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Contribution of electric quadrupole transitions to scattering cross section and collected current in a
transmission electron microscope
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In this paper, the validity of the dipole approximation in the calculation of the double-differential scattering
cross section (DDSCS) is investigated. A new expression of the DDSCS is obtained by adding to the classical
term associated with the electric dipole transitions two terms taking the electric quadrupole transitions and the
interference between dipole and quadrupole transition channels into account. In this study, we restrict to cases
where the probed atom site is tetrahedral or octahedral. Moreover, the calculation of the average collected current
(ACC) falling into the transition electron microscope collector is carried out by assuming that the incident
electron beam is parallel. Then, DDSCS and ACC reduce to a linear combination of five intrinsic components,
which only depend on the energy loss. The dominant intrinsic component is associated with the electric dipole
transitions, three other intrinsic components are associated with the electric quadrupole transitions, and the
last one, which cancels when the probed atom site is an inversion center, is associated with the interferences
between dipole and quadrupole transition channels. These intrinsic components are rather hard to calculate,
but their weights can be readily evaluated. In the case of the ACC, they essentially depend on the incident
beam orientation and the collector aperture. The amplitudes of these weights allow us to evaluate the actual
importance of the electric quadrupole transitions. At large collector aperture, the weights of the three quadrupole
intrinsic components strongly increase and, thus, the contribution of the electric quadrupole transitions can not
be neglected. At smaller collection angles, the importance of the electric quadrupole transitions can be estimated
in each particular situation by comparing the amplitudes of the dipole and quadrupole intrinsic components.
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I. INTRODUCTION

The interpretation of electron energy loss near edge
structure (ELNES) spectra requires the calculation of the
double-differential scattering cross section (DDSCS).1–12 In
order to have a good understanding of this quantity, let us
imagine a fast electron in a state of wave vector k and energy
E moving to a target (see Fig. 1). The DDSCS is proportional
to the number of fast electrons per unit of time, scattered into
the solid angle δ� located in the direction of the wave vector
k + q, within an energy range δE centered at E − �E. In the
present case, we only consider scattered electrons which are
involved in scattering events for which the energy loss �E

of the fast incident electron is accompanied with the energy
gain �E of an electron initially in a core atomic state of the
target denoted by |ϕi〉. Then, this core electron is ejected to an
unoccupied valence state of the target, denoted by |ϕf 〉.

This event is only possible if �E is large enough to induce
an electron transition to an unoccupied valence level εf located
above the Fermi level. This event can be observed because it
occurs just above the transition threshold associated with the
particular core atomic level εi . Finally, the DDSCS is obtained
by dividing the number per unit of time of these scattered
electrons, by δ�, δE, and the number of fast incident electrons
crossing a unit area during a unit of time. So, the DDSCS has
the dimension of an area per unit of energy and per unit of
solid angle.

The ELNES spectra collected in a transmission electron
microscope (TEM) are obtained by measuring the current of
electrons falling into a collector of solid angle �� (see Fig. 1).
Let us point out that the collector is aligned with the incident
beam axis. Among the fast electrons, which have undergone an

energy loss �E, only a very small part of them are implicated
into the excitation of a core electron of energy εi . However, the
latter are revealed by a sudden increase of the collected current
at the threshold energy. The contribution to the ELNES spectra
of these electrons is obtained by subtracting the background
due to the other inelastically scattered electrons. It is clear
that an electron energy-loss spectroscopy (EELS) spectrum is
proportional to the average of the DDSCS over the solid angle
�� of the collector. The acceptance cone of the detector is
characterized by the collection semiangle βm (see Fig. 1). The
situation where βm is about several times the characteristic
angle θE given by

θE = �EE0

E2
0 − m2c4

(1)

is a common situation. In the above expression of θE , E0 =
mγc2 is the relativistic energy of the fast incident electron.
The average of the DDSCS over an acceptance cone of several
θE is often quite different from the DDSCS calculated for any
direction of the transferred wave vector.13,14

Let us note that the collection semiangle and the incident
beam convergence angle are usually very small (� 50 mrad.).
As a consequence, the modulus of the transferred wave vector q

is small compared with the modulus of the incident wave vector
k. On the other hand, the distance r from the core electron of
energy εi to the atomic nucleus remains very small compared
with the probed atom size. The scattering angle (denoted by
β in Fig. 1), and thus the modulus q of the transferred wave
vector, can be sufficiently small to make the dimensionless
quantity q · r � 1. In this case, the replacement of exp(iq · r)
with its first-order expansion is a satisfactory approximation,
called dipole approximation.15–21 It can be easily shown that
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FIG. 1. (Color online) Double-differential scattering cross sec-
tion and collected current of inelastically scattered electrons in a
TEM.

if the scattering angle β is small, and if the energy loss �E

is much smaller than the kinetic energy E0 − mc2 of the fast
incident electron, then q is approximately given by

q ≈ 1

h̄c

√(
E2

0 − m2c4
)
β2 + E2

0 �E2

E2
0 − m2c4

. (2)

In this expression,

E2
0 = h̄2k2c2 + m2c4 (3)

is the square of the relativistic energy of the fast incident
electron. We can get some idea of the domain of validity of the
dipole approximation by evaluating an upper bound of q · r,
that is to say of qr , at a distance r from the probed atom
center for which the probability of finding the core electron is
maximum. Actually, we have to consider q 〈r〉, in which 〈r〉
is the average distance from the core electron to the atomic
nucleus, regardless of the direction of r. This distance can be
roughly estimated by assuming that the core electron wave
function is a hydrogenlike radial wave function17,18 in which
the nuclear charge Z has to be replaced with an effective
nuclear charge Z
, which takes the screening of the nucleus
by other electrons into account. In any case, Z
 < Z and thus
keeping Z amounts to underestimate q 〈r〉. Other evaluations
of 〈r〉 by using Slater-type orbitals or linear combinations
of Slater-type orbitals22,23 lead to slightly larger values of
q 〈r〉. So, use of these core wave functions leads to results
very similar to those obtained by using hydrogenlike wave
functions. We restrict here to K , L23, and M45 edges for which
the quantity 〈r〉 is given in Table I.

For the particular edges considered here (see caption of
Fig. 2), it can be easily shown that for β = θE , q 〈r〉 varies
from 0.017 07 (case of the Rb M45 edge) to 0.0544 (case of the
O K edge). So, the dipole approximation is indisputably valid
for electrons collected near the collector center.24 Figure 2

TABLE I. Average distance from a core electron to the probed
atom center.

K L23 M45

Edge ni = 1, �i = 0 ni = 2, �i = 1 ni = 3, �i = 2

〈r〉 3a0/2Z 5a0/Z 21a0/2Z

K edg B C N O
L23 edge Si
M45 edge

Cu
Rb

B: 0.547
C: 0.826
N: 1.164
O: 1.548
Si: 0.290

Cu: 2.708
Rb: 0.321
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FIG. 2. This figure shows the variation of q 〈r〉 with the fast
particle scattering angle [see Eq. (2)] β. Assuming that the incident
electron beam energy is 200 keV, different edges are examined: B
K edge, �E = 188 eV, Z = 5; C K edge, �E = 284 eV, Z = 6; N
K edge, �E = 400 eV, Z = 7; O K edge, �E = 532 eV, Z = 8;
Si L23 edge, �E = 99.2 eV, Z = 14; Cu L23 edge, �E = 931 eV,
Z = 29; M45 Rb edge, �E = 110.3 eV, Z = 37. For this incident
beam energy, the value in mrad of the characteristic angle θE for each
kind of probed atom is indicated.

shows that this approximation is obviously no longer valid
when β � θE . In the case of edges considered here, it can
be observed that q 〈r〉 is

√
2/2 for scattering angles between

15 mrad (Si L23 edge) and 31 mrad (Cu L23 edge), a quite
usual range for scattering angle β. Actually, if q 〈r〉 �

√
2/2,

then it can be legitimately suspected that the second-order
term, neglected in the dipole approximation, can introduce a
non-negligible correction. Let us point out that the quantity
q 〈r〉 ≈ 1 if β is 25 mrad for the boron and 35 mrad for the
nitrogen. At these large scattering angles, it is clear that the
dipole approximation is no longer valid. It will be shown that
new scattering events involving electric quadrupole transitions
from the atomic core levels takes place.25

