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We study diffusive magnetic Josephson junctions with four superconducting terminals in the weak proximity
limit where the leads are arranged in cross form. Employing the linearized Keldysh-Usadel technique, the
anomalous Green’s function and Josephson current are analytically obtained based on a quasiclassical theory
using the Fourier series method. The derived results may be reduced to nonmagnetic junctions by setting the
exchange field equal to zero. We find that increments of the magnetic barrier thickness may cause a reversal of
the supercurrent direction flowing into some of the leads, whereas the direction of current flow remains invariant
at the others. The reversal direction can be switched by tuning the perpendicular superconducting phases. In
the nonmagnetic case, we find that the supercurrent flowing between the leads in one direction can be tuned
by changing the superconducting phase difference in the perpendicular direction. These findings suggest the
possibility of constructing a nanoscale superconducting phase transistor whose core element consists of the
proposed four-terminal Josephson junction with rich switching aspects.
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I. INTRODUCTION

When a weak link is established between two supercon-
ductors, a gradient in the superconducting phases can drive
a supercurrent through the system. This Josephson effect1–3

and the associated current-phase relation in weak links has
been investigated extensively in previous literature; see, for
example, the comprehensive reviews in Refs. 4 and 5 (see also
Refs. 6 and 7 for magnetic Josephson junctions).

The proximity effect between superconductors and normal
diffusive metals was first studied by McMillan in 1965.8 It is
known that the electronic properties of a normal metal become
altered when placed in proximity with a host superconductor.
For instance, the electronic spectrum of the normal metal
connected to a superconductor exhibits a minigap.8–13 Very
recently, the key properties of the density of states (DOS) of
a normal metal sandwiched between superconductors were
employed in an experiment for producing a superconducting
quantum interference proximity transistor (SQUIPT).14 More-
over, superconductor–normal metal–superconductor (S/N/S)
Josephson junctions have been studied under nonequilibrium
conditions where two additional normal leads are connected
to the sandwiched normal layer. It has been demonstrated that
this type of S/N/S Josephson junction is able to produce a
π junction depending on the voltage applied to the normal
sandwiched layer.15,16 Such π junctions may also be observed
in three-terminal junctions.15,17

The proximity-induced interplay between superconductiv-
ity and ferromagnetism in hybrid structures is also known
to establish intriguing physical phenomena. The wave func-
tion describing the leakage of Cooper pairs inside a fer-
romagnet oscillates in a damped fashion. One of the most
interesting phenomena in the proximity of ferromagnetism
and superconductivity is the 0-π transition, which may
occur in superconductor-ferromagnet-superconductor (S/F/S)
junctions.6,18–21 The transition usually occurs over a narrow
length ξF = √

DF /h, in which DF and h represent the
diffusion constant and the exchange field of the sandwiched
ferromagnetic layer, respectively. At this crossover point, the

minimum energy of the junction is switched between the
0 and π superconducting phase difference by changing
the energy scales of the system such as Thouless energy,
exchange field, and temperature. Also it has been demonstrated
that the spin-flip scattering may render the junction energy a
minimum from 0 to π (Refs. 6,22–24) and that the supercurrent
itself may become spin polarized if the magnetization texture
is inhomogeneous.25

So far in the literature, the main emphasis has mostly been
on one-dimensional systems where two superconductors are
coupled, e.g., via a constriction or diffusive metal. On the
other hand, the interplay between multiple superconducting
terminals15 in a Josephson junction would require an exten-
sion to higher dimensions.26,27 This in turn complicates the
analytical treatment of the system, and one is usually forced
to resort to numerical means within the diffusive regime.28

It would therefore be of interest to clarify how the transport
characteristics of a diffusive ferromagnetic Josephson junction
are influenced by the presence of multiple superconducting
phase differences, and also to provide an analytical framework
for studying such phenomena. Multiterminal Josephson point
contacts had intensively been investigated (both ac and dc
characteristics) using the Ginzburg-Landau theory29–31 and
were followed by studying the four-terminal S/N/S Josephson
junctions in the clean limit via the Eilenberger equations.26,32,33

Interesting phenomena such as phase dragging (the production
of a phase difference between two terminals by means of phase
variation between other terminals), magnetic flux transfer,
and bistable states were found due to nonlocal coupling and
additional degrees of freedom in such classes of Josephson
junctions.26,29,32 Such point contacts also have been fabricated
and intensively studied in experiments.30

