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Berry phase and anomalous Hall effect in a three-orbital tight-binding Hamiltonian
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We consider the anomalous Hall (AH) state induced by interactions in a three-orbital per unit-cell model. To
be specific, we consider a model appropriate for the copper-oxide lattice to highlight the necessary conditions
for time-reversal breaking states which are AH states and which are not. We compare the singularities of the
wave functions of the three-orbital model, which are related to the nonzero Berry curvature, and their variation
with a change of gauge to those in the two-orbital model introduced in a seminal paper by Haldane. Explicit
derivation using wave functions rather than the more powerful abstract methods may provide additional physical
understanding of the phenomena.
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I. INTRODUCTION

In asking the question whether a quantized Hall effect
may exist, in principle, without an applied magnetic field,
Haldane1 introduced an effective one-electron model on the
two-orbital per unit-cell hexagonal crystal with complex next
nearest transfer integrals. This has turned out to be a fecund
contribution. It further augmented the topological arguments
of Thouless and collaborators2 for the quantum Hall effect.
It also introduced the general discussion of the topological
features of band structures in two dimensions and in particular
led through further imaginative work to the suggestion and
discovery of topological insulators.3–6 Haldane’s model also
showed the connection of topological properties to the time-
reversal-violating states due to orbital current loops in the
lattice without changing translational invariance; see Fig. 1.

Orbital current loops without changing translational sym-
metry were predicted to arise as broken symmetry states
due to interactions in a three-orbital per unit cell model for
underdoped cuprates7–9 and have been discovered in several
families of cuprates.10–12 These loop-current states, however,
do not lead to the quantized anomalous Hall effect (QAHE)
or “Chern insulator” discussed by Haldane. The difference is
that the loop-current states violate both time reversal R and
inversion I but preserve their product I. It was pointed out
by Fradkin and Sun13 that there is no QAHE effect when RI

symmetry is present; they also pointed out that a QAHE state
for the three-orbital cuprate model is possible, in principle,
through a state with symmetry different from that observed.

In this paper, we elaborate on the work of Fradkin and Sun
by deriving the Berry phase responsible for the QAHE state
and also how the singularities of the wave functions vary with
the choice of gauge. When the topologically active band (i.e.,
the one with nonzero Chern number or TKNN integer2) is
partially rather than completely filled, the Berry phase will
still contribute to a nonquantized intrinsic anomalous Hall
effect.14–17 For comparison, we also rederive wave functions
for the two-orbital case. The physics of the three-orbital model
is not surprising in the context of previous general work on
topological effects in noninteracting lattice models; we hope
that we have discussed it in a new fashion which will be
useful to nonexperts and that the particular model explains

how topological effects might appear in three-band materials.
Whenever possible we seek to explain the value of a Berry-
phase calculation geometrically rather than simply stating the
result. We also work with explicit wave functions rather than
more powerful abstract methods, although a few comments
are provided regarding the latter.

II. ANOMALOUS HALL STATES IN THE CU-O MODEL

Consider the two-dimensional lattice with the structure of
the copper oxides; see Fig. 2. There are three orbitals per unit
cell—the d orbital on the copper atom and the px and py

orbitals on the oxygens. The minimal kinetic energy operator
with a choice of gauge such that the d orbital, px orbital and
the py orbital are purely real imaginary is

HKE = it d
†
k(sxpx,k + sypy,k) − t ′sxsyp

†
x,kpy,k + H.c. (1)

with sx = sin(kx/2) and sy = sin(ky/2) for a lattice constant
taken to be 1. For simplicity, let the fermions be spinless.
Consider only the interaction between the p orbitals,

Hint =
∑
〈i,j〉

V np,inp,j . (2)

Following the procedure with which some time-reversal
violating states were derived for the cuprates, we use the
operator identity (for spinless fermions),

ninj = − 1
2 (|jij |2 + ni + nj ), (3)

where jij is the self-adjoint operator,

jij = i(c+
i cj − c+

j ci). (4)

