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We study the interplay of the ferromagnetic (FM) state and the p-wave superconducting (SC) state observed
in several materials such as UCoGe and URhGe in a totally nonperturbative manner. To this end, we introduce
a lattice Ginzburg-Landau model that is a genuine generalization of the phenomenological Ginzburg-Landau
theory proposed previously in the continuum and also a counterpart of the lattice gauge Higgs model for the
s-wave SC transition, and study it numerically by Monte Carlo simulations. The obtained phase diagram has
qualitatively the same structure as that of UCoGe in the region where the two transition temperatures satisfy
TFM > TSC. For TFM/TSC < 0.7, we find that the coexisting region of FM and SC orders appears only near the
surface of the lattice, which describes an inhomogeneous FMSC coexisting state.
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I. INTRODUCTION

In the last decade, superconducting (SC) materials coex-
isting with ferromagnetic (FM) long-range orders have been
found and are of intensive interest. In UGe2 (Ref. 1) and
URhGe (Ref. 2), a SC state appears only within the FM state
in the pressure-temperature (P -T ) phase diagram, whereas in
UCoGe,3 the SC state exists both in the FM and paramagnetic
states.4 Phenomenological models of FMSC materials were
proposed5,6 soon after their discovery. The most important
observation in those studies is that the FMSC state is a
spin-triplet p-wave state of electron pairs.7

In this paper, we propose a lattice model for describing
FMSC materials and investigate it by numerical methods.8

The model contains a vector potential (i.e., gauge field) to
describe a FM order parameter (magnetization) and also a SC
order parameter, i.e., Cooper-pair field for the p-wave SC state.
These two physical variables couple with each other as the
Cooper pair bears the electric charge 2e. Finite magnetization
inside the material tends to induce vortices of the Cooper-pair
field and destabilize the SC state. In this sense, the FMSC state
is a result of frustration.

Introduction of the spatial lattice in the present model has
several advantages over the Ginzburg-Landau (GL) theory in
the continuum space:5,6,9 (i) it reflects the lattice structure
of the real materials, (ii) it works as a regularization of
vortex configurations because the energy of these topological
excitations becomes finite, and (iii) it allows us to make a
nonperturbative study by means of Monte Carlo simulations in
which contributions from all the field configurations including
topologically nontrivial excitations are taken into account, and
so the obtained results are quite reliable. In this sense, this study
is complementary to the previous analytical studies employing
perturbative and mean-field-like approximations.5,6,9

This paper is organized as follows. In Sec. II, we introduce
the lattice GL model, which is derived from the previously
proposed GL theory in the continuum. Detailed discussion
on the physical properties of the model is also given there.

In Sec. II A, we present a brief review on the lattice gauge
model for the SC state. This review may be useful to make
this paper readable for condensed matter physicists who are
not familiar with the models of the SC state on the lattice.
In Sec. III, we present results of the numerical study. The
phase structure of the model is clarified by calculating specific
heat, FM correlation function, shielding mass of magnetic
field, etc. We also study behavior of vortices in a constant
magnetic field in the present model in order to obtain an
intuitive picture of the Meissner state. Section IV is devoted for
conclusion.

II. LATTICE MODEL FOR FMSC STATE

A. Lattice gauge Higgs model for SC transition

In this section, we review a typical lattice model to describe
the conventional SC transition, which is called the U(1) gauge
Higgs model (or the Abelian Higgs model). The reader who
is familiar with this subject can skip this section and go to
Sec. II B.

Let us start with the GL theory of s-wave SC state in
the three-dimensional (3D) continuum space. Its free-energy
density is given by

fsGL = |Dμψ |2 + α
(
T − T 0

c

)|ψ |2 + λ|ψ |4 + 1

8e2
(rot �Aem)2,

(2.1)
Dμ = ∂μ − iAem

μ ,

where ψ is the complex scalar field for s-wave Cooper
pairs, �Aem is the vector potential (×2e) for fluctuating
electromagnetic field, Dμ is the covariant derivative in the
μth direction (μ = 1,2,3), T 0

c is the bare critical temperature
(T ) of SC transition, e is the elementary charge, and α and λ

are positive T -independent parameters.
The lattice-field model corresponding to the GL theory (2.1)

is defined by giving its free energy (or the action including the
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inverse temperature) F as follows:

F = −K

2

∑
x,μ

(ψ∗
x+μUxμψx + c.c.) + Fψ + FA, (2.2)

Fψ =
∑

x

(σ |ψx |2 + λ|ψx |4), Uxμ = exp
(
iAem

xμ

)
, (2.3)

where x is the site of the 3D lattice, ψx is a complex SC
order-parameter field defined on the site x, and we use μ also
as the unit vector in the μth direction. ψx is sometimes called
Higgs field because it is a complex scalar field. Aem

xμ is a real
electromagnetic field (× − 2e) put on the link (x,x + μ). FA

is the free energy of the electromagnetic field and has the
following two versions. One is the compact version