Let us recall that in the case where the dipole approximation
is valid, the ELNES spectrum can be described as a linear
combination of two (case of dichroism), three, four, or six
(a, b, or c trichroism, respectively) particular DDSCS called
intrinsic components.14 These different situations are related to
the symmetry around the probed atom site, i.e., the site where
the |ϕi〉 core atomic state is centered. Let us point out that
an intrinsic component is DDSCS calculated when q = −θEk
and a particular direction of k. In this situation, the relativistic
corrections disappear, and thus the intrinsic components can
be obtained from a nonrelativistic computation.14 In the
well-known case of dichroism, a threefold, fourfold, or sixfold
rotation axis passes through the probed atom site. More
precisely, an axial point group called local group completely
describes the symmetry property of the probed atom site. In
cases of trichroism, the local group is (1) or (1) (c trichroism),
(2) or (m) (b trichroism), (2mm) or (222) (a trichroism).14,26 In
Sec. III B, it will be easily shown that the DDSCS in the dipole
approximation is isotropic when the probed atom belongs to a
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tetrahedral or an octahedral site. In these cases, the local point
group may be (23), (m3), (43m) (432), or (m3m). They are the
only cases where DDSCS and ELNES spectra can be directly
compared. In any other case, the DDSCS is anisotropic, that is
to say, it depends on the q and k directions, and thus ELNES
spectrum and DDSCS may be very different.27

This paper gives a treatment of the DDSCS which takes
the contribution of the electric quadrupole transitions into
account. With this treatment, the DDSCS is a sum of three
terms: aside from the well-known term associated with the
electron dipole transitions, there is a second term associated
with the electron quadrupole transitions, and a third term taking
the interference between dipole and quadrupole transition
channels into account. The latter term cancels when the probed
atom site is an inversion center. We restrict here to the situations
where the probed atom site is tetrahedral or octahedral, for
which the DDSCS under the dipole approximation is isotropic.
In order to investigate the contribution to ELNES spectra of
electric quadrupole transitions, the calculation of the current
of inelastic scattered electrons collected in a TEM is required.
For sake of simplicity, this calculation is restricted to the
situation where the incident electron beam is parallel. As in
the case of the dipole approximation,14 the collected current
is a linear combination of intrinsic components associated
with the three kinds of terms mentioned above. The relative
importance of electric dipole and quadrupole transitions is
governed by the relative weights of the dipole and quadrupole
intrinsic components. Expressions of these weights, which
essentially depend on the collection aperture and the incident
beam energy, are given in the cases where the symmetry around
the probed atom site is described with the five tetrahedral or
octahedral point groups. As roughly shown in this section, this
study establishes that the terms associated with quadrupole
scattering events have a noticeable importance when the
collection semiangle is much larger than the characteristic
angle.

II. BEYOND THE DIPOLE APPROXIMATION

Many relativistic treatments of the DDSCS can be found in
literature.13,14,28–31 The subsequent developments are actually
based upon results obtained in Refs. 13, 14, and 30, which are
gathered in Ref. 32. In the latter, it has been established that
the general expression of the DDSCS is given by

∂2σ

∂E∂�
= 4γ 2

a2
0q

4

∑
f unocc

∣∣∣∣〈ϕf | Ô

1 − (q̂·v)2

c2

|ϕi〉
∣∣∣∣
2

δ(εf − εi − �E).

(4)
In this expression, which is a sum over the unoccupied electron
states labeled by f , q̂ = q

q
is the unit vector along the q

direction, and v is the incident electron velocity

v = h̄k
mγ

, (5)

which is related to the wave vector k and the relativistic factor

γ = 1√
1 − v2

c2

. (6)

The operator Ô is given by

Ô = e−iq·r + ih̄e

2mc2
(v · ∇e−iq·r + e−iq·rv · ∇). (7)

In Ref. 32, the theoretical developments have been carried out
within the framework of the dipole approximation, based upon
a first-order expansion in q · r of the operator Ô. In this paper,
we examine the contribution to the DDSCS of the second-order
term.

A. Electric dipole, magnetic dipole, and electric quadrupole
transitions

The expansion to the second-order of the operator Ô leads
to

Ô = 1 − iqr + ih̄

mc2
v · ∇ − 1

2
(qr)2

+ h̄

2mc2
((v · ∇)(q · r) + (q · r)(v · ∇)) + . . . . (8)

Let us emphasize that the symmetrical ordering of ∇ and r in
the last term of expression (8) must be preserved.33 Using the
identity34

(q · r)(v · ∇) = 1
2 [(q · r)(v · ∇) + (v · r) (q · ∇)]

+ 1
2 (q × v) · (r × ∇) (9)

and the relation

− ih̄∇ = m

ih̄
[r, h0]− (10)

in which h0 is the Hamiltonian of the unperturbed system,35

the expression (8) can be transformed into

Ô = 1 − i

(
qr − 1

h̄c2
v · [r, h0]−

)
+ i

2mc2
(q × v) · L

−1

2
(qr)2 + 1

2h̄c2
[(q · r)(v · r), h0]− + . . . . (11)

In the above expression, r × ∇ is expressed in terms of
the orbital angular momentum L = −ih̄r × ∇. Actually, the
expression (11) is a sum of four terms.

(i) A zeroth-order term in q · r, Ô(0) = 1.
(ii) A first-order term in q · r. This term is associated with

the electric dipole transitions and is given by

Ô
(1)
ed = −i

(
q · r − 1

h̄c2
v · [r, h0]−

)
. (12)

(iii) A part of the second-order term in q · r,

Ô
(2)
md = i

2mc2
(q × v) · L, (13)

is associated with the magnetic dipole transitions. Its expres-
sion can be modified to take the electron spin S into account.
Then, we obtain

Ô
(2)
md = i

2mc2
(q × v) · (L + gS) (14)

instead of the expression (13). In the above expression, g is
the Landé factor.

155112-3
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(iv) Another part of the second-order term in q · r,

Ô(2)
eq = −1

2
(q · r)2 + 1

2h̄c2
[(q · r)(v · r), h0]− (15)

is associated with the electric quadrupole transitions. Let us
note that the similar term encountered in x-ray absorption
near-edge spectroscopy (XANES) is slightly different.26 It
is roughly obtained by removing the first term − 1

2 (q · r)2,
replacing q with the polarization vector ε̂ of the electromag-
netic field, and replacing v with h̄k/(mγ ). In this way, if the
dipole approximation becomes no longer valid, the XANES
computation programs have to be used with circumspection
for ELNES calculations.

B. Dipole and quadrupole matrix elements

The matrix element in the expression (4) of the DDSCS can
be now evaluated. Assuming that the unoccupied valence state∣∣ϕf

〉
is orthogonal to the initial core state36

∣∣ϕi

〉
, this matrix

element can be decomposed into

〈ϕf | Ô

1 − (q̂·v)2

c2

|ϕi〉

= 〈ϕf | Ô
(1)
ed

1 − (q̂·v)2

c2

|ϕi〉 + 〈ϕf | Ô
(2)
md

1 − (q̂·v)2

c2

|ϕi〉

+〈ϕf | Ô(2)
eq

1 − (q̂·v)2

c2

|ϕi〉 + . . . .

1. Dipole matrix element

The first-order term is given by

〈ϕf | Ô
(1)
de

1 − (q̂·v)2

c2

|ϕi〉 = −i〈ϕf |q · r − 1
h̄c2 v · [r, h0]−

1 − (q̂·v)2

c2

|ϕi〉

= −i〈ϕf |q · r + εf −εi

h̄c2 v · r

1 − (q̂·v)2

c2

|ϕi〉.

The presence of the Dirac distribution in (4) allows us to
replace εf − εi with the energy loss �E. Using the expression
(1) of the characteristic angle and replacing v with h̄k/mγ

lead to the new expression of the dipole matrix element

〈ϕf | Ô
(1)
de

1 − (q̂·v)2

c2

|ϕi〉 = −i〈ϕf |q
 · r|ϕi〉 (16)

in which13

q
 = q + v2

c2 θEk

1 − v2

c2 (q̂ · k̂)2
. (17)

Let us remark the following:
(i) If v

c
approaches 0, then q
 approaches q. As a con-

sequence, the nonrelativistic expression of the dipole matrix
element is obtained by replacing q
 with q in (16).

(ii) If q is parallel to k, which means that q = −θEk, then
q and q
 coincide.

The last remark indicates that the relativistic corrections
cancel when the scattering angle approaches 0. In the subse-
quent developments, we shall abundantly refer to this remark.