Decomposing [In general the diagonal in spin indices part
of ninj gives Eq. (3); the nondiagonal can be written in terms
of products of spin currents with which mean-field theory gives
the possibility of symmetry breaking topological spin-current
states. [The decompositions of the operator may also be done
without the i in Eq. (3) from which various Pomeranchuk
instabilities may be derived for symmetry breaking in various
irreducible representations for spin and charge densities.] the
interaction term in Eq. (2), by defining

(V/2)〈jij 〉 = ir, (5)
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FIG. 1. (Color online) Schematic figure of loop currents connect-
ing the A sub-lattice and the B sub-lattice within the unit-cells of a
hexagonal lattice which preserves inversion about the center of the
hexagonal cell. A state which such loop currents has an anomalous
hall effect.

and doing a mean-field calculation, one finds an additional
kinetic-energy term,

H ′
int = ircxcyp

†
x,kpy,k + H.c. (6)

If r �= 0 is a stable state, it describes loop currents flowing
clockwise (or counterclockwise) around the oxygens in each
unit cell as shown in Fig. 2. This is one of the five possible loop-
current states with nonoverlapping loops in the Cu-O lattice,
all of which preserve translational symmetry.18 In Eq. (2),
the flux has one sign in the square formed by the nearest-
neighbor oxygens which surround a Cu and another sign in
the square formed by the nearest-neighbor oxygens which do
not surround a Cu. As pointed out by Fradkin and Sun,13

such a time-reversal violating state, which does not change
translational symmetry or break inversion symmetry, satisfies
all the conditions of a Haldane state for the Cu-O lattice. The
other four loop-current states do not. One of those is just the
photon on a lattice and cannot order. The other three can order
and indeed order consistent with the symmetry of two of them
(in different domains) is observed in underdoped cuprates. So,
our consideration of states such as those in Fig. 2 is only a
specific example to illustrate the nature of anomalous Hall
(AH) states in three-orbital models.

We will consider the Haldane state (quantized anomalous
Hall effect) of the Cu-O model and therefore the singularities
of the model with the Hamiltonian H = HKE + H ′

int. Before
we do that, let us consider the simpler case of two orbitals per
unit cell.

III. TWO-BAND MODELS

A general Hamiltonian in the space of two orbitals per unit
cell may be written as, ignoring an overall shift of the energy
that does not affect the Berry phase and assuming that there is
no basis of the Bravais lattice,

H = R(k) · σ =
(

R3 R1 − iR2

R1 + iR2 −R3

)
. (7)

Here Ri for i = 1,2,3 are some smooth functions of kx and
ky with period 2π . For now, we do not need the detailed
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FIG. 2. (Color online) Schematic figure of a loop current state in
the Cu-O lattice, which has an anomalous Hall effect. This is not the
state which is realized in the Cuprates but is discussed in this paper
for its interest as a simple model for possible anomalous Hall effect
in a three band model.

form of these functions. It is easy to diagonalize the above
Hamiltonian to find that there are two bands, E = ±R, with
R =

√
R2

1 + R2
2 + R2

3 .
Consider the lower band, E = −R(k). The eigenstate can

be written in two ways corresponding to two different choices
of gauge (the point of studying apparent consequences of the
choice of gauge will be clear in a later section of the paper):

|ψA〉 = 1√
2R(R − R3)

(
R3 − R

R1 + iR2

)
, (8)

|ψB〉 = 1√
2R(R + R3)

(
R1 − iR2

−R − R3

)
. (9)

They are connected by a U (1) gauge transformation

|ψB〉 = eiφ|ψA〉,
with eφ = −R1 + iR2√

R2
1 + R2

2

, φ = − arctan

(
R2

R1

)
. (10)

Then the Berry phase, Aμ, is also gauge dependent, given for
the two choices respectively by