FA = − 1

8e2

∑
x,μ<ν

(U ∗
xνU

∗
x+ν,μUx+μ,νUxμ + c.c.),

Aem
xμ ∈ (−π,π ), (2.4)

and the other is the noncompact version

FA = 1

8e2

∑
x,μ<ν

(∇μAem
xν − ∇νA

em
xμ

)2
,

Aem
xμ ∈ (−∞,∞), (2.5)

where ∇μ is the lattice difference operator such that

∇μfx ≡ fx+μ − fx. (2.6)

These two FA are distinguished by having the periodicity
under Aex

xμ → Aex
xμ + 2π or not. We note that F of Eq. (2.2) is

invariant under the local U(1) gauge transformation

ψx → ψ ′
x = exp(iλx)ψx,

Aem
xμ → A

′em
xμ = Aem

xμ + λx+μ − λx, (2.7)

Uxμ → U ′
xμ = exp(iλx+μ)Uxμ exp(−iλx),

where λx is a site-dependent real variable.
Let us first consider the pure gauge system described by

the energy FA alone. In the case in which fluctuations of the
vector potential Aem

xμ are small, the above two versions belong
to the same universality class, i.e., the system is in the Coulomb
phase. This is because FA of Eq. (2.4) approaches to (2.5) due
to the relation

U ∗
xνU

∗
x+ν,μUx+μ,νUxμ + c.c. = 2 cos θxμν,

θxμν ≡ ∇μAem
xν − ∇νA

em
xμ, (2.8)

cos θxμν 
 1 − 1
2θ2

xμν for small θxμν.

For large fluctuations of vector potentials, the compact version
generally allows topologically nontrivial excitations such as
magnetic monopoles and may exhibit another phase called the
confinement phase, which is not allowed in the noncompact
version.

Next, we consider the case in which the magnetic field is
switched off by setting Aem

xμ = 0. Then, the system (2.2) is
reduced to the |φ|4 theory. In the 3D |φ|4 theory, there exists a
second-order phase transition accompanying the spontaneous
symmetry breaking of the global U(1) symmetry under the
phase rotation ψx → exp(iθ )ψx . This broken phase is called
the Higgs phase and corresponds to the SC phase. In the limit of
λ → ∞ with the ratio σ/λ kept fixed to a finite negative value,

the system reduces to the so-called XY model defined with
|ψx | = √−σ/2λ, which is well known to exhibit a second-
order transition as K is varied. This limit corresponds to the
London limit of superconductivity (or superfluidity), and the
phase transition in the |φ|4 theory for large λ and that of
the XY model belong to the same universality class. Even
in this simplified model, the detailed critical behavior at the
phase transition is different from that described by the mean-
field theory (MFT).

Finally, let us turn on the vector potential Aem
xμ. In the

continuum, it is shown10 that the second-order transition for
�Aem = 0 is changed to a first-order one as the GL parameter
κ ∝ λ/e2 is decreased. On the lattice, the compact version
of the system is studied in Ref. 11 and it is verified that the
phase transition takes place as one varies K with fixed κ . More
precisely, the phase transition is of first order for small κ and
becomes second order for large κ as in the model defined in the
continuum.10 Here, we should note that the study in Ref. 12
shows that the critical behavior of the second-order transition
near the London limit is not in the same universality class as
the 3D XY model due to the gauge-field fluctuations.

The noncompact lattice version is also studied in the
London limit in Ref. 13. The corresponding energy is obtained
from Eq. (2.2) by making the replacement

K

2

∑
x,μ

(ψ∗
x+μUxμψx +c.c.) → K̃

2

∑
x,μ

(e−iϕx+μUxμeiϕx +c.c.),

(2.9)

where ϕx is the phase of the Cooper-pair (Higgs) field ψx , and
neglecting Fψ in Eq. (2.3) because it becomes a constant. In
Ref. 13, this U(1) gauge Higgs model on the four-dimensional
lattice is studied for large 1/e2, which exhibits a second-order
transition as K̃ is varied. This is consistent with the fact
that, in the limit of 1/e2 → ∞, the system reduces to the
four-dimensional (4D) XY model. This phase transition is
induced by the condensation of vortex excitations in ϕx .
In the terminology of XY spin model, the XY spin �Sx ≡
(cos ϕx, sin ϕx)t has a long-range order 〈 �Sx〉 �= 0 in the Higgs
phase, whereas 〈 �Sx〉 = 0 in the disordered phase due to the
strong fluctuations of its angle ϕx .

Then, it is useful to rewrite the system in terms of
topological excitations such as vortices and monopoles. In
the London limit of Eq. (2.2), the duality transformation
can be performed,13,14 and the free energy is expressed
by the integer-valued vortex line-element variables Jx̄μ and
the integer-valued monopole-density varaiables Qx̄ ≡ ∇μJx̄μ

sitting on the dual lattice (x̄ denotes its site) as

Fv = 4π2K̃
∑
x̄,ȳ

(∑
μ

Jx̄μJȳμ + 1

m2
0

Qx̄Qȳ

)
Dx̄,ȳ ,

(2.10)

Dx̄,ȳ 
 exp(−m0r)

m0r
, r = |x̄ − ȳ|, m2

0 = 8K̃e2,

where Dx̄,ȳ is the 3D lattice Green’s function with mass m. As
explained in the Introduction, there appear no singularities in
Fv of Eq. (2.10).