2. Magnetic dipole matrix element

The matrix element associated with magnetic dipole tran-
sitions is given by

〈ϕf | Ô
(2)
dm

1 − (q̂·v)2

c2

|ϕi〉 = i

2mc2
〈ϕf | (q × v) · (L + gS)

1 − (q̂·v)2

c2

|ϕi〉.
(18)

Let us assume that the initial core electron state |ϕi〉 is
characterized by a principal quantum number ni , an azimuthal
quantum number �i , a magnetic quantum number mi , and a
spin σi :

|ϕi〉 = |ni, �i, mi, σi〉. (19)

According to the expression (18), the operator L + gS acts on
the core state |ni, �i, mi, σi〉 and produces a linear combination
of states |ni, �i, mi ± 1, σi〉 and |ni, �i, mi, ± 1

2 〉. In the
present case where εi � −100 eV, these bound states are
orthogonal to the unoccupied valence states |ϕf 〉. Therefore,
the magnetic dipole matrix element cancels, which means
that the magnetic dipole transitions do not participate in the
ELNES spectra. A similar conclusion is obtained in the case
of XANES.26

3. Quadrupole matrix element

Its expression is given by

〈ϕf | Ô(2)
qe

1 − (q̂·v)2

c2

|ϕi〉

= −1

2
〈ϕf | (q · r)2 − 1

2h̄c2 [(q · r) (v · r) , h0]−

1 − (q̂·v)2

c2

|ϕi〉.

Proceeding as in the case of the electric dipole matrix, we
obtain

〈ϕf | Ô(2)
qe

1 − (q̂·v)2

c2

|ϕi〉 = −1

2
〈ϕf |(q · r)(q
 · r)|ϕi〉. (20)

As previously seen, the nonrelativistic expression of the
electric quadrupole matrix element is obtained by replacing
q
 with q.

Afterward, we shall consider the matrix element of the
operator

â = −iq
 · r − 1
2 (q · r)(q
 · r). (21)

Neglecting the relativistic corrections (q
 = q), â reduces to
the sum of the first- and second-order terms obtained in the
power-series expansion of eiqr. In Appendix A, it is shown
that a quadrupole electric transition from the initial state ϕi to
a final state ϕf is governed by the quadrupole selection rule.

III. EXPRESSION OF THE DDSCS

A. Dipole, quadrupole transition channels and interferences
between them

According to (21), the expression (4) of the DDSCS can be
rewritten in the form

∂2σ

∂E∂�
= 4γ 2

a2
0q

4

∑
f unocc

|〈ϕf |â|ϕi〉|2δ(εf − εi − �E). (22)
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Replacing â with its expression given in (21) leads to write the
DDSCS in the form of a sum of three terms:

∂2σ

∂�∂E
= ∂2σd

∂�∂E
+ ∂2σdq

∂�∂E
+ ∂2σq

∂�∂E
. (23)

The first term is the dipole approximation of the DDSCS, and
is given by

∂2σd

∂E∂�
= 4γ 2q
2

a2
0q

4

∑
f unocc

|〈ϕf |q̂
 · r|ϕi〉|2δ(εf − εi − �E).

(24)
This term takes the electric dipole transitions into account. The
third term is the quadrupole part of the DDSCS and is given
by

∂2σq

∂E∂�
= γ 2q
2

a2
0q

2

∑
f unocc

|〈ϕf |(q̂ · r)(q̂
 · r)|ϕi〉|2

×δ(εf − εi − �E). (25)

This term takes the electric quadrupole transitions into ac-
count. The second term describes the interferences between
electric dipole and quadrupole transition channels. The con-
tribution of interferences between these transition channels
has already been investigated in the field of the photoelectron
spectroscopy.37,38 This term is given by

∂2σqd

∂E∂�
= −4γ 2q
2

a2
0q

3

∑
f unocc

Im(〈ϕf |q̂
 · r|ϕi〉

×〈ϕi |(q̂ · r)(q̂
 · r)|ϕf 〉)δ(εf − εi − �E). (26)

It must be noticed that, contrary to the dipole and quadrupole
parts of the DDSCS, which are always strictly positive, the
dipole quadrupole interference part of the DDSCS can be
negative.

B. Dipole part of the DDSCS

1. Dipole intrinsic components

This part of the DDSCS is associated with electric dipole
transitions for which the selection rule is �� = ±1.32 Near
a K edge (�i = 0), an ELNES spectrum can be seen as a
local p density of unoccupied states at the probed atom.
The situation is a little more complicated near a L23 edge,
where it would rather represent a mixture of local s and d

densities of unoccupied states at the probed atom, and a term
of interference between p to s and p to d transition channels.

It is very useful to separate the dependency on the
orientation of the wave vectors q and k from the dependency
on the variation of the energy loss �E near the transition edge.
This separation can be easily carried out by rewriting the dipole
DDSCS given in (24) as a quadratic form in the components
q̂


x , q̂

y , and q̂


z of the vector q̂
 = q
/q
:

∂2σd

∂E∂�
= q
2q2

min

q4

∑
u v

q̂

uq̂



v�

d
uv, (27)

in which the coefficients �d
uv given by

�d
uv = 4γ 2

a2
0q

2
min

∑
f unocc

〈ϕf |u|ϕi〉〈ϕi |v|ϕf 〉δ(εf − εi − �E)

(28)
have the dimension of a DDSCS. In the above expressions, u

and v can take the values x, y, or z. The expression (28) does
not depend on the directions of q and q
, while it strongly
depends on the variation of the energy loss �E. On the other
hand, the factors q


uq


v = q
2q̂


uq̂


v in (27) weakly depend on

the variations of �E as long as these variations remain small
compared with �E, which is true for most ELNES spectra,
while they strongly depend on the q and q
 orientations. By
using the relations �d

uv = �d
vu obtained from (28), it can be

seen that �d
uv + �d

vu is real. Furthermore, for any pair of
distinct labels u and v, we have the relation

�d
uv + �d

vu = �d
u+v u+v − �d

uu − �d
vv. (29)

Then, the dipole part of the DDSCS can be rewritten in the form
a linear combination of six real coefficients called intrinsic
components14:

∂2σd

∂E∂�
= q2

min

q4

{
q


x (q

x − q


y − q

z )�d

xx + q

y (q


y − q

z − q


x )

×�d
yy + q


z (q

z − q


x − q

y )�d

zz + q

xq



y�

d
x+y x+y

+ q

yq



z�

d
y+z y+z + q


z q


x�

d
z+x z+x

}
. (30)

It is the most general expression of the dipole part of the
DDSCS, which is valid in the situation of (c) trichroism,14

when the local point group describing the symmetry of the
probed atom site is (1) or (1̄). For a higher symmetry around
the probed atom site, the above expression can be markedly
simplified. The dipole approximation of the DDSCS has
been already evaluated for most of the probed atom site
symmetries,14 and thus we shall not come back in detail to
this problem. However, a much simpler method of finding
most of the results of Ref. 14 is used here.39 As this new
method is applied to the investigation of the dipole quadrupole
interference part and the quadrupole part of the DDSCS, it will
be succinctly presented in the case of the dipole approximation.
Here, we essentially focus on the cases of dichroism and
isotropy.

2. Invariance of �d
uv under any operation of the local group

The DDSCS must be unchanged under any operation of the
local point group. For instance, in the case where this operation
is a rotation by ϕ about the z axis, the transformation law of
the coordinates is given by

(x, y, z) → (x cos ϕ − y sin ϕ, x sin ϕ + y cos ϕ, z).

Note that this axis is henceforth chosen as the main rotation
axis. In a more general case, any operation τ of the local point
group is associated with a change of the u coordinate into

ũ =
∑
u1

τ uu1u1. (31)

In this relation, τ is the usual matrix representation of
the τ operation. In this way, the second-rank tensor �d is
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transformed into

�̃d
uv =

∑
u1

∑
v1

τ uu1τ vv1�
d
u1 v1

. (32)

As the dipole part of the DDSCS remains unchanged under
any operation of the local point group, the matrix equation

�̃d = �d (33)

must be satisfied. The number of independent matrix equations
of this type is exactly the number of generators of the local
point group.40 A similar treatment can be carried out in the
cases of third- and fourth-rank tensors appearing in the dipole
quadrupole interference part and the quadrupole part of the
DDSCS, respectively.