AA
μ ≡ −i〈ψA|∇μ|ψA〉

= − 1

2R(R − R3)

(
R2

∂R1

∂kμ

− R1
∂R2

∂kμ

)
, (11)

AB
μ ≡ −i〈ψB |∇μ|ψB〉

= 1

2R(R + R3)

(
R2

∂R1

∂kμ

− R1
∂R2

∂kμ

)
. (12)

Aμ’s are also connected by a U (1) gauge transformation:

AB
μ = AA

μ + ∇μφ,

∇μφ = 1

R2 − R2
3

(
R2

∂R1

∂kμ

− R1
∂R2

∂kμ

)
. (13)

The Berry curvature is gauge invariant and given by

Fxy = ∂Ay

∂kx

− ∂Ax

∂ky

= 1

2R3
εabcRa

∂Rb

∂kx

∂Rc

∂ky

= 1

2
εabcR̂a

∂R̂b

∂kx

∂R̂c

∂ky

. (14)
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Here R̂ = R/R is a unit vector. If we integrate over the entire
Brillouin zone, we find

c = 1

2π

∫
d2k Fxy = 1

4π

∫
d2k εabcR̂a

∂R̂b

∂kx

∂R̂c

∂ky

. (15)

This is the well-known result19 that the Chern number of
a two-band model is equivalent to the winding number of
the mapping from a two-dimensional (2D) Brillouin zone
which is 2D torus (T 2) to the 2D unit sphere (S2). This
mapping can be understood by taking spherical coordinates
R = R(sin θ cos φ, sin θ sin φ, cos θ ). The wave function can
be written as |φ〉 = [− sin(θ/2), cos(θ/2)eiφ], which is a
two-component spinor. The unit sphere is just the Bloch sphere
R̂ = −〈φ|σ |φ〉 associated with this spinor.

The Berry phase A is a vector field defined on the
momentum space or the torus. Since the torus is mapped to
a sphere, one can also think of the Berry phase as defined on
this sphere. In spherical coordinates, we have

AA = 1 + cos θ

2 sin θ
φ̂, AB = −1 − cos θ

2 sin θ
φ̂. (16)

This is just the vector potential of the Wu-Yang monopole20

on a unit sphere. The magnetic field is B = ∇ × A =
1

sin θ
∂
∂θ

(Aφ sin θ )r̂ = − 1
2 r̂. The magnetic field is like that of

a monopole with charge g = −2π . Furthermore, this implies
that a monopolelike singular point is located at the center of
the sphere R1 = R2 = R3 = 0, which is also the point at which
the two bands become degenerate.

The winding number is easier to compute than the Chern
number, since it is directly written in terms of matrix elements
of the Hamiltonian and does not require computing the
eigenvectors. If R1, R2, and R3 are independent of each other,
and each of them can take both positive and negative values at
the point where the other two components are zero, then R̂ will
sweep out the whole unit sphere which encloses the singular
point inside it. Then the winding number or the Chern number
is nontrivial. But in general it is also possible that R̂ winds the
sphere twice in opposite directions and cancels out or comes
back to a given point as k is varied over all its values without
sweeping the entire sphere. Then the Chern number is zero.

As a specific example,21 take R = (sin kx, sin ky, m +
cos kx + cos ky). For 0 < m < 2, there is always a gap between
the two bands and it is easy to see that R̂ sweeps the whole
sphere. One can also directly verify that

c = −
∫

d2k

4π

cos kx + cos ky + m cos kx cos ky

[sin2 kx + sin2 ky + (m + cos kx + cos ky)2]
3
2

= 1. (17)

Consider next the Haldane model.1 It has a staggered flux
inside each unit cell. The Hamiltonian is

H = t1

( ∑
i

cos(k · ai)σ
1 +

∑
i

sin(k · ai)σ
2

)

+
(

M − 2t2 sin φ
∑

i

sin(k · bi)

)
σ 3. (18)

The maximum of
∑

i sin(k · bi) is 3
√

3/2; thus for |M/t2| <

3
√

3| sin φ|, R̂ will cover the whole sphere. Indeed, for φ > 0,
one can directly verify that c = 1 in this case.

