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Strong enhancement of Rashba spin-orbit coupling with increasing anisotropy
in the Fock-Darwin states of a quantum dot
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We have investigated the electronic properties of elliptical quantum dots in a perpendicular external magnetic
field, and in the presence of the Rashba spin-orbit interaction. Our work indicates that the Fock-Darwin spectra
display a strong signature of Rashba spin-orbit coupling even in a low magnetic field, as the anisotropy of the
quantum dot is increased. An explanation of this pronounced effect with respect to the anisotropy is presented.
The strong spin-orbit-coupling effect manifests itself prominently in the corresponding dipole-allowed optical
transitions and hence is susceptible to direct experimental observation.
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In recent years our interest in understanding the unique
effects of the spin-orbit interaction (SOI) in semiconductor
nanostructures' has peaked, largely due to the prospect of
possible realization of coherent spin manipulation in spintronic
devices,> where the SOI is destined to play a crucial role.’
As the SOI couples the orbital motion of the charge carriers
with their spin state, an all-electrical control of spin states in
nanoscale semiconductor devices could thus be a reality. In
this context the Rashba SOI (Ref. 4) has received particular
attention, largely because in a two-dimensional electron gas the
strength of the Rashba SOI has already been shown to be tuned
by the application of an electric field.’ Interestingly, the Rashba
effect has also been a major player in topological insulators
and in the search for Majorana fermions.® While the earlier
studies of Rashba SOI were primarily in a two-dimensional
electron gas, our collective attention has now shifted to the
role of SOI in a single InAS quantum dot.” The quantum dot
(QD),} a system of few electrons confined in a nanometer
region, has the main advantage that the shape and size of the
confinement can be externally controlled, which provides a
unique opportunity to study the atomiclike properties of these
systems.®” In fact, SO coupling in quantum dots generates
anisotropic spin splitting'® that is related to the SO-coupling
strength.

Extensive theoretical studies of the influence of Rashba
SOI in circularly symmetric parabolic confinement have
already been reported earlier,!! where the SO coupling was
found to manifest itself mainly in multiple level crossings
and level repulsions. They were attributed to an interplay
between the Zeeman and the SO interactions present in the
system Hamiltonian. Those effects, in particular the level
repulsions, were weak, however, and as a result, would require
extraordinary efforts to detect the strength of SO coupling!?
in those systems. Introducing anisotropy in a QD, we show
that a major enhancement of the Rashba SO-coupling effects
can be generated in a quantum dot. As shown below, this
can be observed directly in the Fock-Darwin states of a QD,
and therefore should be experimentally observable.®® We find
that the Rashba SO-coupling effects are manifestly strong
in an elliptical QD," which should provide a direct route
to unambigiously determine (and control) the SO-coupling
strength. The anisotropy of a quantum dot can in turn be tuned
by an in-plane magnetic field.'*
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The Fock-Darwin energy levels in elliptical QDs subjected
to a magnetic field were first reported almost two decades
ago,'3 when it was found that the major effect of anisotropy was
to lift the degeneracies of the single-particle spectrum.'> The
starting point of our present study is the stationary Hamiltonian

1 e 2
= Im* <p - EAS> + Veont(x,y) + Hso + H;

= Ho + Hso + H;,

where the confinement potential is chosen to be of the form
Veont = %m*(w,%xz + w§y2)sHSO = %[O’ X (P - EAS)]Z is the
Rashba SOI, and H, is the Zeeman contribution. Here m* is the
effective mass of the electron, o are the Pauli matrices, and we
choose the symmetric gauge vector potential Ag = %(— v,x,0).
We introduce the rotated coordinates and momenta'3

Hs

Y =¢q2C08 X — xap18iny,
Dy = P2€0S X + X141 8in x,

X = g1 CO8 X — X2p28in ¥,
Px = P1Cos X + xiq2sin x,
where
1

12
X1=—|:§(Q%+Q§):| , ox=x

tan2y = m*o [2(2} + 23)]? /(2 - ).

1
@, =m” <‘”?,v+zw3>’ w. = eB/m’c.

In terms of the rotated operators introduced above, the
Hamiltonian Hy is diagonal,13

1
Ho=— > [Bpi +vial]:
Zm* v=1,2
where
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Q= [(2F - @) + 2m*22 (23 + 23)] 7.

Since the operator H) is equivalent to the Hamiltonian of two
independent harmonic oscillators, the states of the electron can
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FIG. 1. Magnetic field dependence of the low-lying Fock-Darwin
energy levels of an elliptical dot without the Rashba SO interaction
(a = 0). The results are for (a) w, =4 meV and w, =4.1 meV,
(b) oy =4 meV and w, = 6 meV, (c) vy =4 meV and w, = 8 meV,
and (d) o, =4 meV and w, = 10 meV. The symbols are explained
in the text.

be described by the state vectors |n,n,; s.). Here the oscillator
quantum numbers n; = 0,1,2, ... correspond to the orbital
motion and s, = :I:% to the spin orientation of the electron.
The Rashba SOI term is

h .
EHso = o, (sin x x1 — €os xwo)q|

— O'y(Sin X X1 -+ cos Xa)o)q2
—oy(cos x — sin xwox2) p1
+ o0y (cos x + sin x wox2) p2,

where wy = eB/2c. The effect of the SO coupling is handled
by resorting to the standard ladder operator formalism of
harmonic oscillators and by diagonalizing Hgo in the complete
basis formed by the vectors |ry,n;;s;).