For the noncompact version of the gauge system, it is shown
in Ref. 13 that no monopoles exist Qx̄ = 0 and only the

144524-2



LATTICE GINZBURG-LANDAU MODEL OF A . . . PHYSICAL REVIEW B 85, 144524 (2012)

closed vortex loops that satisfy
∑

μ ∇μJx̄μ = 0 are allowed
as expected. In the Coulomb phase with lower K̃ , these vortex
loops condense, while in the Higgs phase with higher K̃ vortex
loops are suppressed.

On the other hand, for the compact version,14 open
vortex strings may appear and a monopole should locate at
every end of an open string such that

∑
μ ∇μJx̄μ = Qx̄ �= 0.

Condensation of these monopoles may imply sufficiently large
fluctuations of �Aem and drive the system into the confinement
phase.15 In fact, in the 3D compact case, the system is known to
stay always in the confinement phase for any K̃ .15,16 In the 4D
compact case, there is a gauge transition from the confinement
phase to the Coulomb phase as 1/e2 increases and a Higgs
transition from the Coulomb phase to the Higgs phase as K̃

increases.17 Here, let us comment on the 3D multicomponent
Higgs model in the compact version with N Higgs fields in
the London limit.18 In contrast to the above 3D model with
N = 1, the model with N � 2 supports the Higgs phase due to
the extra phase degrees of freedom that are free from coupling
to the gauge field.

The above discussion clearly shows that the SC phase
transitions do take place even in the London limit for the
gauge Higgs model both for the noncompact gauge version
with N = 1 and for the compact version with N � 2, and
topological excitations of SC order parameters, vortices, play
an important role for that.

Usually, the genuine transition temperature Tc of the system
(2.1) is lower than the bare critical temperature T 0

c due to
fluctuation effect. The radial degrees of freedom of ψx may
certainly contribute such renormalization of Tc, but should not
change the universality class of the continuous phase transition
that we are to study because their fluctuations are massive.

In the rest of this paper, we shall study the FMSC state
by starting with a lattice model corresponding to Eq. (2.2)
in the London limit, in which vortices are expected to be
generated spontaneously, and therefore nonperturbative study
is indispensable for the investigation.

B. GL theory in the continuum

In the proposed GL theory5,6 for the FMSC materials in the
3D continuum space at finite T , the free-energy density fGL

for the SC state measured from the normal state is given as

fGL = K
∑

μ

(Dμ
�ψ)∗ · (Dμ

�ψ) + α
(
T − T 0

SC

) �ψ∗ · �ψ

+ λ( �ψ∗ · �ψ)2 + K ′ ∑
μ

(∂μ �m)2 + (
T − T 0

FM

) �m2

+αf ( �m2)2 + fZ, (2.11)

Dμ = ∂μ − 2ieAμ, fZ = −J �m · �S,

�m = �∇ × �A, �S = i �ψ∗ × �ψ,

with the spatial direction index μ = 1,2,3. The three-
component complex field �ψ = (ψ1,ψ2,ψ3)t is the spin-triplet
SC order parameter, i.e., the Cooper-pair field [we omit the
spatial coordinate x in the field �ψ(x), etc.]. �ψ is proportional
to the �d vector in the spin space �ψ ∝ �d and also the wave
function of the p-wave SC state in the real space as a result of
the spin-orbit coupling. In terms of �ψ , the magnetization (spin

and angular momentum) �S of Cooper pairs is expressed as in
Eq. (2.11).5 The FM order is described by the magnetization
field �m of electrons that do not participate in the SC state.
T 0

SC and T 0
FM are the bare critical temperatures of SC and FM

transitions, respectively. Because �m satisfies �∇ · �m = 0, it can
be expressed in terms of the vector potential �A as �m = rot �A.
Because the Cooper-pair field bears the electric charge −2e,
it couples with �A minimally via the covariant derivative
Dμ reflecting the electromagnetic gauge invariance. We note
that this vector potential �A is not the one for the external
electromagnetic field Aem

xμ in Eq. (2.2). fZ is the Zeeman

coupling term between �S and �m. It may induce the FMSC
state5 in which 〈 �m〉 �= 0,〈�S〉 �= 0.