The condition on M is simply the necessary condition for
the AH state that the monopole singularity exist which requires
that R3(k) go through zero at some point k and change sign as
that point is crossed.

Fradkin and Sun13 pointed out that if both time reversal
R and inversion I are broken but the product RI con-
served, there can be no anomalous Hall state: the diagonal
components of the Berry vector potential must vanish. Note
that (RI)R3σ3(RI) = −R3σ3. Therefore, if RI is conserved,
R3(k) = 0 for all k. Then the sphere R̂(k) turns to a circle and
no singularity can be defined.

In contrast to this is the θII type loop-current states realized
in the three-orbital model for cuprates.10–12 Its mean-field
Hamiltonian in the same basis as Eq. (1) is

H =

⎛
⎜⎝

0 itsx + ircx itsy + ircy

−itsx − ircx 0 t ′sxsy

−itsy − ircy t ′sxsy 0

⎞
⎟⎠ . (19)

If we define id† = d̃†, then the Hamiltonian in the new basis is
a real matrix. Actually, ifRI is invariant, then the Hamiltonian
(in momentum space) can always be written as a real matrix
and the phase of all eigenvectors are constant. Therefore, such
a state, though violating time reversal, cannot have an AH
state.

IV. THREE-BAND LOOP-CURRENT MODEL WITH AH

A. Chern number and winding number

Now we turn back to the three-orbital copper-oxygen model
given by Hamiltonian H = HKE + H ′, which in the space of
d,px,py is

H =

⎛
⎜⎝

0 itsx itsy

−itsx 0 t ′sxsy + ircxcy

−itsy t ′sxsy − ircxcy 0

⎞
⎟⎠ , (20)

with sx = sin(kx/2) and cx = cos(kx/2), etc. Note that even
though the matrix elements as a function of kx and ky do not
have the period 2π , the energy dispersion as a function of
kx and ky does have a period 2π . As commented on below,
the Hamiltonian for a tight-binding model with a basis is not
strictly periodic when k is translated by a reciprocal lattice
vector G, but rather is transformed by the unitary matrix
exp(iG · ai), where ai is the location of the ith site in the
unit cell.

To diagonalize the above Hamiltonian, one has to solve a
cubic equation to find out the eigenvalues. Since the Chern
number is topological invariant, if we deform the Hamiltonian
without the bands crossing, the Chern number will stay the
same. We can therefore simplify the problem by dropping
the t ′sxsy term and come back later to ensure that this
simplification is valid. The simplified Hamiltonian is

H ′ =

⎛
⎜⎝

0 itsx itsy

−itsx 0 ircxcy

−itsy −ircxcy 0

⎞
⎟⎠ . (21)
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This Hamiltonian can written as H = R · L with R1 = tsx ,
R2 = −tsy , R3 = rcxcy and Lx , Ly , Lz are the spin 1
representation of the SU (2) generators in contrast to the spin-
1/2 representation of the SU (2) generators for the two-band
case.

We will discuss the location of singular points in simple
gauges for model H ′ of Eq. (4). They should be qualitatively
similar to model H of Eq. (3). It is easy to find the eigenvalues
E = 0, ± R with R =

√
R2

1 + R2
2 + R2

3
−. Let us focus on the

lowest band E1 = −R; the corresponding eigenvector can be
written in two different ways labeled by A,B,

∣∣ψA
1

〉 = 1√
2
(
R2 − R2

3

)
R

⎛
⎜⎝

R2 − R2
3

−R2R3 + iRR1

−R1R3 − iRR2

⎞
⎟⎠ , (22)

∣∣ψB
1

〉 = 1√
2
(
R2 − R2

1

)
R

⎛
⎜⎝

−R1R3 + iRR2

−R1R2 − iRR3

R2 − R2
1

⎞
⎟⎠ . (23)

These two wave functions are related by a U (1) gauge
transformation,∣∣ψB

1

〉 = eiφ|ψA〉, eiφ = −R1R3 + iRR2√(
R2 − R2

1

)(
R2 − R2

3

) ,

(24)

φ = − arctan

(
RR2

R1R3

)
.