3. Case of dichroism

Let us examine the situation where the operation of the local
group is a rotation of ϕ about the z axis. Using the property
�d

uv = �d
vu, the matrix equation (33) leads to

sin ϕ
[(

�d
xx − �d

yy

)
sin ϕ + (

�d
xy + �d

yx

)
cos ϕ

] = 0, (34a)

sin ϕ
[ − (

�d
xx − �d

yy

)
cos ϕ + (

�d
xy + �d

yx

)
sin ϕ

] = 0,

(34b)

�d
xz(cos ϕ − 1) − �d

yz sin ϕ = 0, (34c)

�d
xz sin(ϕ) + �d

yz(cos ϕ − 1) = 0. (34d)

As seen in Ref. 14, the case of b trichroism is obtained when
ϕ = π . Then, the solution of these equations is �d

xz = �d
yz = 0

and the DDSCS is a linear combination of four intrinsic
components. Restricting to cases where the probed atom
belongs to a crystal, the angle ϕ can only take the remaining
values π

3 , π
2 , 2π

3 . For these values, Eqs. (34c) and (34d)
lead to �d

xz = �d
yz = 0, and Eqs. (34b) and (34c) lead to

�d
xx − �d

yy = 0 and �d
xy + �d

yx = 0. By using these relations,
it can be easily shown that (30) reduces to

∂2σd

∂E∂�
= q2

min

q4

{(
q


x
2 + q


y
2)

�d
x x + q


z
2
�d

z z

}
, (35)

which is the usual expression of the DDSCS in the case of
dichroism. This expression is valid for any local point group
except (i) the eight point groups of lower symmetry (1), (1̄),
(2), (m), (2/m), (2mm), (222), and (mmm); and (ii) the five
point groups of higher symmetry (23), (m3), (4̄3m), (432),
and (m3m). For the 19 remaining axial point groups, no other
generator than the rotation by 2π

n
about the z axis can lead to

a relation between the coefficients �d
uv , which can modify the

expression (35).

4. Cases where the local group is tetrahedral or octahedral

The five groups of higher symmetry have two common
generators: a rotation by π about the Oz axis, and a rotation
by 2π

3 about the [111] axis. These operations are associated
with the coordinates transformations

(x, y, z) → (−x, − y, z) (36)

and

(x, y, z) → (z, x, y), (37)

respectively. As previously seen, the invariance under the
first transformation leads to the relations �d

xz = �d
zy = 0. The

second transformation leads to the relations �d
xx = �d

yy =
�d

zz and �d
xz = �d

zy = �d
yx . Use in expression (30) of these

relations together with relation (29) leads to

∂2σd

∂E∂�
= q
2q2

min

q4
�d

x x, (38)

in which the intrinsic component �d
x x is actually the dipole part

of the DDSCS for any direction of q = −qmink̂. The isotropy
of the dipole part of the DDSCS when the probed atom site is
tetrahedral or octahedral is a well-known result.

C. Dipole quadrupole interference part of the DDSCS

1. Intrinsic components

The expression (26) of the dipole quadrupole interference
part of the DDSCS can be written as the cubic form

∂2σqd

∂E∂�
= qmin

q4

∑
u v w

q

uqvq



w�qd

u vw (39)

in which

�qd
u vw = − 4γ 2

a2
0qmin

∑
f unocc

Im(〈ϕf |u|ϕi〉〈ϕi |vw|ϕf 〉)

× δ(εf − εi − �E). (40)

The coefficients �
qd
u vw depend on three labels u, v, and

w, which can take the values x, y, or z. They have the
dimension of a DDSCS and can be obtained from a nonrel-
ativistic calculation. These coefficients can be considered as
the intrinsic components of the dipole quadrupole interference
part of the DDSCS. They only depend on the variation of the
energy loss near the ionization threshold. On the other hand, the
factor qminq



uqvq



w/q4 essentially depends on the orientation

of the vectors q and q
. In the case of a tetrahedral or an
octahedral probed atom site, it may be at the origin of a DDSCS
anisotropy. Let us remark that there are 6 distinct values of the
matrix element 〈ϕi |vw|ϕf 〉 and 3 distinct values of the matrix
element 〈ϕf |u|ϕi〉. So, only 18 of the 27 coefficients �

qd
u vw are

distinct. From now, �qd
u vw is written with subscripts v and w in

alphabetical order. Using the same notations as in Sec. III B2,
the third-rank tensor �qd is transformed into �̃qd under any
operation τ of the local point group, and the invariance of
the dipole quadrupole interference part of DDSCS under this
operation is expressed by the matrix equation

�̃qd = �qd. (41)

Let us remark that if the local point group contains the inversion
of space, then

�̃qd
u vw = −�qd

u vw (42)

and thus the above matrix equation leads to �
qd
u vw = 0. The

dipole quadrupole interference part of the DDSCS cancels
when the probed atom site is a center of inversion.
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2. Cases where the local group is tetrahedral or octahedral

In this way, if the local point group is (m3) (tetrahedral) or
(m3m) (octahedral), the dipole quadrupole interference part
of the DDSCS cancels. A rotation by π about the z axis
and a rotation by 2π

3 about the [111] axis are two possible
generators common to the three remaining point groups (23),
(4̄3m), and (432). The first rotation is associated with the
coordinates transformation law given in (36). With this law,
the matrix equation (41) leads to the cancellation of 10 of the
18 coefficients �

qd
u vw, those for which the labels x and y appear

once or three times in �
qd
u vw:

�qd
x xx = �qd

y yy = �qd
y xx = �qd

x yy = �qd
x zz

= �qd
y zz = �qd

x xy = �qd
y xy = �qd

z xz = �qd
z yz = 0. (43)

The second rotation is associated with the coordinates trans-
formation law (37). With this law, the matrix equation (41)
leads to the cancellation of the five coefficients

�qd
x xz = �qd

y yz = �qd
z zz = �qd

z xx = �qd
z yy = 0, (44)

and the equality of the coefficients with three distinct labels

�qd
z xy = �qd

x yz = �qd
y xz. (45)

As a consequence, if the local point group is (23), the dipole
quadrupole interference part of the DDSCS given in (39)
reduces to the expression

∂2σqd

∂E∂�
= 2qmin

q4
(qzq



xq



y + qxq



z q



y + qyq



xq



z )�qd

x yz (46)

in which �
qd
x yz is obtained from the expression (40).

In the case where the local point group is (4̄3m), the
reflection in a vertical plane passing through the [110] axis is
a possible third generator. It is associated with the coordinates
transformation law

(x, y, z) → (y, x, z). (47)

The expression (46) of the dipole quadrupole interference part
of the DDSCS is invariant under this transformation. Thus,
this expression remains valid in the case where the local point
group is (4̄3m). If the local point group is (432) (the probed
atom site is octahedral), there are three possible generators: a
rotation by 2π

3 about the [111] axis, a rotation by π
2 (instead

of π in the cases of the two previous point groups) about the
z axis, and a rotation by π about the [110] axis. The rotation
by π

2 is associated with the following transformation of the
coordinates:

(x, y, z) → (−y, x, z). (48)

In this case, the matrix equation (41) leads to the cancellation
of 11 coefficients of the tensor �qd :

�qd
x xx = �qd

x xy = �qd
x yy = �qd

x zz = �qd
y xx = �qd

y xy

= �qd
y yy = �qd

y zz = �qd
z xz = �qd

z yz = �qd
z xy = 0, (49)

and the following relations:

�qd
y xz = −�qd

x yz, �qd
y yz = �qd

x xz, �qd
z yy = �qd

z xx. (50)

These relations do not involve �
qd
z zz, and thus the dipole

quadrupole interference part of the DDSCS depends at most on

four coefficients, as in the case where the local group is the (4)
cyclic point group. The invariance of �qd under the rotation
by 2π

3 leads to the cancellation of these four coefficients:

(i) �
qd
y xz, which is equal to −�

qd
x yz [see Eq. (50)], is

transformed into �
qd
x yz, and thus is zero;

(ii) �
qd
y yz is transformed into �

qd
z xz = 0 [see Eq. (49)];

(iii) �
qd
z yy is transformed into �

qd
x zz = 0 [see Eq. (49)];

(iv) �
qd
z zz is transformed into �

qd
x xx = 0 [see Eq. (49)].

It can be concluded that the dipole quadrupole interference
part of the DDSCS cancels if the local point group is the
(432), more precisely in any case where the probed atom site
is octahedral. Finally, the dipole quadrupole interference part
of the DDSCS is present only if the local point group is one of
both tetrahedral groups (23) or (4̄3m), and then its expression
is given by (46).

D. Quadrupole part of the DDSCS

1. Quadrupole intrinsic components

This part is associated with the quadrupole electric tran-
sitions for which the selection rule is �� = 0, ± 2. Near
a K edge, the part of ELNES spectra associated with the
quadrupole electric transitions could be crudely interpreted as
a picture of the s and d local density of unoccupied states at
the probed atom. This interpretation is actually questionable
because interferences between s to s and s to d transition
channels can occur. The situation is even more complicated
for L and M edges.