The GL theory (2.11) and the related ones have been
studied so far by means of MFT-type methods.9 However,
the gauge coupling between �A and �ψ makes a simple MF
approximation assuming, e.g., a constant SC order parameter
and ignoring topologically nontrivial fluctuations unreliable
for the description of the FMSC state. This is also indicated
as we explained for the model of s-wave SC state Eqs. (2.1)
and (2.2). Therefore, fGL in Eq. (2.11) is a kind of frustrated
system of the AF and SC. We dare to use the word “frustrated”
here. This is because the case with a finite magnetization
�m �= 0 corresponds to the case with a nonvanishing external
magnetic field: a well-known case of frustration. In fact, the
phase of matter field there should acquire a finite additional
phase when it is rotated along a closed loop and so the phase
is not determined uniquely except for an integer magnetic flux
inside the loop. In other words, vortices are to be generated
because of the presence of the nonvanishing magnetization.

It is of course important to study the set of GL equations
derived from fGL in Eq. (2.11). The GL equations should be
solved self-consistently to obtain �ψ(x) and Aμ(x). In the FM
phase, �ψ(x) describes multivortex states and the vector poten-
tial Aμ(x) is determined by the locations of vortices in addition
to the other terms in fGL, including the magnetization �m(x).

In this paper, we shall introduce a GL theory defined on a
cubic lattice, which is a discretized version of Eq. (2.11), and
study its phase structure, etc., by means of the Monte Carlo
simulations. In this approach, all relevant fluctuations of �ψ
and Aμ are taken into account. Some related lattice model
describing a two-component SC was studied and interesting
results were obtained.19 The above two approaches, MFT of
the GL solutions and the numerical study of the GL theory, are
complementary and not exclusive of each other.

C. Derivation of the lattice model

As announced in Sec. I, we introduce an effective lattice
gauge model based on the GL theory in the continuum
(2.11) by making a couple of simplifications. We stress that
topological defects such as vortices are allowed on the lattice
without introducing an additional short-distance cutoff for
vortex cores. This point is quite important because it is
expected that such nontrivial excitations are generated in the
FMSC phase.

As the first step of simplification, we consider the “London
limit” of �ψ such that �ψ∗ · �ψ = const. determined by mini-
mizing fGL of Eq. (2.11), neglecting its radial fluctuations.
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As discussed in Sec. II A for the s-wave SC model, this is
legitimate because the phase degrees of freedom of �ψ play an
essential role for (in)stability of the SC state.

Second, the FMSC materials have a FM easy axis, which
we choose as the z direction (μ = 3).20 Then, the Zeeman
coupling fZ prefers such that ψ↑↑ ∝ ψ1 + iψ2 or ψ↓↓ ∝ ψ1 −
iψ2 takes large amplitude. In fact, as the Fermi surfaces of up-
and down-spin electrons have different energies due to fZ, the
Cooper-pair amplitude of mixed spins ψ3 = ψ↑↓ is small.

Therefore, in the effective model, we ignore ψ3 as in the
previous studies5,7,20 and consider only the two-component
complex field (ψ1,ψ2)t in the London limit

(ψ1,ψ2,ψ3) → (ψ1,ψ2,0) with

|ψ1|2 + |ψ2|2 = α

2λ

(
T 0

SC − T
)
. (2.12)

Here, we introduce a two-component complex field z that is
the normalized Cooper-pair field: z = (z1,z2)t satisfying

|z1|2 + |z2|2 = 1, (2.13)

and from Eq. (2.12)

(ψ1,ψ2)t =
√

α

2λ

(
T 0

SC − T
)

(z1,z2)t. (2.14)

We note that two-component complex variables satisfying
Eq. (2.13) such as z(x) is called a CP1 (complex projective)
field. In terms of z(x), the first term of fGL in Eq. (2.11) is
given as

Kα

2λ

(
T 0

SC − T
) ∑

μ

(Dμz)∗(Dμz). (2.15)

Now, let us consider the effective lattice model on the 3D
cubic lattice. Its GL free-energy density fx at the site x is given
up to an irrelevant constant by

fx = −c1

2

3∑
μ=1

2∑
a=1

(z̄x+μ,aUxμzxa + c.c.) − c2 �m2
x

−c3 �mx · �Sx + c4
( �m2

x

)2 − c5

∑
μ

�mx · �mx+μ, (2.16)

Uxμ ≡ exp(iAxμ).

The five coefficients ci (i = 1 ∼ 5) in Eq. (2.16) are
real non-negative parameters that are expected to dis-
tinguish various materials in various environments. zx =
(zx1,zx2)t (

∑
a= |zxa|2 = 1) is the CP1 variable at the site x

and plays the role of SC order-parameter field. Uxμ is the
exponentiated vector potential21 put on the link (x,x + μ).
�mx = (mx1,mx2,mx3)t is the magnetic field made out of Axμ

as

mxμ ≡
3∑

ν,λ=1

εμνλ∇νAxλ, ∇νAxλ ≡ Ax+ν,λ−Axλ. (2.17)

�mx serves as the FM order-parameter field. �Sx = (0,0,Sx3)t is
an Ising-type spin vector of Cooper pairs made out of zxa as

Sx3 ≡ i(z∗
x1zx2 − z∗

x2zx1) ∝ |ψ↑↑|2 − |ψ↓↓|2. (2.18)

As for the case of Eq. (2.7), fx is invariant under a U(1) gauge
transformation

zxa → z′
xa = exp(iλx)zxa,

(2.19)
Uxμ → U ′

xμ = exp(iλx+μ)Uxμ exp(−iλx).