The Berry phase is given by

AA
μ = −i〈ψA|∇μ|ψA〉

= − R3

R
(
R2 − R2

3

)(
R2

∂R1

∂kμ

− R1
∂R2

∂kμ

)
, (25)

AB
μ = −i〈ψB |∇μ|ψB〉

= − R1

R
(
R2 − R2

1

)(
R3

∂R2

∂kμ

− R2
∂R3

∂kμ

)
. (26)

They are also connected by a U (1) gauge transformation,

AB
μ = AA

μ + ∇μφ. (27)

The Berry curvature is given by

Fxy = ∂Ay

∂kx

− ∂Ax

∂ky

= − 1

R3
εabcRa

∂Rb

∂kx

∂Rc

∂ky

= −εabcR̂a

∂R̂b

∂kx

∂R̂c

∂ky

. (28)

Note there is a factor of 2 difference compared to the two-band
model. The Chern number is the integral of the Berry curvature
in the Brillouin zone (BZ),

c = 1

2π

∫
d2k Fxy = − 1

2π

∫
d2k εabcR̂a

∂R̂b

∂kx

∂R̂c

∂ky

= 1

2π

∫
d2k

t2r
(
c2
x + s2

xc
2
y

)
4[(tsx)2 + (tsy)2 + (rcxcy)2]3/2

. (29)

In this model, R3 = rcxcy takes only positive values and R1 =
tsx and R2 = −tsy continuously vary from −t to t and do not
go back. Thus R̂ only sweeps half of the unit sphere. Thus the

surface integral
∫

d2k R̂(∂xR̂ × ∂yR̂) = 2π and Chern number
c = 1.

We have obtained the relation between the Chern number
and winding number for the spin-1/2 and spin-1 represen-
tations of SU (2) algebra. Actually, we can generalize this
relation to any spin-n/2 representation of SU (2) for integer n.
The Hamiltonian is given by

H = R1Jx + R2Jy + R3Jz. (30)

Here Ja for a = x,y,z are n × n matrices and satisfy [Ja,Jb] =
iεabcJc. Then the eigenvalues are Ei/R = −n/2, − (n/2 −
1), . . . ,n/2 − 1,n/2. Then, for the ith band, we have

c = 1

2π

∫
d2k Fxy = Ei

R

1

2π

∫
d2k εabcR̂a

∂R̂b

∂kx

∂R̂c

∂ky

. (31)

To prove the above result, it is better to consider H/R = R̂ · J,
which has the same Chern number as H . Since R̂ is a unit
vector, it can be parametrized by spherical coordinates R̂ =
(sin θ cos φ, sin θ sin φ, cos θ ). Here θ , φ are functions of kx

and ky .
To be specific, we take Jz as a diagonal matrix Jz =

diag{n/2,(n/2 − 1), . . . , − n/2 − 1, − n/2}. We can make a
rotation to diagonalize H/R as

eiθJy eiφJz R̂ · Je−iφJze−iθJy = Jz. (32)

For the ith band, we have the eigenvector

ψi = e−iφJze−iθJy ni , ni(0, . . . ,1, . . . ,0)T . (33)

In the above vector, only ith component is 1 and all others
are zero. The Chern number can also be written in terms of
differential forms as

c = − i

2π

∫
d2k

(
∂ψ†

∂kx

∂ψ

∂ky

− ∂ψ†

∂ky

∂ψ

∂kx

)

≡ − i

2π

∫
dψ† ∧ dψ. (34)

It is easy to find

dψ = (−iJze
−iφJze−iθJy dφ − ie−iφJze−iθJy Jydθ

)
ni ,

dψ† = nT
i

(
ieiθJy eiφJzJzdφ + iJye

iθJy eiφJzdθ
)
.

