Fig. 7 numerical results from fRG
scheme-I for the Luttinger-liquid parameter K extracted from
the flux dependence of the ground-state energy using Eq. (31).
The figure indicates that one obtains results in good agreement
with Bethe ansatz. Determination of the flux dependence
of the ground-state energy is not easy for small (large) ϕ

for even (odd) numbers of particle due to the ground-state
degeneracy. Therefore, the flux dependence is determined
only from numerical results for large (small) ϕ. Furthermore,
we observe that determination of the ϕ dependence of the
ground-state energy is very sensitive to the choice of k0, the
point where the numerical renormalization flow starts. This
is indicated by the numerical noise seen in Fig. 7. One may
reduce noise by increasing k0. Moreover, the variation of the
energy as a function of the magnetic flux is very small, and
therefore a precise numerical determination of a derivative
is difficult. Consequently, the second-order derivative of the
energy with respect to the flux is numerically less precise
than the second-order derivative with respect to number of
particles.

Figure 7 demonstrates that K determined via Eq. (31) at
half-filling produces in the U interval (0,0.75) the smallest
�K of all methods. At smaller fillings, �K is rather large.
We attribute this to the difficulties to determine the chemical
potential, a problem we do not have at half-filling. Again, this
problem is related to the nonconservation of particle number
within the fRG approximation schemes. Since we have seen
above that the compressibility is less affected by this problem,
we conclude that the flux dependence suffers most from this

problem. (This is due to the very small variation of the energy
as a function of the magnetic flux.)

V. SUMMARY

We studied the ground-state energy of a ring of interacting
spinless fermions using fRG, Bethe ansatz, and perturbation
theory and introduced a method for the renormalization of
the interaction. The proposed renormalization procedure is
compared to the scheme introduced by Andergassen et al. in
Ref. 16. The two methods differ in the Fermi-surface projection
of the renormalized interaction. From the numerical results
we extracted the ground-state energy per site ε0, the chemical
potential μ, the compressibility κ , as well as the Luttinger
parameter K .

For the energy per site ε0, we found that at half-filling,
both fRG methods agree with first-order perturbation theory.
For other fillings, the differences to Bethe ansatz are almost
constant, while differences of perturbation theory and Bethe
ansatz decrease with decreasing filling. If we (artificially)
remove the explicit dependence on chemical potential via
the definition of the quantity ε̃0 [see Eq. (29)], the results
of scheme-I also away from half-filling agree with first-
order perturbation theory. This qualitatively also holds for
scheme-II.

Because the truncated fRG does not conserve the particle
number, different theoretically equivalent definitions of the
chemical potential μ are not equivalent numerically. One
has to choose which definition of the chemical potential is
suitable for fRG calculations, and we compared two different
ways to determine the chemical potential. It was shown that
the chemical potential μ2 determined from condition (26)
produces the same compressibility as the chemical potential
μ1 obtained from (25), but it conserves parity, and one obtains
a chemical potential μ3 from Eq. (28), which agrees with
μ1. These are good reasons to prefer the chemical potential
μ2 based on the Luttinger theorem Eq. (26). The chemical
potential calculated in this way is, however, less precise
(determined by comparison with Bethe ansatz) than the one
calculated from Eq. (25). A better value is obtained from
Eq. (28).

Results for the compressibility κ are similar to results
obtained from second-order perturbation theory. They agree
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numerically for both chemical potentials μ1 and μ2. This and
the equality of μ3 for both chemical potentials shows that
dependence of energy on number of particles is described in
fRG as good as in second-order perturbation theory.

Two different methods are also investigated for the calcu-
lation of the Luttinger-liquid parameter K . The first method
is based on the Luttinger model and Eq. (32). In this case,
fRG scheme-II produces better results than scheme-I due
to Fermi-surface projection. Presumably, this approximation
treats interaction effects around the Fermi surface more
accurately and results in a better description of K . The second
method is based on the finite-size dependence of ground-state
energy. At half-filling, this method is the most accurate for
small interaction strengths U . At other fillings, calculations
are hampered by the difficulty to calculate numerically the
second-order derivative of the energy with respect to magnetic
flux ϕ.