We note that both �mx and �Sx are gauge invariant.
The meaning of each term in fx is as follows. The c1 term

describes a hopping of Cooper pairs. From Eq. (2.15), it is
obvious that

c1 ∼ Kαλ−1(T 0
SC − T

)
a, (2.20)

where a is the lattice spacing. At sufficiently large c1, the
c1 term may stabilize the phase of zxa up to a gauge
transformation, and then a coherent condensation of the phase
degrees of freedom of zx induces the superconductivity. The
c2 and c4 terms are the quartic GL potential of �mx and favor
a finite amount of local magnetization 〈 �mx〉 �= 0 (note that
we take c2 > 0). Again, we note that these terms control
intrinsic magnetization in contrast with FA of Eq. (2.2) for the
fluctuating but external magnetic field. The c5 term enhances
uniform configurations of �mx , i.e., a FM long-range order
signaled by a finite magnetization lim|x−x ′ |→∞〈 �mx · �mx ′ 〉 �= 0.
The c3 term is the Zeeman coupling, which favors collinear
configurations of �mx and �Sx , namely, the coexistence of
ferromagnetism and superconductivity.

The partition function Z at T is given by the integral over
a set of two fundamental fields zxa and Axμ as

Z =
∫

[dz][dA] exp(−βF ), β = T −1, F =
∑

x

fx,

[dz] =
∏
x

d2zx1d
2zx2 δ(|zx1|2 + |zx2|2 − 1), (2.21)

[dA] =
∏
x,μ

dAxμ, Axμ ∈ (−∞,∞).

The coefficients ci in fx may have nontrivial T dependence
as Eqs. (2.11) and (2.20) suggest. However, in this study
we consider the response of the system by varying the
“temperature” T ≡ 1/β defined by β, an overall prefactor in
Eq. (2.21), while keeping ci fixed. This method corresponds to
well-known studies such as the FM transition by means of the
O(3) nonlinear-σ model22 and the lattice gauge Higgs models
discussed in Sec. II A, and sufficient to determine the critical
temperatures. See later discussion leading to Eq. (3.6).

III. NUMERICAL STUDIES

A. FM and SC phase transitions and Meissner effect

For explicit procedures of our Monte Carlo simulations,
we first prepare a 3D lattice of the size of (2 + L + 2)2 × L,
namely, the lattice coordinates running as x1,x2 = 0, . . . ,L +
3, x3 = 0, . . . ,L − 1. The extra width 2 + 2 in the μ =
1,2 directions is introduced as a buffer zone in which the
supercurrent is damped. The calculations of physical quantities
are done in the central region R of the size L3 to suppress the
effects of the boundary. For the boundary condition, we choose
the periodic boundary condition in the μ = 3 direction. For the
μ = 1,2 directions, we first note that the supercurrent density
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jSC
xμ on the lattice is expressed as

jSC
xμ ∝ Im (z̄x+μUxμzx). (3.1)

Then, we impose

zx+μ − Uxμzx = 0 for x = (0,x2,x3), μ = 1,

x = (L + 2,x2,x3), μ = 1,

x = (x1,0,x3), μ = 2,

x = (x1,L + 2,x3), μ = 2,

(3.2)

whereas we impose the free boundary condition on
Axμ(μ = 1,2).

The above condition (3.2) is gauge invariant and assures us
that jSC

xμ = 0 (μ = 1,2) on the boundary surfaces in the μ − 3
plane; the supercurrent does not leak out of the SC material
put in the region R. We note that this boundary condition
for Axμ enhances the third component of the FM order so
that 〈 �mx〉 = (0,0,m3)t. This fact is traced back to our choice
ψ3 = 0 in Eq. (2.12) and reflects the experimental fact that the
real FMSC materials exhibit the Ising-type anisotropy of the
FM magnetization. Note also that the conventional periodic
boundary condition for Axμ in all the three directions implies∑

x �mx = 0 and the FM order can not exist.
We use standard Metropolis algorithm for the lattice size up

to L = 20. The typical sweeps for measurement are (30 000 ∼
50 000) × 10 and the acceptance ratio is 40% ∼ 50%.