The expression (25) of the quadrupole part of the DDSCS
can be rewritten as a quadrilinear form

∂2σq

∂E∂�
= 1

q4

∑
uvwt

quq


vqwq


t �
q
uv wt (51)

in which

�
q
uv wt = γ 2

a2
0

∑
f unocc

〈ϕf |uv|ϕi〉〈ϕi |wt |ϕf 〉δ(εf − εi − �E).

(52)
Note that the coefficients of the tensor �q verify the relation

�
q

uv wt = �
q
wt uv. (53)

The expression (52) depends on four labels u, v, w, and
t , which can take the values x, y, or z. So, the tensor �q

should depend on 81 coefficients. Actually, the expression
(52) involves six distinct matrix elements 〈ϕf |uv|ϕi〉 and 6
other distinct matrix elements 〈ϕi |wt |ϕf 〉. As a consequence,
the tensor �q , which might be represented as a 6 × 6
Hermitian matrix [see Eq. (53)], actually depends on 36
distinct coefficients instead of 81. Let us point out that both
pairs (u, v) and (w,,t) will be subsequently written in alpha-
betical order. Moreover, in expression (51), the factorization
quq



vqwq


t (�q
uv wt + �

q
wt uv) can be carried out. According to

(53), the coefficients �
q
uv wt + �

q
wt vu are real. So, for two

distinct pairs of label, the off-diagonal coefficients of the 6 × 6
matrix mentioned above can be grouped together and, thus,
the expression (51) involves a sum of (6 × 6 − 6)/2 = 15
terms, which contain the real coefficients �

q
uv wt + �

q

uv wt .
Taking these terms and the diagonal elements of the form
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quq


vquq



v�

q
uv uv into account, the quadrupole part of the

DDSCS reduces to a linear combination of 21 terms. It will
be shown that the number of nonzero intrinsic components is
markedly smaller in the case of a high symmetry around the
probed atom site. Actually, the fourth-rank tensor �q must
be invariant under any generator of the local point group. As
previously seen, the invariance of the quadrupole part of the
DDSCS is expressed by a matrix equation of the form

�̃q = �q, (54)

which leads to restrict the number of independent coefficients
�

q
uv wt .

2. Cases where the local group is tetrahedral or octahedral

When the local group is one of the five point groups
(m3), (m3m), (23), (4̄3m), and (432), the quadrupole part
of the DDSCS is at least invariant under a rotation by π

about the z axis and a rotation by 2π
3 about the [111] axis,

that is to say under the coordinates transformations (36) and
(37), respectively. The relation (54) applied to the case of
the first rotation leads to the cancellation of 16 off-diagonal
coefficients, those for which the labels x and y appear once or
three times,

�q
xx xz = �q

xx yz = �q
xy xz = �q

xy yz = �q
xz yy = �q

xz zz

= �q
yy yz = �q

yz zz = 0, (55)

and their complex conjugates. The invariance of �q under
the transformation (37) leads to the cancellation of the four
off-diagonal coefficients

�q
xx xy = �q

yy yz = 0,

�q
xy yy = �q

yz zz = 0,

�q
xy zz = �q

yz xx = 0, (56)

�q
xz yz = �q

xy xz = 0,

and their complex conjugates. Moreover, note the following:
(i) Six off-diagonal coefficients with two distinct labels

verify the relations

�q
xx yy + �q

yy xx = �q
yy zz + �q

zz yy = �q
zz xx + �q

xx zz; (57)

(ii) three diagonal coefficients with two distinct labels
verify the relations

�q
xy xy = �q

yz yz = �q
xz xz; (58)

(iii) and three diagonal coefficients with one label verify the
relations

�q
xx xx = �q

yy yy = �q
zz zz. (59)

So, expression (51) of the quadrupole part of the cross section,
which now depends on three intrinsic components �

q
xx xx ,

�
q
xy xy , and �

q
xx yy + �

q
yy xx , is transformed into

∂2σq

∂E∂�
= Fq

xx xx�
q
xx xx + Fq

xx yy

(
�q

xx yy + �
q

xx yy

)
+Fq

xy xy�
q
xy xy (60)

in which

Fq
xx xx = q2

xq


x

2 + q2
yq



y

2 + q2
z q



z

2

q4
, (61a)

Fq
xx yy = qxqyq



xq



y + qxqzq



xq



z + qyqzq



yq



z

q4
, (61b)

Fq
xy xy = (qyq



x + qxq



y )2 + (qzq



x + qxq



z )2 + (qzq



y+qyq



z )2

q4
.

(61c)

The above expression is actually valid when the local
point group is (23), the smallest of the five point groups of
higher symmetry. If the local point group is (m3), then the
inversion of space can be considered as a further generator.
This operation amounts to change the sign of each coordinate.
As �q is unchanged under this transformation, the expression
(60) remains valid in the case where the local group is (m3).
The transition from the group (23) to the group (4̄3m) is
carried out by introducing a new generator, a reflection in
a vertical plane containing the [110] axis. The coordinates
transformation associated with this operation is given by (47).
A permutation of coordinates x and y leaves the three relations
(57), (58), and (59) unchanged. So, the expression (60) of the
quadrupole part of the DDSCS remains valid in the case where
the local group is (4̄3m). The transition from the group (23)
to the group (432) is carried out by replacing the rotation by
π about the Oz axis with a rotation by π

2 , and by considering
a rotation of π about the [110] axis as a further generator.
The invariance of �q under these two new generators can be
easily established by observing that the relations (57), (58),
and (59) are unchanged when x is transformed into ±y and y

is transformed into x. So, the expression (60) remains valid in
the case where the local group is (432). The transition from
(432) to the largest group (m3m) is obtained by introducing the
inversion of space as a further generator. As previously seen,
this new generator introduces no modification of relations
(57), (58), and (59), and thus the expression (60) remains
valid. Finally, when the local group is any of the five point
groups of higher symmetry, i.e., when the probed atom site is
tetrahedral or octahedral, the quadrupole part of the DDSCS
can be calculated from the expressions (60) and (61).

IV. FROM THE DDSCS TO THE ELNES SPECTRUM

In the case of a parallel incident electron beam, an ELNES
spectrum is the average of the DDSCS over a set of wave
vectors for which the inelastically scattered electrons are
collected. This section aims to calculate this average for
scattered electrons which cause the ejection of an electron
from a given core level.

A. Geometry of electron scattering

Let us assume that the probe is a cone-shaped incident
electron beam. Its axis of revolution OZ, is oriented along
the average incident wave vector k0 (see Fig. 3). The spatial
coordinate system (X, Y,Z) and the basis vectors (Ex, Ey, Ez)
are tied to the incident electron beam, while the spatial
coordinate system (x, y, z) and the basis vectors (ex, ey, ez)
are tied to the sample. As previously mentioned, the Oz axis
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FIG. 3. (Color online) This figure shows the geometry of electron
scattering. Coordinates (x, y, z) and (X, Y,Z) are linked to the sample
and to the beam electron probe, respectively. The z axis is the main
rotation axis passing through the probed atom site and the Z axis is
the axis of revolution of the cone-shaped incident beam.

is chosen so that it is the main rotation axis passing through
the probed atom site (see Fig. 3). Using this basis, the average
incident wave vector is expressed by

k0 = k0(sin χ0 cos δ0 ex + sin χ0 sin δ0 ey + cos χ0 ez). (62)

So, the orientation of the incident electron beam is defined by
the colatitude angle χ0 and the azimuthal angle δ0 (see Fig. 3).
Wave vectors k and k + q are expressed in a basis set in which
the unit vector Ez is parallel to k0. More precisely, the basis
vectors are given by

Ex = − sin δ0 ex + cos δ0 ey, (63a)

Ey = − cos χ0 cos δ0 ex − cos χ0 sin δ0 ey + sin χ0 ez, (63b)

Ez = sin χ0 cos δ0 ex + sin χ0 sin δ0 ey + cos χ0 ez. (63c)

The wave vector k of a fast incident electron slightly deviates
from the average wave vector k0. Its expression is given
by

k = k0(sin α cos δ Ex + sin α sin δ Ey + cos α Ez). (64)

The colatitude angle α is small because the directions of k and
k0 are very close. The largest value αm of α is the convergence
semiangle of the incident electron beam. The azimuthal angle
δ varies from 0 to 2π . Assuming that the incident beam axis
defined by k0 passes through the collector center, the scattered

0 5 1 0 1 5 2 0 2 5 3 0
0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

Collection semiangle in θ un it

A
0

FIG. 4. (Color online) Amplitude A0 of the ACC versus the
collector semiangle vm in the case of the dipole approximation, a
tetrahedral or octahedral probed atom site, and a 200-keV incident
beam.

wave vector k + q of modulus k0(1 − θE) is given by

k + q = k0(1 − θE)(sin β cos ψ Ex + sin β sin ψ Ey

+ cos β Ez). (65)

The scattering angle β is small and its largest value is the
collection semiangle βm. The azimuthal angle ψ varies from
0 to 2π . For the sake of simplicity, we restrict here to the
case where the convergence semiangle of the incident electron
beam is zero (αm = 0). However, it is quite possible to treat
the case of a nonparallel incident beam.