From a detailed analysis of the numerical results, we
conclude that the Fermi-surface projection used in scheme-II is
advantageous for the quantitative description of the Luttinger
parameter K , but it is not helpful for calculations of the
ground-state energy. This finding should be relevant for other
fRG calculations which involve the ground-state energy, e.g.,
the determination of the interaction between two impurities
by Wächter et al.29 In general, we conclude that a consistent
description of Luttinger physics with fermionic fRG appears
to be difficult, which we mainly attribute to the nonconserving
character of the fRG approximation scheme. Our results also
demonstrate via the comparison with perturbation theory that
the fRG schemes considered here are only controlled to leading
order in the interaction, with the exception of the calculation
of the parameter K in the fRG scheme proposed in Ref. 16 by
Andergassen et al., which appears to be controlled to second
order in U . However, this is fortuitous due the judicious
use of the Luttinger model within the construction of this
approximation and only applies to the Luttinger parameter K .
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APPENDIX

1. fRG equations in static approximation

a. Flow equations

After Fourier transformation, using the relations (8), the
effective average action (5) takes the form

�k[φ∗,φ] = βa0,k +
∑
i,n

(iωn + ai,i;k)φ∗
i,nφi,n

+ ai+1,i;kφ
∗
i+1,nφi,n + ai,i+1;kφ

∗
i,nφi+1,n

+ 1

β

∑
i,n,m,l

Ui;kφ
∗
i,nφi,mφ∗

i+1,lφi+1,n+l−m. (A1)

Because the Hamiltonian is Hermitian, for the self-energies it
holds that aij = a∗

ji . For convenience, we define

�̃k = 1

β

∑
i,n,m,l

Ui;kφ
∗
i,nφi,mφ∗

i+1,lφi+1,n+l−m. (A2)

The inverse propagator matrix �
(2)
k has the structure

�
(2)
k =

(
�φ∗φ �φ∗φ∗

�φφ �φφ∗

)
= �̄

(2)
k + �̃

(2)
k , (A3)

where the indices indicate derivatives with respect to φn and
φ∗

n , respectively. This matrix is separated into two parts, one
part �̄

(2)
k , which does not contain Grassmann variables, and

a second part �̃
(2)
k , which does contain Grassmann variables.

From Eq. (A1), it is obvious that the matrix �̄
(2)
k is given by

�̄
(2)
k;n,n′ =

(−(ak + iωnE) 0

0 (ak + iωnE)T

)
δn,n′

=
(−g−1(iωn) 0

0 [g−1(iωn)]T

)
δn,n′ , (A4)

where E is identity matrix diag(1,1, . . . ,1). From Eq. (A2),
one can see that the matrix �̃

(2)
k is neither block diagonal in the

site indices nor diagonal in the Matsubara indices. However,
since we are only interested in the static approximation, we
only need to retain Grassmann variables with Matsubara index
0. In this case, �̃(2)

k has the following Matsubara index structure

(�̃φ∗φ)n,n′ ∝ δn,n′ , (�̃φφ∗ )n,n′ ∝ δn,n′ ,
(A5)

(�̃φ∗φ∗ )n,n′ ∝ δn,−n′ , (�̃φφ)n,n′ ∝ δn,−n′ .

Using these results, it is easy to see that the renormalization
group equation (4) can be written in the form

∂

∂k
�k[φ∗,φ] = −1

2
tr
∑

n

[
Sk,nn

∑
�

(−1)�
(
�̃

(2)
k Gk

)�
nn

]
(A6)

with

Sk = Gk

∂

∂k
Rk, G−1

k = �̄
(2)
k + Rk. (A7)

The trace symbol indicates a summation over site indices only.
When evaluating the matrix product (�̃(2)

k Gk)�, it is crucial to
observe Eq. (A5): whenever an off-diagonal block of �̃

(2)
k is

multiplied with one of the blocks of Gk , e.g., g(iωn), one
obtains g(iω−n).