Explicitly, we calculate the internal energy U , the specific
heat C of the central region R, the FM magnetization mμ,

U = 1

L3
〈F ′〉, C = 1

L3
〈(F ′ − 〈F ′〉)2〉, F ′ =

∑
x∈R

fx,

mμ ≡ 1

L3

〈∣∣∣∣∣
∑
x∈R

mxμ

∣∣∣∣∣
〉

, (3.3)

and the normalized correlation functions

Gm(x − x0) = 〈 �mx · �mx0

〉/〈 �mx0 · �mx0

〉
,

(3.4)
GS(x − x0) = 〈

Sx3Sx0,3
〉/〈

Sx0,3Sx0,3
〉
,

where x0 is chosen on the boundary of R such as (2,2 + L/2,z).
We first show that the model (2.21) exhibits a FM phase

transition as T is lowered. To this end, we set c1 = c3 = 0 and
(c2,c4,c5) = (0.5,4.0,1.0), and increase β in the Boltzmann
factor of Eq. (2.21). In Fig. 1 we show C and mμ. It is obvious
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FIG. 1. (Color online) (a) Specific heat for (c2,c4,c5) =
(0.5,4.0,1.0) and c1 = c3 = 0. At β 
 2.0, C exhibits a sharp peak
indicating a second-order FM phase transition. (b) Each component
of magnetization mμ vs β. For T < TFM, m3 develops, whereas m1

and m2 are zero within the errors as expected.
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FIG. 2. (Color online) (a) Specific heat vs β for (c1,c3) =
(0.2,0.2) and (c2,c4,c5) = (0.5,4.0,1.0) (L = 20). There is a large
peak at β 
 2.1 and a small one at β 
 4.5. (b), (c) Specific heat Ci

of each term of F in Eq. (2.21) vs β. The small and broad peak at
β 
 4.5 in C is related to fluctuations of the c1 term.

that a second-order phase transition to the FM state takes
place at βFM = 1/TFM 
 2.0. We verified that other cases with
various values of c2,4,5 exhibit similar FM phase transitions.

Next, let us study the SC phase transition. Here, it is useful
to consider the case of all ci = 0 except for c1. Then, the model
is related to the CP1 + U(1) lattice gauge theory,23 which has
the energy of the form FCP1 = −(c1/2)

∑
(z̄Uz + c.c.) + FA

where FA is the compact version (2.4). In fact, they agree by
setting 1/e2 = 0. The phase structure of this model is studied
in Ref. 23 and it is found that the phase transition from the
confinement phase to the Higgs phase takes place at c1 
 2.85
for 1/e2 = 0. Thus, the SC state exists at sufficiently large c1.

For simulation, we put (c1,c3) = (0.2,0.2) and (c2,c4,c5) =
(0.5,4.0,1.0). In Fig. 2(a), we show C versus β. There is a
large and sharp peak at β 
 2.1 and a small and broad one at
β 
 4.5. In order to understand physical meaning of the second
peak, it is useful to measure “specific heat” of each term fi

in the free energy (2.16) defined by Ci = 〈(F ′
i − 〈F ′

i 〉)2〉/L3.
Figure 2(c) shows that the specific heat of the c1 term has a
relatively large and broad peak at β 
 4.5. Then, we conclude
that the SC phase transition takes place at βSC 
 4.5.

To verify this conclusion, we show Gm(r) and GS(r) in
Fig. 3. At β = 2.5, Gm(r) exhibits a finite amount of the FM
order, whereas GS(r) decreases very rapidly to vanish. This
means that, as T is decreased, the FM transition takes place first
and then the SC transition does. Therefore, for β � βSC 
 4.5,
the FM and SC orders coexist.

It is interesting to clarify the relation between the bare
transition temperature T 0

SC in Eq. (2.11) and the genuine

FIG. 3. (Color online) Correlation functions Gm(r) and GS(r) at
various T ’s for L = 20. ci’s are the same as in Fig. 2.
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transition temperature TSC. From Eq. (2.21), any physical
quantity is a function of βci . In the numerical simulations,
we fix the values of ci and vary β as explained. Then, the
result βSC 
 4.5 means

βc1|T =TSC = 4.5 × 0.2. (3.5)

By using Eq. (2.20), this gives the following relation:

1

TSC

Kα
(
T 0

SC − TSC
)
a

λ
= 0.90,

(3.6)

TSC =
(

1 + 0.90 λ

Kα a

)−1

T 0
SC.

Equation (3.6) shows that the transition temperature is lowered
by the fluctuations of the phase degrees of freedom of Cooper
pairs. We expect that a relevant contribution to lowering the SC
transition temperature comes from vortices that are generated
spontaneously in the FMSC as we show in Sec. III B.

After having confirmed that the genuine critical temperature
can be calculated by the critical value of β with fixed ci , we
use the word temperature in the rest of the paper just as the one
defined by T ≡ 1/β while ci are T -independent parameters.

The Meissner effect is one of the most important phenom-
ena for a SC order. To study it, we follow the following
steps:23 (i) introduce a vector potential Aex

xμ for an external
magnetic field, (ii) couple it to Cooper pairs by replacing
Uxμ → Uxμ exp(iAex

xμ) in the c1 term of fx and add its
magnetic term f ex

x = +c2
′( �mex

x )2 (c′
2 > 0) to fx with �mex

x

defined in the same way as (2.17) by using Aex
xμ, (iii) let Aex

xμ

fluctuate together with zxa and Axμ and measure an effective
mass MG of Aex

xμ via the decay of correlation functions of �mex
x .