B. Dipole part of the collected current

Let us calculate the average collected current (ACC), more
precisely the integral of the DDSCS over the collector solid
angle, divided by this solid angle, approximately πβ2

m. By
doing the change of variable β = vθE and putting βm = vmθE ,
the ACC is given by〈

∂2σd

∂E∂�

〉
= 1

πv2
m

∫ 2π

0
dψ

∫ vm

0
v

∂2σd

∂E∂�
dv. (66)

This integral has been calculated in Ref. 14 for any kind
of probed atom site, except for the cases of tetrahedral and
octahedral sites. In these case, the DDSCS given in (38) leads
to the following expression of the ACC:〈

∂2σd

∂E∂�

〉
= k2θ2

E�d
x x

πv2
m

∫ 2π

0
dψ

∫ vm

0
dv v

q
2

q4
. (67)

The expression (64) of k with α = 0, the expression (65) of
k + q, and the definition (17) of q
 allows us to express the
ratio q
2/q4 in terms of v, θE , and γ . As θE is small, we
can actually deal with the zeroth-order expansion in θE of the
expression of q
2/q4. Then, the integral in (67) can be easily
carried out and we get〈

∂2σd

∂E∂�

〉
= A0�

d
x x, (68)

A0 = ln
(
1 + γ 2v2

m

)
v2

m

− γ 2 − 1

1 + γ 2v2
m

. (69)

The variations of the amplitude A0 with the collection
semiangle, expressed in θE units, is represented in Fig. 4
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in the case where the incident beam energy is 200 keV. If
vm approaches 0, the amplitude A0 converges to 1, which
expresses that ACC and DDSCS coincide when the collection
semiangle approaches 0. Because of the DDSCS isotropy, the
amplitude of the ACC does not depend on χ0 and δ0, that is
to say, on the incident beam orientation. The ACC strongly
decreases near vm = 0, and is approximately 2�d

x x ln(vm)/v2
m

at large vm. The amplitude A0 will be a reference to test the
importance of the dipole quadrupole interference part and the
quadrupole part of the DDSCS.

C. Dipole quadrupole interference part of the collected current

Using the same conventions as in Sec. IV B, the evaluation
of the dipole quadrupole interference part of the ACC is
obtained by integrating the expression (46) over the collector
solid angle. The calculation of this integral is rather tedious,
and yet it can be easily carried out by using the MATHEMATICA

software. The dipole quadrupole interference part of the ACC
is given by the following expressions:〈

∂2σqd

∂E∂�

〉
= E0

〈
∂2σqd

∂E∂�

〉
0

, (70a)

〈
∂2σqd

∂E∂�

〉
0

= −3 sin(2δ0) sin2(χ0) cos χ0�
qd
x yz (70b)

E0 = γ 2 + 4

2
(
1 + γ 2v2

m

) − (γ 2 + 2) ln
(
1 + γ 2v2

m

)
2γ 2v2

m

. (70c)

Let us remark that the factor E0 converges to 1 when
the collection semiangle vm approaches 0. In this way,
〈∂2σqd/∂E∂�〉0 represents the limit of the dipole quadrupole
interference part of the ACC when the collection semiangle
approaches 0. Let us specify at this stage that the coordinate
system used here is such that Ox, Oy, and Oz axes
are the three twofold rotation axes of a regular tetrahedron, the
summits of which are the four next-nearest-neighbor atoms
of the probed atom (see the four spheres in Fig. 5). This

FIG. 5. (Color online) Amplitude of the dipole quadrupole
interference part of the ACC as a function of the incident beam
orientation.
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FIG. 6. (Color online) Amplitude E0 of the dipole quadrupole
interference part of the ACC versus the collection semiangle vm.

figure shows the dependence on the incident electron beam
orientation of the dipole quadrupole interference part of the
ACC, when the collection semiangle is very close to 0. The
amplitude of this factor is maximum in the plane (110), when
the incident electron beam is oriented along the [11̄1] direction
[χ0 ≈ 54.73◦ and δ = −45◦, lobe (a)] and [1̄11] (χ0 ≈ 54.73◦
and δ0 = 135◦). This amplitude is also maximum in the plane
(1̄10), when the incident beam is oriented along the [111̄]
direction [χ0 ≈ 125.26◦ and δ = 45◦, lobe (b)] and [1̄1̄1̄]
(χ0 ≈ 125.26◦ and δ = 225◦). The value of these maxima
is 2

√
3. So, a necessary condition to observe the dipole

quadrupole interference part of the ACC is that the electron
beam axis is oriented along one of the four directions shown
in Fig. 5.

The relation (70a) indicates that the dipole quadrupole in-
terference part of the ACC is proportional to a factor E0, which
depends on γ and the collection semiangle vm, in θE units [see
(70c)]. Figure 6 shows its variations with vm, when the electron
beam energy is 200 keV. The factor E0 decreases from 1 for
vm = 0 to about −0.214 for vm ≈ 1.80, then increases to 0
at larger collection semiangle. When the collection semiangle
is approximately 0.86 θE , the amplitude E0 cancels, which
means that the dipole quadrupole interference part of the ACC
vanishes. The importance of interferences between dipole and
quadrupole channels can be truly investigated by examining
the expression of the ACC. This expression, given by (68) in
the case of the dipole approximation, becomes now〈

∂2σ

∂E∂�

〉
= A0

(
�d

x x − 3
E0

A0
sin(2δ0) sin2χ0 cos χ0�

qd
x yz

)
.

(71)
In the case of an incident electron beam of 200 keV, the ratio
E0/A0 plotted in Fig. 7 decreases from 1 for vm = 0 to −(2 +
γ 2)/(2γ 2) ≈ −1.016 as vm approaches infinity. In the more
favorable cases where the incident electron beam is oriented
along one of the four directions for which 〈∂2σqd/∂E∂�〉0 is
maximum, the prefactor of �

qd
x yz in the expression (71) varies

from −1.1547 for vm = 0 to 1.1738 as vm approaches infinity.
So, at large collection semiangle, the weights of �

qd
x yz and

�
q
x x have the same order of magnitude. It is widely accepted

that the profile of an ELNES spectrum is mainly determined
by the intrinsic component �

q
x x considered as a function of

the energy loss �E. Interferences between transition channels
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FIG. 7. (Color online) Ratio E0/A0 versus the collection semian-
gle vm.

can be detected if this profile is noticeably affected by the
introduction of the intrinsic component �

qd
x yz. So, in any

particular situation where the local group is (23) or (4̄3m),
the comparison of both intrinsic components considered as
functions of �E allows us to evaluate the importance of the
interference between transition channels.

D. Quadrupole part of the collected current

According to (60), the quadrupole part of the ACC can be
written as a sum three terms:〈

∂2σq

∂E∂�

〉
=

〈
∂2σ

q
xx xx

∂E∂�

〉
+

〈
∂2σ

q
xx yy

∂E∂�

〉
+

〈
∂2σ

q
xy xy

∂E∂�

〉
, (72)

in which〈
∂2σ

q
xx xx

∂E∂�

〉
= �

q
xx xx

πv2
m

∫ 2π

0
dψ

∫ vm

0
Fq

xx xxv dv, (73a)

〈
∂2σ

q
xx yy

∂E∂�

〉
= �

q
xx yy + �

q

xx yy

πv2
m

∫ 2π

0
dψ

∫ vm

0
Fq

xx yyv dv,

(73b)〈
∂2σ

q
xy xy

∂E∂�

〉
= �

q
xy xy

πv2
m

∫ 2π

0
dψ

∫ vm

0
Fq

xy xyv dv. (73c)

The calculation of the above integrals by using MATHEMATICA

can be easily carried out. It leads to the following results:〈
∂2σ

q
xx xx

∂E∂�

〉
= A1�

q
xx xx, (74a)

〈
∂2σ

q
xx yy

∂E∂�

〉
= A2(�q

xx yy + �q
xx yy), (74b)

〈
∂2σ

q
xy xy

∂E∂�

〉
= A3�

q
xy xy, (74c)

in which the weights Ai are given by

A1 = B1 + C1F, (75a)

A2 = B2 + C2F, (75b)

A3 = B3 + C3F, (75c)

F = 8 cos(4δ0) sin4χ0 + 4 cos(2χ0) + 7 cos(4χ0). (75d)

FIG. 8. (Color online) Anisotropy of the quadrupole part of the
ACC associated with the incident beam orientation.