For zero temperature, T → 0 and after the evaluation of the
necessary matrix products as explained above, we can replace
the sum over the Matsubara index n in Eq. (A6) by an integral

∞∑
n=−∞

→ β

2π

∫ ∞

−∞
dω (A8)

with (ωn → ω and ω−n → −ω).
Using a sharp cutoff regulator of the form

Rk,nn′ =
(−Ckθ (k2 − ω2)E 0

0 Ckθ (k2 − ω2)E

)
δnn′ , (A9)
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one can perform the integration over ω analytically with the
help of the relation12

δ(ω − k)f [θ (ω − k)] → δ(ω − k)
∫ 1

0
ds f (s). (A10)

Comparing the coefficients of the various Grassmann struc-
tures on both sides of Eq. (A6), one obtains the flow equations
(9) (from � = 0), (10) (from � = 1), and (11) (from � = 2) for
the various running couplings given in the main text.

b. Initial conditions

In order to solve these equations, we need appropriate initial
conditions. These are obtained from the Hamiltonian (1) or the
bare action of the model. The initial condition for the effective
average action could be up to term proportional to C obtained
from the condition �(∞) = S0. At infinity, one finds from the
Hamiltonian

a0;∞ = 0, (A11)

aii;∞ = −μ (A12)

ai,i+1;∞ = −e−iφ/L, (A13)

ai+1,i;∞ = −eiφ/L, (A14)

Ui;∞ = U. (A15)

However, due to the fact that for a numerical solution of the
flow equations we have to start the renormalization flow at a
finite k0, we must take care of the initial flow from ∞ to k0

analytically.
Because of the discretization, we evaluate fields at slightly

different times in the path integral φ̄(τ + δ), φ(τ ) that
introduce additional infinitesimal coefficients into our action

�[φ∗
α,φα] = βa0,k +

∑
i,n

(iωn + ai,i;ke
−iδωn )φ∗

i,nφi,n

+ ai+1,i;ke
−iδωnφ∗

i+1,nφi,n

+ ai,i+1;ke
−iδωnφ∗

i,nφi+1,n + 1

β

∑
i,n,m,l

Ui;ke
−iδ(ωn+ωl )

×φ∗
i,nφi,mφ∗

i+1,lφi+1,n+l−m. (A16)

These coefficients regularize our equations at infinity, and we
can integrate the flow from infinity to some value k0. The flow
of interaction Ui can be neglected because it depends on k as
1/k2 so we need to consider only self-energies and ground-
state energy. For the ground-state energy and the diagonal part
of the self-energy, we find the equations

ȧ0;k = 1

2π

∑
ω=±k

ln k−n det(a + ieiωδω1), (A17)

ȧii;k = 1

2π

∑
ω=±k

[
Ui−1(a + ieiωδω1)−1

i−1,i−1

+Ui(a + ieiωδω1)−1
i+1,i+1

]
. (A18)

For large k, they can be easily solved analytically:

aii(k0) = aii(∞) − 2U

π

∫ k0

∞
dk

sin(ikδ)

k

= U − μ + 2U

π
Si(k0δ) (A19)

from which we have

a0(k0) = − 1

π

∑
j

∫ k0

∞
ajj ;k

sin(kδ)

k
(A20)

= 1

2

(
LU

2
− Lμ

)
+ 1

π
(μL − LU )Si(k0δ) + UL

π2
Si[(k0δ)2]

(A21)

and initial conditions are obtained by performing limit δ →
0+.

2. Determinant and inverse of a periodic tridiagonal matrix

In this Appendix, we study L × L Toeplitz matrices of the
form

T =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

d a 0 . . . a∗

a∗ d a 0

0
. . .

. . .
. . .