The Fock-Darwin states in the absence of the Rashba
SOI (¢ =0) are shown in Fig. 1, for w, =4 meV and
wy =4.1,6,8,10 meV in Figs. 1(a)-1(d), respectively. We
have considered the parameters of an InAs QD throughout,'!
because in such a narrow-gap semiconductor system, the dom-
inant source of the SO interaction is the structural inversion
asymmetry,'® which leads to the Rashba SO interaction.!” As
expected, the breaking of circular symmetry in the dot results
in the lifting of degeneracies at B = 0, which are otherwise
present in a circular dot.'*! In Fig. 1(a), the QD is very
close to being circularly symmetric, and as a consequence, the
splittings of the zero-field levels are vanishingly small. As the
anisotropy of the QD is increased [Figs. 1(b)-1(d)], splitting
of the levels becomes more appreciable.

As the SO term is linear in the position and momentum
operators it is also linear in the raising and lowering ladder
operators. It is also off diagonal in the quantum number
s,. Hence the SOI can mix only states which differ in spin
orientation, and differ by 1 either in the quantum number 7| or
in n, but not in both. For rotationally symmetric confinements,
these selection rules translate to the conservation of the total
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FIG. 2. As Fig. 1, but for « = 20 meV nm. The symbols are
explained in the text.

angular momentum j = m + s, in the planar motion of the
electron.

At the field B = 0 the ground states |0,0; :I:%) are twofold
degenerate. Due to the selection rules, this degeneracy cannot
be lifted either by the eccentricity of the dot or by the Rashba
coupling. Many of the excited states, such as |n1,n2;:t%),
retain their degeneracy no matter how strong the SO coupling
is or how eccentric the dot is (Kramers doublet), as seen in
Figs. 1 and 2. At the same time, many other degeneracies
are removed by squeezing or streching the dot. At nonzero
magnetic fields some of the crossings of the energy spectra are
turned to anticrossings by the Rashba term in the Hamiltonian.
For example, the second and third excited states in Figs. 2(a)—
2(d) are composed mainly of the states |0,0; %) (marked as e
in Fig. 2) and |1,0; —%) (marked as ®m in Fig. 1), which are
mixed by the Hgo around B = 3 T, causing a level repulsion.
Squeezing of the dot also enhances the SO coupling. The level
repulsion gap due to the Rashba SOI is presented in Fig. 3
as a function w, while w, is kept fixed at 4 meV. Only the
lowest two level repulsion gaps (around the magnetic field of
B =3-4 T are shown. A rapid increase of the gap in both
cases is found as a function of the eccentricity of the dot. Such
an effect has not been reported before to our knowledge.
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FIG. 3. The Rashba gap for the lowest level repulsion (first gap)
and for the next higher energy (second gap) versus the anisotropy of
the dot.
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In fact the four lowest gaps shown in Fig. 2 at around
3-4 T are between the states with major components
|n,0; %) and |n 4+ 1,0; —%), that is, between the states related
to the oscillations parallel to the x axis. When the dot
is squeezed in the y direction we would naively expect
these states to experience only the trivial zero-point-energy
shift of magnitude %hAwy. In particular, we would expect
the Rashba gap to approximately retain its width. There
are, however, two indirect mechanisms that are influencing
the size of the gap. The first one can be understood using simple
perturbation-theoretical arguments: the squeezing moves the
states |n + 1,1; %) to such high energies that their tendency

to repel the states |n + 1,0; —%) downward and to close the
gap is diminished. The second mechanism is attributed to
the imposed magnetic field which rotates the oscillators in
the phase space by mixing the high-momentum y-direction
oscillation with the x-direction motion. Since the SOI is
proportional to the momentum, this mixing will increase the
Rashba effect.

The effects of anisotropy and spin-orbit interaction on the
energy spectra above are also reflected in the optical absorption
spectra. Let us turn our attention to the absorption spectra for
transitions from the ground state to the excited states. For that
purpose we subject the dot to the radiation field

AR — Aoé(ei(w/c)ﬂ-rfiwt + e*i(w/c)ﬁ-lﬂriwt)’

where €, w, and fi are the polarization, frequency, and
direction of propagation of the incident light, respectively. We
let the radiation enter the dot along the direction perpendicular
to the motion of the electron, that is, parallel to the z axis. Due
to the transversality condition the polarization vector will then
lie in the xy plane.