Using the above in Eq. (34), we find

c = − i

2π

∫
nT

i (Jye
iθJy Jze

−iθJy dθ ∧ dφ

+ eiθJy Jze
−iθJy Jydφ ∧ dθ )ni

= − i

2π

∫
Tr

[
eiθJy (JyJz − JzJy)e−iθJy · (

ninT
i

)]
dθ ∧ dφ

= 1

2π

∫
Tr

[
eiθJy Jxe

−iθJy · (
ninT

i

)]
dθ ∧ dφ

= 1

2π

∫
Tr

[
(cos θJx + sin θJz) · (

ninT
i

)]
dθ ∧ dφ. (35)

The matrix (ninT
i ) has 1 as its ith diagonal element, and all

other elements are zero. Thus for any n × n matrix A, we have
Tr[A(ninT

i )] = Aii . Since Jx only has off-diagonal elements,
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only the second term of Eq. (35) contributes. Therefore,

c = (Jz)ii
2π

∫
sin θ dθ ∧ dφ = Ei

R

1

2π

∫
sin θ dθ ∧ dφ.

(36)

On the other hand, the winding number integral in terms of
spherical coordinates can be written as∫

d2k εabcR̂a

∂R̂b

∂kx

∂R̂c

∂ky

= 1

2

∫
εabcR̂adRb ∧ dRc

=
∫

sin θ dθ ∧ dφ. (37)

Combining the above two equations, we find the desired
results.

There is a subtle point about this loop-current model’s
behavior when k is shifted by a lattice vector. Recall that R1 =
t sin(kx/2), R2 = −t sin(ky/2), R3 = r cos(kx/2) cos(ky/2)
and they are functions of kx and ky with period 4π not
2π . Thus the Hamiltonian is not invariant under changes
kx → kx + 2π and ky → ky + 2π . This happens generally if
the lattice contains a basis. It is easy to see that the eigenstates
are also not invariant under 2π shift. However, if we rewrite
the wave function in real space, we find

ψA
1 ∝

∑
i

eik·ri

⎛
⎜⎝

R2 − R2
3

−(
tr
2 sin ky − itR

)
sin(kx/2)eikx/2

−(
tr
2 sin kx + itR

)
sin(ky/2)eiky/2

⎞
⎟⎠ .

(38)

Since R and R2
1,2,3 has period 2π , the above wave function is

invariant under 2π shift as one expected.
If we define the torus to be −π < kx,y < π , then R3 is

always positive and the torus is mapped to half of a unit sphere
by R̂. It might seem that, in this case, the monopole singular
point is not enclosed by the half surface; therefore, the Chern
number need not to be quantized and may have no topological
meaning. But if we look at the vector potential in Eq. (26), they
are invariant under 2π shift, and thus are well defined on the
whole torus. Therefore, according to Dirac’s arguments, the
integral of field strength on this closed surface should give a
quantized topological invariant. In the mapping R̂(kx,ky), the
boundary of BZ is mapped to the equator of the sphere. As
discussed above, the wave functions are the same at the two
points like (−π,ky) and (π,ky) on the boundary of BZ. These
two points are mapped to (− 1

1+s2
y
,sy,0) and ( 1

1+s2
y
,sy,0) on the

equator. These two points should be identified, and then the
boundary of the half sphere is glued together to make a closed
surface which is topologically equivalent to a sphere. In this
loop-current model, we have wound over this closed surface
once.