...
... a∗ d a

a . . . 0 a∗ d

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (A22)

Their normalized eigenvectors xj and corresponding eigenval-
ues Xj are obtained as

xj = 1√
L

(eikj ,ei2kj , . . . eiLkj ), Xj = d + aeikj + a∗e−ikj

(A23)

with kj = 2πj

L
for j = 1, . . . ,L. The determinant of T is

obtained as the product of all eigenvalues. The inverse of T
reads as

(T−1)mn = 1

L

L∑
j=1

ei(m−n)kj

Xj

, (A24)

and evaluation of the sum yields

(T−1)mn = ei(n−m)ϕ

d

√
1 − 1

A2

(
O |m−n| + Om−n OLe−iLϕ

1 − OLe−iLϕ

+On−m OLeiLϕ

1 − OLeiLϕ

)
(A25)

with A = d/(2|a|), ϕ = arg(a), and O = A(
√

1 − 1/A2 − 1).
This result is valid for |K| < 1. From Eq. (A25), we can also
read off the result for an infinite ring (L → ∞)(

T−1
∞
)
mn

= O |m−n|

d

√
1 − 1

A2

(A26)

and we can determine “finite-size effects.”
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3. Chemical potential at half-filling

In this Appendix, we use the definitions and notations
introduced in Sec. II. For a lattice with an even number of
sites, we define the unitary operator (see, e.g., Ref. 30)

J (sh) = (c+
L − cL)(c+

L−1 + cL−1) . . . (c+
2 − c2)(c+

1 + c1)

(A27)

with the properties

J (sh)cj (J (sh))+ = (−1)j c+
j ,

(A28)
J (sh)c+

j (J (sh))+ = (−1)j cj .

This operator defines the so-called Shiba transformation. If we
act with this operator on a vacuum state |0〉 (empty lattice), we
obtain

J (sh)|0〉 = c+
L . . . c+

1 |0〉, (A29)

i.e., it maps an empty lattice onto a fully occupied lattice.
Consequently, a lattice with N occupied states is mapped onto
a lattice with L − N occupied states.

For simplicity, we only discuss the magnetic field free
case and set φ = 0 in the Hamiltonian H . Then, H − μN̂

transforms as

J (sh)(H − μN̂ )(J (sh))+ = H + (U − μ)L + (μ − 2U )N̂

(A30)

under a Shiba transformation (N̂ is the number operator). The
Gibbs free energy of the system

F (μ,T ,U ) = −T ln

[
tr exp

(
−H (U ) − μN̂

T

)]
(A31)

is invariant under the unitary Shiba transformation

F (μ,T ,U ) = L(U − μ) + F (2U − μ,T ,U ) (A32)

since the trace is invariant under cyclic permutations of
operators.

The expected number of electrons N = 〈N̂〉 in the system
is then determined from

N = − ∂

∂μ
F (μ,T ,U ) = L + ∂

∂μ′ F (μ′,T ,U )

∣∣∣∣
μ′=2U−μ

.

(A33)

Consequently,

L − N = − ∂

∂μ′ F (μ′,T ,U )

∣∣∣∣
μ′=2U−μ

(A34)

from which follows

μ[1 − nf ] = 2U − μ[nf ]. (A35)

Therefore, at half-filling, it holds that μ = U .

4. Bethe ansatz

Here, we briefly review some Bethe ansatz formulas used
for our calculations. We follow standard presentations as,
e.g., given in Ref. 1, where more details can be found.
The ground-state wave function |ψ〉 of the Hamiltonian
(1) (t = 1) is assumed to have the following form (“Bethe
ansatz”):

|ψ〉 =
∑

j1<j2<...<jN

∑
P

A(P )ei
∑N

m kPm jm |j1 . . . jN 〉, (A36)

where P represents all permutations of the index set
{1, . . . ,N}. Then, the ground-state energy E0 of the Hamil-
tonian is given by

E0 = −2
N∑

i=1

cos ki, (A37)

and the parameters ki solve the set of nonlinear equations

kiL = 2πni − φ +
∑

j

�(ki,kj ), (A38)

where ni is integer if N is odd and half-integer if N is even.
The phase �(ki,kj ) is defined by

�(ki,kj ) = 2 arctg
U sin

( ki−kj

2

)
2 cos

( ki+kj

2

)+ U cos
( ki−kj

2

) . (A39)

This set of equations can be solved easily numerically for
given N and U . Then, with the numerically determined
parameters ki , one calculates the ground-state energy, the
chemical potential μ = ∂E0/∂N , and the LL parameters.
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29P. Wächter, V. Meden, and K. Schönhammer, Phys. Rev. B 76,

045123 (2007).
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