The result of �mex
x propagating in the 1-2 plane is shown in

Fig. 4. It is obvious that the mass MG starts to develop at the
SC phase transition point, and we conclude that the Meissner
effect takes place in the SC state.

B. SC transition and vortices in a constant magnetic field

Because the observed SC state in Figs. 2 and 3 coexists
with the FM order, it is expected that vortices of the SC order
parameter are induced there spontaneously.24 To verify this
expectation, we set the vector potential Axμ to a position-
dependent but nonfluctuating value that corresponds to a
uniform magnetic field in the third direction, and study the

FIG. 4. (Color online) Gauge-boson mass MG of the external
magnetic field propagating in the x-y plane vs β for the same ci

as in Fig. 2 and c2
′ = 3.0 (L = 16). At the SC phase transition point

βSC 
 4.5 (indicated by an arrow) determined by the peak of C1, MG

starts to increase from small values.
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FIG. 5. (Color online) The results for a constant magnetic field
�mx = (0,0,mx3)t at c1 = c3 = 0.2 (L = 16). (a), (b) Specific heat C

and (c), (d) the real part of SC correlation function Gz(r) in the 1-2
plane. (a), (c) mx3 = π/4 and (b), (d) mx3 = π .

behavior of zxa itself. In this case, the free energy fx loses
the local gauge symmetry (2.19), and therefore the correlation
function of zxa ,

Gz(x − x0) = 〈
z̄x · zx0

〉
, (3.7)

has nonvanishing values in the SC phase.
In Fig. 5, we show C and Gz(x) for two cases of fixed �mx .

For the case with �mx = (0,0, π
4 )t, C has a shape similar to C1 in

0.875

:

:

:

-1.125

-0.125

(a) (b)

(c) (d)

V ±
x

FIG. 6. Snapshots of vortex densities V ±
x at c1 = c3 = 0.2 for

a fixed �m = (0,0,π/4) (L = 16). Black dots: V ±
x = 0.875. Dark

gray dots: −1.125. Light gray dots: −0.125. (a) V +
x at β = 3.0.

(b) V −
x at β = 3.0. (c) V +

x at β = 7.0. (d) V −
x at β = 7.0. The average

magnitude 〈|Vx±|〉 is (a) 0.387, (b) 0.380, (c) 0.331, and (d) 0.335.
The points V ±

x = −0.125 = −m3/(2π ) reflect �m itself.
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Fig. 2(c), and indicates a SC phase transition at β 
 4.8. Gz(r)
exhibits fluctuating behavior even for low T ’s, β � 4.9. This
suggests that vortices are spontaneously generated in the SC
state violating spatial uniformity, and their locations fluctuate.
In the other case of �mx = (0,0,π )t, C has a sharper peak
at β 
 4.5, and Gz(r) exhibits clear periodically oscillating
behavior with the period 4×(lattice spacing). This implies that,
in this case, locations of vortices are rather stable compared
with the case of mx3 = π

4 .
In order to verify the above expectation, we calculate vortex

density directly. In the present model, one may define the
following two kinds of gauge-invariant vortex densities V +

x

and V −
x in the 1-2 plane:

z±
x ≡ zx1 ± izx2 ≡ ρ±

x exp(iθ±
x ),

V ±
x ≡ 1

2π
[mod(θ±

x+1 − θ±
x − Ax1)

+ mod(θ±
x+1+2 − θ±

x+1 − Ax+1,2)

− mod(θ±
x+1+2 − θ±

x+2 − Ax+2,1)

− mod(θ±
x+2 − θ±

x − Ax2)], (3.8)

where mod(x) ≡ mod(x,2π ). In short, V ±
x describes vortices

of electron pairs with the amplitude ψ↑↑(↓↓) = ψ1 ± iψ2 ∝
z1 ± iz2.

In Fig. 6, we present snapshots of V ±
x at c1 = c3 = 0.2

for fixed values of gauge potential Axμ corresponding to a
constant magnetization �m = (0,0, π

4 )t. It shows that (i) both of
the fluctuations around zero, 〈|V ±

x |〉, decrease as β increases,
and (ii) V +

x has larger fluctuations than V −
x at high T , whereas

V ±
x

:

:

:

1.5

0.5

-0.5

: -1.5

(a) (b)

(c) (d)

FIG. 7. (Color) Snapshots of vortex densities V ±
x at c1 = c3 = 0.2

for a fixed �m = (0,0,π ) (L = 16). (a) V +
x at β = 3.0. (b) V −

x at β =
3.0. (c) V +

x at β = 7.0. (d) V −
x at β = 7.0. The average magnitude

〈|V ±
x |〉 is (a) 0.528, (b) 0.537, (c) 0.560, and (d) 0.508. The points

V ±
x = −0.5 = −m3/(2π ) reflect �m itself.
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FIG. 8. (Color online) Specific heats for c5 = 0.4 (L = 12).
(a) Total C and the specific heat C1 of the c1 term, (b) C5 of the
c5 term. Order of two phase transitions is interchanged (βSC < βFM).

smaller ones at low T . These behaviors are consistent with
the Zeeman c3 term in the energy fx of Eq. (2.16), which
distinguishes the z+

x order and the z−
x order, and the fact that

�m directs to the third direction in the present case. In Fig. 7,
we also show the vortex snapshots at c1 = c3 = 0.2 and �m =
(0,0,π )t. Compared with the case �m = (0,0, π

4 )t, vortices here
are located rather systematically as we expected from the result
of correlation function Gz(r).