B. Singular points of wave functions and
their gauge dependence

We now discuss the singular points of wave functions inside
the BZ for the three-orbital case. One can see that ψA

1 is
well defined for all possible values of R1,2,3 except when
R3 = ±R or R1 = R2 = 0. So this is the singular point of
ψA

1 . It corresponds to kx = ky = 0 in the BZ. Similarly, ψB
1 has

singular points when R1 = ±R or R2 = R3 = 0. It correspond
to kx = ±π, ky = 0 in the BZ. Therefore, the location of
singular points depends on the choice of gauge.

The reason that any gauge has singular points is simply
that the Chern number being nonzero implies no continuous
gauge can cover the whole Brillouin zone. It is easiest to
understand the connection of these two by thinking of a
spherical rather than toroidal Brillouin zone. If a single
gauge covered the whole sphere, then we could apply Stokes’
theorem to relate the Chern number, which is the integral of
the Berry curvature over the whole sphere, to the integral of
the Berry connection around a tiny circle, which must be zero.
In the same way, a nonzero Chern number is an “obstruction”
to having continuously defined wave functions over the whole
Brillouin zone.

Each form of wave function is valid only on one patch of the
torus and the two are connected by U (1) gauge transformation
on the boundaries. This is exactly the same as for the Wu-Yang
monopole. ψA

1 and ψB
1 define a U (1) bundle on the torus. Let

UA be the open set which covers the torus without the point
kx = ky = 0. Let UB be the open set which covers the torus
without the point kx = ±π, ky = 0. Then ψA

1 is well defined
on UA and ψB

1 is well defined on UB . Both ψA
1 and ψB

1 are
well defined on the overlap UA

⋂
UB and they are related by

U (1) gauge transformation ψA
1 = eiφψB

1 . We can take a closed
loop as the boundary of UA and UB ; then we find a mapping
from this closed loop to U (1). Then the Chern number is just
the winding number of this mapping.

We can make this connection more explicit by taking a
small closed loop as c : k2

x + k2
y = ε2 with small positive ε to

enclose the singular point of ψA
1 . Making a small k expansion,

we find R1,2 ≈ kx,y/2, R3 ≈ 1, and R ≈ 1. Then we have

φ ≈ − arctan
ky

kx

, ∇μφ ≈
(

ky

k2
x + k2

y

, − kx

k2
x + k2

y

)
. (39)

Thus the Chern number can also be obtained as a line integral
around this small loop,

c = 1

2π

∮
c

(AB − AA) · dl = 1

2π

∮
c

∇μφ · dlμ

= 1

2π

∮
c

kydkx − kxdky

k2
x + k2

y

= 1. (40)

Even without detailed calculation, one can see that as the
momentum goes around this loop, the phase difference φ of
Eq. (24) also goes around one circle. Thus the winding number
is −1, which agrees with the previous calculation.

The Chern number can also be defined as a line integral
c = 1

2π

∮
C

Aμdlμ, where integral path C is the boundary of
the BZ. Since the Berry vector potential depends on the gauge
choice, to get a correct answer for the Chern number, one has
to choose a gauge such that the wave function has no singular
point inside the loop. In the Cu-O model, we should use AB

μ .
It is easy to see that AB

x = 0 for ky = ±π and −π � kx � π

and AB
y = 0 for kx = ±π and −π � ky � π . Thus we find

loop integral
∮

Aμdlμ = 0. But since there are two singular
points kx = ±π , ky = 0 on the boundary, we should choose
an integral path with a small semicircle to circumvent the two
singular points. Expanding AB

μ around kx = ±π , ky = 0, we
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find

AB
μ(±π + kx,ky) = 1

k2
x + k2

y

(kx, − ky). (41)

Let ε denote the small circle around the singular point; then

c = 1

2π

∮
C

Aμdlμ = − 1

2π

∮
ε

kxdky − kydkx

k2
x + k2

y

= 1. (42)

This result agrees with the Chern number calculated from the
Berry curvature.

For the middle band E = 0 and the wave function is |ψ2〉 =
1
R

(R3,R2,R1), which is always real in the BZ. Clearly this band
is topologically trivial and Chern number c = 0. The sum of
the Chern numbers of all bands is always zero. Thus for the
top band we have c = −1.