Motivated by this, we consider in this paper a diffusive
Josephson junction with four superconducting leads which are
arranged in a cruciate form and we study the supercurrent
flowing in this junction. The superconducting leads are
separated by a metal that may or may not be ferromagnetic. We
use the quasiclassical Usadel equations in the diffusive regime
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and formulate the current-phase relation as a function of all the
available parameters in the system such as superconducting
phases in the magnetic junction. We recover the results of
Refs. 26 and 32 obtained in the clean S/N/S junctions:
namely, when the dimensions L (length) and W (width) of the
sandwiched metal are comparable to each other, i.e., L � W ,
the standard sinusoidal supercurrent is strongly modified by
all the condensate phases. We also use a phenomenological
Ginzburg-Landau theory to confirm our analytical expressions
obtained via the quasiclassical framework. In particular, we
demonstrate that the Josephson current flowing between leads
along one axis may be tuned via the superconducting phase
gradient in the perpendicular direction.

Moreover, we find that increments of the magnetic barrier
thickness may cause a reversal of the supercurrent direction
flowing into some of the leads, whereas the direction of current
flow remains invariant at the others. These findings are sugges-
tive in terms of designing a nanoscale superconducting phase
transistor where current-switching effects in one direction
are possible by variation of the macroscopic superconducting
phase in the perpendicular direction, as has also been pointed
out in Refs. 33 and 27 for ballistic contacts.

The paper is organized as follows. In Sec. II we present
our main analytical findings. In Sec. II A the basic equations
of the quasiclassical method are presented and in Sec. II B
the cruciate Josephson junction is studied analytically via
the Green’s function method. We formulate the current-phase
relation as a function of the four superconducting phases for a
magnetic Josephson junction. In Sec. II C we confirm our re-
sults and findings via a macroscopic Ginzburg-Landau theory.
In Sec. IV we employ a collocation finite element numerical
method34 (which is explained in detail) and investigate the
behavior of the supercurrent, which confirms our analytically
derived expressions in Sec. II B and their dependencies on the
superconducting U(1) phases; also the behavior of the junction
is analyzed in more detail. Section IV is devoted to the study
of the supercurrent behavior in S/F/S four-terminal junctions
as a function of ferromagnetic barrier thickness. Concluding
remarks are finally given in Sec. V.

II. THEORY AND ANALYTICAL DISCUSSIONS

We consider four superconducting leads coupled via a ferro-
magnetic or normal diffusive metal. As in Fig. 1, the nanoscale
diffusive metal is assumed to be located in the xy plane, where
x ∈ [0,L] and y ∈ [0,W ]. The four superconducting terminals
are assumed to have equal magnitudes for the gap � and are
connected to each edge of the diffusive strip. The suppression
of the pair potential is neglected near interfaces due to a low
interface transparency, and the superconducting phases are
assumed to be different in each of the four terminals: θup,
θdown, θleft, and θright. One may expect that superconducting
correlations inside the system interfere, resulting in a quite
complicated coherent system. The S/F/S system is studied
in the diffusive limit and the current-phase relationship is
obtained at each terminal similar to clean S/N/S four-terminal
junctions.26,32 In our approach, we start with a magnetic
four-terminal Josephson junction and derive our analytical
results for the magnetic system. We then may achieve the

FIG. 1. (Color online) Experimental schematic setup of the
cruciate Josephson junction. The junction is assumed to lie in the
xy plane with interfaces located at x = 0,L and y = 0,W . The four
spin-singlet superconductors have different superconducting phases:
θup, θdown, θleft, and θright. The exchange field h is assumed to be
oriented in the z direction, perpendicular to the sandwiched layer
plane.

nonmagnetic Josephson junction characteristics by setting the
magnetic exchange field h equal to zero.