C. Order of FM and SC phase transitions and phase diagram

Let us next examine the possibility that the order of the
FM and SC phase transitions are interchanged as the value
of c5 is decreased. As the c5 term in fx tends to align �mx ,
TFM decreases as c5 is decreased. Most of the FMSC materials
lose the FM order as the applied P is increased, and then it is
phenomenologically expected that c5 is a decreasing function
of P . We consider several cases with c5 = 1.5,1.0,0.7,0.5,0.4,
and 0.3, while other ci are fixed to the same values as those in
Fig. 2 where c5 = 1.0.

We find that the order of two phase transitions actually
interchanges at c5 
 0.5. In Fig. 8, we show the specific heat
C,C1,C5 for c5 = 0.4. C has the two peaks at βSC ∼ 5.0 <

βFM ∼ 8.3. C1 is sharper than in the case of c5 = 1.0 in Fig. 2.
In Fig. 9, we present Gm(r) and GS(r) with r in the 1-2 plane

for c5 = 0.4, which exhibit very peculiar behavior. In the FM
and SC coexisting phases (T < TFM), they have nonvanishing
values only near the surface of the lattice in contrast with
Fig. 3. This behavior survives in larger systems. For example,
we define the thickness �L of the coexisting region such
that the ordered region in the 1-2 plane occupies the interval
2 + �L + (disordered region) + �L + 2 in the lattice length
2 + L + 2 in the μ = 1,2 directions. We obtain �L 
 3 for
L = 12 (Fig. 9) and �L 
 4 for L = 16, so about the outer
half region in the linear dimension is occupied by the ordered
state. This implies that the FMSC coexisting phase appears in
the region including the surface of the material and not in the
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FIG. 9. (Color online) Correlation functions Gm(r) and GS(r) at
c5 = 0.4 (L = 12). The other ci are the same as those in Fig. 2. They
exhibit orders near the surface of the lattice.
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FIG. 10. (Color online) Phase diagrams in (a) c5-T and (b) P -T
planes with Pc = 1.0, c�

5 = 2.2, and γ = 3.0 in Eq. (3.9). c1−c4 are
the same as in Fig. 2.

central region inside the system. We note that this “surface”
region is not two dimensional but three dimensional because
the SC-FM transition is a genuine second-order one, which is
not allowed in a two-dimensional system.25 This phenomenon
is a prediction of the present model.

It is intriguing to draw a phase diagram in the P -T plane
assuming certain phenomenological relation between c5 and
P . In the experiments, the critical temperature TFM is a
decreasing function of P . This means that the parameters
c2, c4, and c5 in Eq. (2.16) vary as functions of P . Changes
of c2 and/or c4 influence the magnitude of the magnetization
vector �mx and result in a change of c5 after a renormalization
of �mx . Then, for example, one may “phenomenologically”
assume

c5 = c�
5

(
1 − P (c5)

Pc

)1/γ

, (3.9)

where Pc is the critical pressure at which the FM order
disappears even at T → 0 (i.e., at c5 = 0), c�

5 is the value
of c5 at which P = 0, and the power γ is a fitting parameter.
In Fig. 10, we show the phase diagram drawn with certain
choice of these parameters. This phase diagram has a similar
structure to the experimental result of UCoGe.

In the same way as decreasing c5, the case of increasing c3

has been studied with several choices of c5 and (c1,c2,c4) =
(0.2,0.5,4.0). Both TFM and TSC increase as c3 increases.
Furthermore, for sufficiently large values such as c3 = 1.5,
TFM > TSC even for c5 = 0.5 as expected. This indicates that
the present model with larger c3 may provide a phase diagram
similar to that of UGe2 and URhGe.

IV. CONCLUSION

In summary, we have proposed a GL model defined on
the 3D lattice for the FMSC state, and shown that it explains
some experimental observations such as the phase diagram
and predicts the homogeneous and inhomogeneous FMSC
states. This model naturally includes effects of topological
excitations, vortices, that play an important role for the SC
phase transition in the FM state. Although the obtained global
phase structure is similar to that of MFT, the appearance
of inhomogeneous configurations such as the FMSC state
and vortex configurations are certainly beyond the scope of
MFT. In the present analysis, we consider the “London limit,”
in which the radial fluctuations of the two-gap SC order
parameters are ignored. As we explained in Sec. II A, these
fluctuations may change the order of SC phase transitions and
may play an important role in SC transitions that are induced
by an external magnetic field. This problem is under study and
results will be reported in a future publication.
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