These weights are written in such a way that their dependency
on the orientation of the fast incident wave vector k0 is
separated from their dependency on the collection semiangle
vm. More precisely, the coefficients Bi and Ci only depend
on the collector semiangle vm and the relativistic factor γ ,
while the factor F only depends on χ0 and δ0, i.e., the incident
beam orientation. The factor F takes the anisotropy associated
with the incident beam orientation into account, whereas the
anisotropy associated with the orientation of the transferred
wave vector q comes from the other factors Bi and Ci . The
calculation of Bi and Ci is rather tedious and the results of this
calculation are reported in Appendix B.

The F factor is maximum when the incident beam is
oriented along any of the three directions [100], [010], or [001].
In Fig. 8, these maxima correspond to six lobes of amplitude
+11, identified by a thin line. This factor is minimum in any of
the four directions [111], [1̄11], [11̄1], or [111̄]. In Fig. 8, these
minima correspond to the eight lobes of amplitude −10.33,
identified by a thick line.41 The F factor cancels along many
particular directions of the probe. For instance, in the azimuthal
plane corresponding to δ0 = π

8 , F cancels when 4 cos 2χ0 +
7 cos 4χ0 = 0, that is to say, in the particular direction χ0 ≈
27.33◦. It can be concluded that the quadrupole part of the ACC
strongly depends on the incident electron beam orientation.

According to expressions (72) and (74), the quadrupole part
of the ACC is a linear combination of the three intrinsic compo-
nents �

q
xx xx , �q

xx yy + �
q

xx yy , and �
q
xy xy . For a fixed direction

of the incident electron beam, the weights of these components
A1, A2, and A3, respectively, depend on the collector aperture.
The contribution of the electric quadrupole transitions can be
evaluated by examining the total ACC. If its dipole quadrupole
interference part is neglected, the ACC is given by

〈
∂2σ

∂�∂E

〉
= A0

(
�d

xx + A1

A0
�q

xx xx

+ A2

A0
(�q

xx yy + �q
xx yy) + A3

A0
�q

xy xy

)
. (76)
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FIG. 9. Weights A1/A0, A2/A0, A3/A0 of the quadrupole in-
trinsic components �q

xx xx , �q
xx yy , and �q

xy xy versus the collector
semiangle, in the case where the probe is oriented along the [001]
direction.

The importance of the quadrupole electric transitions can be
investigated by comparing the amplitudes of the intrinsic com-
ponents �

q
xx xx , �q

xx yy + �q
xx yy and �

q
xy xy to the amplitude of

�d
xx ; and by evaluating the ratios A1/A0, A2/A0, and A3/A0 at

different collection semiangles. The first task, which depends
on the particular probed atom and the solid at which it belongs,
has to be carried out for any particular situation. We shall focus
on the second task, which can be done in the general case.

For a fixed orientation of the incident electron beam, the
anisotropy associated with the transferred wave-vector orien-
tation is related to the variations of the weights A1/A0, A2/A0,
and A3/A0 with the collection semiangle. Besides, changing
the convergence of the incident beam,42 or equivalently the
collection semiangle, is a possible approach to investigate the
ELNES anisotropy. We are now going to consider the particular
situation where the probe is oriented along the [001] direction.

For this probe orientation, the factor F is maximum. Let
us first examine the case where the collector semiangle is
lesser than 4θE . The top curve in Fig. 9 shows that if the
collector semiangle is very small compared with θE (vm � 1),
the ratio A1/A0 
 1 and both other ratios A2/A0 and A3/A0

cancel. As the weight A0 
 1 when vm 
 0 (see Fig. 4), then
the weight A1 converges to 1 and both other weights A2 and
A3 converge to 0. As a consequence, at very low collection
semiangle, the quadrupole part of the ACC reduces to the
intrinsic component �q

xx xx . This result can be easily explained
by noting that if the incident beam is oriented along the [001]
direction and the collector semiangle is very small compared
with θE , then q
 = q (see the remark at the end of Sec. II B1),
qz = q, qx = qy = 0, and the components A1, A2, and A3

converge to F
q
xx xx = 1, F

q
xx yy + F

q
yy xx = 0, and F

q
xy xy = 0,

respectively [see relations (61a), (61b), and (61c)]. Along the
[100] or [010] directions of the incident electron beam, similar
conclusions can be drawn.

In the case where the collection semiangle is no longer
negligible compared with the characteristic angle θE , the
weight A1 of �

q
xx xx first decreases and has a minimum for

vm ≈ 0.8, then increases for vm � 0.8, whereas both other
weights, A2 and A3, increase (see top curve in Fig. 9). Let us
first note that, although k0 is oriented along the [001] direction,
the dominant component in the quadrupole part of the ACC is
no longer �

q
xx xx when vm � 0.5. As previously mentioned, the

anisotropy associated with the orientation of the transferred
wave vector is related to the variation of the ACC with
the collection semiangle. For example, at very low aperture
(vm � 1), the quadrupole part of the ACC is about �

q
xx xx

(A1/A0 ≈ 1 and A2/A0 = A3/A0 = 0). The ELNES profile
is partially determined by the dependency on the energy loss
of �

q
xx xx . If vm ≈ 0.8, then the quadrupole part of the ACC is

about 0.66�
q
xx xx + 0.26(�q

xx yy + �q
xx yy) + 1.165�

q
xy xy and

thus the profile of this quadrupole part is now predominantly
determined by the dependency of �

q
xy xy on the energy loss. So,

considering each of the intrinsic components as an independent
function of the energy loss, the increase in the collector
aperture does not only reduce to a change in the amplitude
of this quadrupole part, but it also induces a change in its
dependency on the energy loss.

This dependency on the q orientation could be revealed in
ELNES spectra if the three quadrupole intrinsic components
were not too small compared with the dipole intrinsic com-
ponent �d

x x . Unfortunately, although the weights of �
q
xx xx

and �
q
xy xy are, respectively, about 3 and 4 times the weight

A0 of �d
x x for vm = 4 (see top curves in Fig. 9), the above

condition is not generally fulfilled in the low-aperture domain.
In this domain, the profiles of ELNES spectra are essentially
determined by the dipole intrinsic component �d

x x , considered
as a function of the energy loss �E. So, it can be concluded
that if the collector semiangle βm � 4θE , the contribution to
the ACC of the quadrupole electric transitions is generally
negligible.

It can not be asserted that this conclusion remains valid
when the collector semiangle vm � 1. For vm ≈ 30, the
bottom curve in Fig. 9 shows that the weights A1 and A3

are, respectively, about 70 and 100 times the weight A0 of
the dipole intrinsic component �d

x x [see expression (76)]. Let
us first note that for this collection semiangle, the weight A1

of the intrinsic component �
q
xx xx , which actually represents

the quadrupole part of the DDSCS for q = −θEk0, is only
0.7 times the weight of the intrinsic component �

q
xy xy . Let

us also note that at large vm, Fig. 9 roughly indicates that
the ratios A1/A0, A2/A0, and A3/A0 proportionally increase,
which prevents us to detect any dependency of the ACC on the
transferred wave-vector orientation. For other orientations of
the probe, similar conclusions can be drawn.