A. Microscopic Green’s function approach

In this section, we present basic equations of the quasiclas-
sical Keldysh-Usadel method. In order to study the transport
properties of the proposed four-terminal device, we employ
the quasiclassical method. In the diffusive regime, due to the
existence of strong scattering sources, quasiparticle momenta
are integrated over all directions in space. In this case, the
Eilenberger equations reduce to the Usadel equations.35 Under
equilibrium conditions, the system under consideration can
be described by a 4 × 4 matrix propagator in Nambu space:
the retarded Green’s function GR . The total Green’s function
describing the system compactly reads36

Ĝ(R,ε,T ) =
(

GA GK

0 GR

)
, GR =

(
gR f R

−f̃ −g̃

)
, (1)

where the meaning of the ·̃ operation depends on the notation
adopted. In our notation, it denotes complex conjugation and
a change in sign for the energy argument. The advanced
and Keldysh blocks are made from the retarded block by
GA = −(τ3G

Rτ3)† and GK = tanh(βε)(GR − GA) in which
τ3 is the Pauli matrix and β = kBT /2. In the presence of
exchange energy h = (hx,hy,hz) inside the ferromagnetic
layer, the Usadel equation can be given by

D[∂̂,Ĝ[∂̂,Ĝ]] + i[ερ̂3 + diag[h · σ ,(h · σ )τ ],Ĝ] = 0, (2)

where ρ̂3 and σ are 4 × 4 and 2 × 2 Pauli matrices, respec-
tively. Here D is the diffusive constant of the sandwiched
medium. Also, ε is the quasiparticle energy, which is measured
from Fermi surface.

The so-called weak proximity regime occurs in the case
of very low transparent interfaces or for temperatures near
the critical temperature of the superconducting leads. The su-
perconducting correlations leak into the ferromagnetic region
weakly and so the normal and anomalous Green’s functions
can be approximated by g � 1 and f � 1, respectively. In
this limit one can linearize the Usadel equation, which yields a
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set of uncoupled complex boundary-value partial differential
equations. The energy representation is used in this paper;
however, one may reach the Matsubara representation by
replacing ε → iωn, where ωn = (2n + 1)πkBT are Matsubara
frequencies. For the sake of simplicity, a uniform exchange
field for the ferromagnetic layer is considered throughout the
paper; i.e., h = (0,0,hz = h). In the weak proximity regime
mentioned above, the Green’s function reads24

ĜR ≈
(

1 f R

−f̃
R −1

)
. (3)

In fact, we have expanded the Green’s function around the
bulk solution Ĝ0 as Ĝ � Ĝ0 + f̂ , where Ĝ0 = diag(1, − 1).7

The retarded Green’s function now can be given by

ĜR =

⎛
⎜⎜⎜⎝

1 0 0 f R
+ (ε)

0 1 f R
− (ε) 0

0 [−f R
+ (−ε)]∗ −1 0

[−f R
− (−ε)]

∗
0 0 −1

⎞
⎟⎟⎟⎠. (4)

If we assume that the exchange field is uniform throughout the
sample and is oriented in the z direction, the Usadel equations
reduce to the two-dimensional form as follows:

∂2
xf R

± (−ε) + ∂2
yf R

± (−ε) − 2i(ε ∓ h)

D
f R

± (−ε) = 0, (5)

∂2
x [f R

± (ε)]∗ + ∂2
y [f R

± (ε)]∗ − 2i(ε ± h)

D
[f R

± (ε)]∗ = 0. (6)

We employ the Kupriyanov-Lukichev boundary conditions at
F/S interfaces37 and control their opacities using a parameter ζ

that depends on the resistance of the interface and the diffusive
normal region:

ζ (Ĝ∂̂Ĝ) · n̂ = [ĜBCS(θ ),Ĝ], (7)

where n̂ is a unit vector denoting the perpendicular direction
to an interface. The bulk solution ĜBCS for an s-wave
superconductor is36

ĜR
BCS(θ ) =

(
1 cosh (ϑ(ε)) iτ2 sinh (ϑ(ε))eiθ

iτ2 sinh (ϑ(ε))e−iθ −1 cosh (ϑ(ε))

)
,

ϑ(ε) = arctanh

( | � |
ε

)
,

s(ε) ≡ sinh (ϑ(ε))eiθ

= −�

{
sgn(ε)√
ε2 − �2

�(ε2 − �2) (8)

− i√
�2 − ε2

�(�2 − ε2)

}
c(ε) ≡ cosh(ϑ(ε))

= | ε |√
ε2 − �2

�(ε2 − �2)

− iε√
�2 − ε2

�(�2 − ε2).