We now assume that the intensity of the field is so weak
that only the terms linear in Ag have to be taken into account.
Then the effect of the radiative magnetic field on the spin
can be neglected as well. So we can replace in the stationary
Hamiltonian Hg the vector potential Ag with the field A =
As + Ag. Discarding terms higher than linear order in Ag, we
get the total Hamiltonian H = Hg + Hg, with the radiative
part

He = ——

Am(p—EM>—gfwaﬂp
m,c c hic

Dipole approximation. We assume that the amplitude of
radiation can be taken as constant within the dot, so that the
field is written as Ag & Agé(e™'®" + ¢/“"). Since the transition
energies expressed in terms of radiation frequences are of
the order of terahertz, the corresponding wavelengths are
much larger than the typical size of a dot, thus justifying our
approximation. The Fermi golden rule now leads to the dipole
approximation form

Oabs (@) = 4%, | (n]& - X[i)*8(wpi — )

of the absorption cross section for transitions from the inital
state |i) to the final state |n). Here oy is the fine structure
constant and w,; is the frequency corresponding to the
transition energy iiw.

The dipole selection rules for the oscillator states largely
dictate the features in Fig. 4. Without the SOI, these rules—the
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FIG. 4. Optical absorption (dipole-allowed) specta of elliptical
QDs for various choice of parameters: (a) « =0, w, =4 meV,
wy, =6, (b)a =20 meV nm, w, =4 meV, w, =8meV, and (c) &« =
40 meV nm, w, =4, w, = 6. The polarization of the incident
radiation is along the x axis. The parameters for (d)—(f) are the same,
except that the incident radiation is polarized along the y axis. The
areas of the filled circles are proportional to the calculated absorption
cross section.

spin state is preserved and either n; or n; is changed by unity—
fully determine the two allowed transitions |0,0; —%) (marked
as A in Fig. 1) — [1,0;—31) and [0,0;—3) — [0,1;—3)
(marked as *x in Fig. 1). In elliptical dots the absorption depends
on the polarization since the oscillator strengths

%
2m* wy;

h|waww

fni =

probe the occupations of quantum states related to oscillations
in the direction of the polarization €. In a circular dot all
oscillation directions are equally probable at all energies,
implying that the oscillator strengths are independent of the
polarization and depend only slightly on the transition energy
via wy;, and the final-state quantum numbers n; ;. When the
dot is squeezed in the y direction, say, the oscillator states
related to the y-axis motion are pushed up in energy. The
polarization being along the x axis, most of the oscillator
strength comes from transitions to allowed states with the
lowest energies. Similarly, when the incident radiation is
polarized along the y axis most of the contribution is due
to the transitions to the oscillator states pushed up in energy.
In elliptical dots the oscillator states are not pure x and y
oscillators but their superpositions. Therefore, in addition to
the main absorption lines, other allowed final states also have
nonvanishing oscillator strength. Furthermore, the phase-space
rotation formulas above show that the external magnetic field
tends to rotate the directions of the oscillator motion, causing
a shift of the oscillator strength from one allowed transition to
another. This is precisely what is seen in Figs. 4(a) and 4(d).
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Even in the presence of the SOI the two allowed
final oscillator states provide major contributions to the
corresponding corrected states. Hence we still see two dom-
inant absorption lines. However, now many other transitions
are also allowed. The lowest absorption line corresponding to
the transition between the Zeeman-split states with the main
components |0,0; —%) and |0,0; %) provides a typical example.
The transition involves a spin flip and is therefore strongly
forbidden without the SOI. As the SOI mixes the state |1,0; %)
(marked as OJ in Fig. 2) with the former and |0, 1; —%) with the
latter, the transition is allowed. The appearance of other new
lines can be explained by analogous arguments. There are also
additional features involving discontinuities and anticrossings
in Fig. 4, which are the consequences of the anticrossings
present in the energy spectra.

The oscillator strengths satisfy the Thomas-Reiche-Kuhn
sum rule,'® > f,; = 1. In terms of the cross section this
translates to the condition

% 2mh
/ Oabs(w) dw = T

*
00 m
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The absorptions in Fig. 4 practically saturate the sum rule,
the saturation being, of course complete in the absence of the
SOl in Figs. 4(a) and 4(d). The largest fraction (of the order of
1/10) of the cross section either falling outside of the displayed
energy scale or having too low intensity to be discernible
in our pictures is found at the strongest Rashba coupling in
Figs. 4(c) and 4(f) for large magnetic fields."”

Our present work clearly indicates that the anisotropy of a
QD alone causes lifting of degeneracies of the Fock-Darwin
levels at B = 0, as reported earlier.'> However, for large SO-
coupling strengths «, the effects of the Rashba SOI, mainly
the level repulsions at finite magnetic fields, are magnified
rather significantly as one introduces anisotropy in the QD.
This prominent effect of the Rashba SOI predicted here could
be confirmed experimentally in optical spectroscopy®®?’ and
in the Fock-Darwin spectra of few-electron QDs.”! It would
also provide a very useful step to control the SO coupling in
nanostructures, en route to semiconductor spintronics.2
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