Now we come back to the original Hamiltonian H . We
show that if t ′ is not too large, there is no band crossing so the
result stays the same as H ′. Let R4 = tsxsy ; the eigenvalues
are the roots of cubic equation

E3 − (
R2

4 + R2
)
E + 2R4R1R2 = 0. (43)

The condition for degeneracy is −[(R2
4 + R2)/3]3 +

(R4R1R2)2 = 0. It can be rewritten as

−[(
R̂2

4 + 1
)/

3
]3 + (R̂4R̂1R̂2)2

� −[(
R̂2

4 + 1
)/

3
]3 + R̂2

4

/
4 = 0,

with R̂4 = R4/R. The last equality of the above is satisfied only
for R̂2

4 = 1/2. In our model, for simplicity, we take r = t ; then
the maximum value of R̂4 is t ′

2t
at kx = ky = π . Thus, as long

as t ′ < t , there is no band crossing and the Chern numbers stay
the same as H ′.

It follows from the discussion above that if the band is only
partially filled, i.e., there is a Fermi surface, there can be no
topologically protected currents. Nor can there be any singular
properties of the Fermi liquid coming from the physics of the
(nonquantized) anomalous Hall effect because one can always
move the singularities of the wave functions away from the
Fermi surface by a suitable choice of gauge. The intrinsic
contribution to the anomalous Hall effect can be calculated by
integrating the Berry curvature over the Fermi surface volume.
This procedure is best carried out numerically by writing the
Chern number in terms of the projection operator22 onto the
occupied subspace, Pk = |ψk〉〈ψk|, as this object is manifestly
gauge-invariant.

V. CONCLUSIONS AND REMARKS ON
THREE-DIMENSIONAL MATERIALS

We have discussed the calculation of Berry phases and the
contribution to the Hall effect in a three-band model motivated
by the copper-oxygen planes of the high-temperature super-
conductors. There are two topologically active bands (i.e., with
nonzero Chern number ±1) separated by a middle band with
Chern number zero. We have neglected interaction effects,
but there is considerable recent interest in the possibility of
fractional quantum Hall phases when a band of nonzero Chern
number is partly occupied. Bands with Chern number ±2 or
larger are particularly interesting as, while these are formally
equivalent to bilayer quantum Hall systems, it has been argued
that they are likely to support novel fractional quantum Hall
states because the nature of interactions is modified.23 That
work proposed creating the Chern number ±2 bands via an
oxide heterostructure, and this technique might also enable
the PT -breaking model described here to be realized at the
interface between a cuprate and another material.

In closing, it may be useful to mention another topological
property enabled when a model has three bands rather than two;
the CP violation enabled by the 3 × 3 Cabibbo-Kobayashi-
Maskawa matrix in the standard model provides a well-known
example of how 3 × 3 matrices allow additional subtleties.
The orbital contribution to the linear magnetoelectric effect,
i.e., the polarization induced by a magnetic field dPi/dBj or
magnetization by an electric field dMi/dEj , has recently been
a subject of active study.21,24–26 The topological part of this
effect is the scalar diagonal part (“axion electrodynamics”),
computed by the Chern-Simons integral over the Berry
connection,21 which vanishes in a purely 2D model such as
that considered here.

In a 3D model, either P or T symmetry quantizes the scalar
diagonal part to only two possible values, corresponding to
ordinary and topological insulators. Without these symmetries,
in a 3D model with only two bands, the Chern-Simons
integral is quantized and computes the “Hopf invariant” of
the band structure, viewed as a mapping to the sphere.27 Three
bands are required in order to generate generic values of the
scalar magnetoelectric coupling. The computation for a single
occupied band, in which case the Chern-Simons integral is
Abelian, has been recently discussed.28 We hope that the
results of this paper lead to further study of the consequences of
wave function topology for transport and magnetism of oxide
materials.
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