V. CONCLUSION

Our goal was to examine the validity of the dipole
approximation in the theory of ELNES. We have been first
led to consider the second-order expansion in q · r of the
Hamiltonian, which describes the interaction between a fast
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incident electron and an electron in a particular core state of
the probed atom. Aside from the dipole matrix element, this ex-
pansion produces two further matrix elements associated with
the magnetic dipole transitions and the electric quadrupole
transitions. The first matrix element is absolutely negligible
in the range of ionization energies commonly considered in
ELNES. The second matrix element is different from the
equivalent matrix element obtained in the absorption cross
section calculated in XANES. If this element describes the
transition from a core initial state of angular momentum �i

to a final unoccupied state ϕf , it does not cancel only if the
quadrupole selection rule is fulfilled. Then, the DDSCS can be
decomposed into a sum of three terms: a first term associated
with the electric dipole transition, a second term associated
with the electric quadrupole transitions, and a third term that
takes the interferences between both transition channels into
account. This atypical third term cancels when the probed atom
site is an inversion center. We have only considered here the
cases of the five local point groups associated with a tetrahedral
or an octahedral probed atom site. For these local groups, it has
been easily shown that the dipole part of the DDSCS, which
is proportional to one intrinsic component �d

x x , is isotropic. It
can be easily seen that the matrix element associated with the
interference term is equal to zero when the local point group
contains the inversion of space, which is the case when the
local point group is (m3) or (m3m). Although the point group
(432) does not contain this operation, this matrix element is
zero. In both remaining cases (23) and (43m), the part of
the DDSCS associated with interferences between transition
channels is proportional to the intrinsic component �

qd
x yz. For

all considered local point groups, the quadrupole part of the
DDSCS is a linear combination of three intrinsic components
�

q
xx xx , �q

xx yy + �
q

xx yy , and �
q
xy xy . It must be emphasized that

the knowledge of the five intrinsic components allows us to
calculate the DDSCS for any incident beam energy E0 − mc2,
any incident wave vector k, and any scattered wave vector
k + q.

Similarly, the collected current, i.e., the average of the
DDSCS over the collector solid angle, is a linear combination
of these five intrinsic components. Its dependence on the
incident beam energy, the incident beam orientation, and the
collection semiangle is entirely determined by the weights of
these intrinsic components. Even if the collection semiangle
βm is large compared with the characteristic angle θE , the
weights of the intrinsic components �d

x x and �
qd
x yz have the

same order of magnitude. So, in each particular situation
where interferences between transition channels exist [(23)
and (43m)], the importance of interferences between transition
channels can be estimated by comparing the amplitudes
of �

dq
x yz and �d

x x . On the other hand, the larger the ratio
vm = βm/θE , the larger the weights of the quadrupole intrinsic
components. When the collection semiangle βm is larger than
30 times the characteristic angle θE , it has been verified for
different beam orientations that these weights can reach or
be larger than several hundred times the weight of the dipole
intrinsic component. So, the quadrupole intrinsic components
considered as functions of the energy loss �E can markedly
modify the shape of the ELNES profile, even if these
components are small compared with the dipole intrinsic

component. At lower collection semiangles, the importance
of the quadrupole electric transitions can be estimated by
comparing the three quadrupole intrinsic components with the
dipole intrinsic component. Let us emphasize that, if these five
intrinsic components are known, a simulation of the collected
current as a function of the incident beam orientation and the
collection semiangle can be carried out by using the weights
given in Appendix A. All the previous conclusions remain true
when the electron incident beam is not parallel.

APPENDIX A: THE QUADRUPOLE SELECTION RULE

The dimensionless quadrupole matrix element [see
Eq. (20)]

a
q

f i = − 1
2 〈ϕf |(q · r)(q
 · r)|ϕi〉 (A1)

can be evaluated by using the identity

1
2 (q · r)(q
 · r) = 4πqq
r2

15

(
5

8π
q̂ · q̂


+
+2∑

m=−2

(−1)mY2m(q̂, q̂
)Y2m(r̂)

)
, (A2)

which allows us to express the above matrix element as a
product of two factors. The first factor depends on the modulus
q and q
. The second factor depends on the orientation of q
and q
, i.e., on the unit vectors q̂ and q̂
 along the direction of q
and q
, respectively. Let us point out that −m is denoted by m

in expression (A2). The pseudospherical harmonics Y00(q̂, q̂
)
and Y2m(q̂, q̂
) are given by

Y00(q̂, q̂
) =
√

1

4π
(q̂ · q̂
),

Y22(q̂, q̂
) =
√

15

32π
(q̂x − iq̂y)(q̂


x − iq̂

y ),

(A3)

Y21(q̂, q̂
) =
√

15

32π
[(q̂x − iq̂y)q


z + (q̂

x − iq̂


y )q̂z],

Y20(q̂, q̂
) = −
√

5

16π
(q̂ · q̂
 − 3q̂zq̂



z ),

and their expressions for m > 0 are obtained by using the
relation

Y2m(q̂, q̂
) = (−1)mY2m(q̂, q̂
). (A4)

Let us note that these pseudospherical harmonics reduce to
the usual spherical harmonics when the relativistic corrections
are neglected, that is to say, when q
 = q. The evaluation of
the matrix element a

q

f i requires the knowledge of the initial
and final wave functions ϕi(r) and ϕf (r). The initial core wave
function

ϕi(r) = Rni �i
(r)YLi

(r̂) (A5)

describes an electron in a core state characterized by the
principal quantum number ni and the pair of orbital quan-
tum numbers Li = (�i,mi). The completeness relation be-
tween spherical harmonics33 allows us to get the following
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decomposition of the final wave function ϕf (r) (Ref. 14):

ϕf (r) =
∑
L1

R
L1
Lf

(f, r)YL1 (r̂). (A6)

Use of these wave functions leads to the following expression
of a

q

f i :

a
q

f i = −4πqq


15

∑
L1

�qLi

L1
(q̂
)ϒqL1

Lf
(f, ni, �i) (A7)

in which

ϒqL1
Lf

(f, ni, �i) =
∫ ∞

0
R

L1

Lf
(f, r)Rni �i

(r) r4 dr (A8)

and

�qLi

L1
(q̂
) = 5√

16π
Y00(q̂, q̂
)δL1 Li

+
+2∑

m=−2

(−1)m+m1C(Li, 2m,L1)Y2m(q̂, q̂
).

(A9)

In this expression, the coefficients C(L1,L2,L3) are the well-
known Gaunt coefficients. The expression (A7) indicates that
an electron transition from the core state ϕi to a final state
ϕf is only possible if �qLi

L1
�= 0. It can be easily shown that

this condition is fulfilled if �1 = �i because of the first term of
(A9). Use of the properties of the Gaunt coefficients43 allows
us to assert that the second term of (A9) does not cancel if

(i) m1 = mi − m;
(ii) �1 + �i is even;

(iii) |�i − 2| � �1 � �i + 2.
These three conditions can be summarized into a simple rule
called quadrupole selection rule:

�1 = �i or �1 = �i + 2 or �1 = max(0, �i − 2).
(A10)

A quadrupole electric transition from the initial state ϕi to a
final state ϕf is possible only if the projection of the spherical
harmonics YL1 onto the final state ϕf does not cancel when
�1 = �i or �1 = �i ± 2.

APPENDIX B: Bi AND Ci COEFFICIENTS

The expressions of the prefactors A1, A2, and A3 are rather
complicated. They can be expressed in terms of the coefficients
Bi and Ci given in Sec. IV D:

B1 = 159γ 4v2
m − 2(22γ 4 − 155γ 2 + 22)

256γ 2
(
1 + γ 2v2

m

)
+ (22γ 4 − 71γ 2 + 22) ln

(
1 + γ 2v2

m

)
128γ 4v2

m

, (B1a)

C1 = 3γ 4v2
m + 2(2γ 4 + 15γ 2 + 2)

256γ 2
(
1 + γ 2v2

m

)
− (2γ 4 + 11γ 2 + 2) ln

(
1 + γ 2v2

m

)
128γ 4v2

m

, (B1b)

B2 = 97γ 4v2
m + 44γ 4 − 54γ 2 + 44

512γ 2
(
1 + γ 2v2

m

)
− (22γ 4 − 71γ 2 + 22) ln

(
1 + γ 2v2

m

)
256γ 4v2

m

, (B1c)

C2 = −3γ 4v2
m + 4γ 4 + 30γ 2 + 4

512γ 2
(
1 + γ 2v2

m

)
+ (2γ 4 + 11γ 2 + 2) ln

(
1 + γ 2v2

m

)
256γ 4v2

m

, (B1d)

B3 = 97γ 4v2
m − 84γ 4 + 202γ 2 − 84

128γ 2
(
1 + γ 2v2

m

)
+3

(
14γ 4 − 19γ 2 + 14

)
ln

(
1 + γ 2v2

m

)
64γ 4v2

m

, (B1e)

C3 = −3γ 4v2
m + 4γ 4 + 30γ 2 + 4

128γ 2
(
1 + γ 2v2

m

)
+

(
2γ 4 + 11γ 2 + 2

)
ln

(
1 + γ 2v2

m

)
64γ 4v2

m

. (B1f)

The anisotropy of the ACC associated with the incident beam
orientation comes from the dependency of F [see expressions
(75)] on χ0 and δ0. The anisotropy of the ACC associated
with the transferred wave-vector orientation comes from the
dependency on vm of the above coefficients.
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