Here � is the superconducting gap in the s-wave superconduc-
tors and the Heaviside step function is denoted by �(ε). In this
paper, we have defined θu, θd , θl , θr as the condensate phases in
the up, down, left, and right superconductor leads, respectively.

If we now open up the compacted boundary conditions, Eq. (7),
at the left F/S interface, for instance, we reach at x = 0

[ζ∂x − c∗(ε)]f R
± (−ε) = ±s∗(ε)eiθl ,

[ζ∂x − c∗(ε)][f R
± (ε)]∗ = ∓s∗(ε)e−iθl , (9)

and at x = L

[ζ∂x + c∗(ε)]f R
± (−ε) = ∓s∗(ε)eiθr ,

[ζ∂x + c∗(ε)][f R
± (ε)]∗ = ±s∗(ε)e−iθr . (10)

Also at y = 0
[ζ∂y − c∗(ε)]f R

± (−ε) = ±s∗(ε)eiθd ,

[ζ∂y − c∗(ε)][f R
± (ε)]∗ = ∓s∗(ε)e−iθd , (11)

and at y = W the boundary condition takes the form

[ζ∂y + c∗(ε)]f R
± (−ε) = ∓s∗(ε)eiθu ,

[ζ∂y + c∗(ε)][f R
± (ε)]∗ = ±s∗(ε)e−iθu . (12)

In the equilibrium conditions, the current density vector is
given by the Keldysh block as

J(R) = J0

∫
dεTr{ρ3(Ĝ[∂̂,Ĝ])K}, (13)

where J0 is a normalization constant. The current density
vector determines the direction and amplitude of the current
density inside the sandwiched layer as a function of coordi-
nates. If we substitute the total Green’s function Eq. (1) into
the current density relation, namely, Eq. (13), we arrive at

J(R) = J0

∫ ∞

−∞
dε tanh(εβ){f R

− (−ε) �∇[f R
+ (ε)]∗

+ f R
+ (−ε) �∇[f R

− (ε)]∗ − f R
+ (ε) �∇[f R

− (−ε)]∗

− f R
− (ε) �∇[f R

+ (−ε)]∗ + [f R
− (−ε)]∗ �∇f R

+ (ε)

+ [f R
+ (−ε)]∗ �∇f R

− (ε) − [f R
+ (ε)]∗ �∇f R

− (−ε)

− [f R
− (ε)]∗ �∇f R

+ (−ε)}. (14)

To obtain the total supercurrent flowing through the junction,
for example, at the right superconducting gate, one needs
to perform an integration of Eq. (13) over the y coordinate,
I (φ) = I0

∫ ∫
dydεTr{ρ3(ǧ[∂̂,ǧ])K}.

At this point it suffices that Eqs. (5) be solved together with
appropriate boundary conditions [i.e., Eqs. (9)–(12)] in order
to capture the transport characteristics of the present class of
Josephson junctions in the diffusive limit.

B. Analytical microscopic discussions

In this section we derive explicit analytical expressions
describing the supercurrent at each superconducting terminal.
To this end, we consider the weak proximity limit of the
diffusive regime where the Keldysh-Usadel method yields a
set of uncoupled complex elliptic partial differential equations.
The simplified Usadel equations and corresponding boundary
conditions are given by Eqs. (5), (6), (9), (10), (11), and (12).
For simplicity in our analytical calculations we exclude
first-order terms of the anomalous Green’s function in the
Kupryianov-Lukichev boundary conditions, Eq. (7). We use
the Fourier series method in the presence of nonhomogeneous

144520-3



MOHAMMAD ALIDOUST, GRANVILLE SEWELL, AND JACOB LINDER PHYSICAL REVIEW B 85, 144520 (2012)

boundary conditions and obtain analytical solutions for the Usadel equations. The method leads to somewhat lengthy solutions;
for instance, one of the anomalous components of the Green’s function, namely, f R

+ (ε), after long calculations is given by
Eq. (15):

f R
+ (ε) = −

{
�sgn(ε)√
ε2 − �2

�(ε2 − �2) − i�√
�2 − ε2

�(�2 − ε2)

}{
eiθl

Lζ

(
x − x2

2L
+ D

2iL(ε + h)
− L

3

−
∞∑

k=1

4iL(ε + h) cos( kπx
L

)

k2π2[Dk2π2/L2 − 2i(ε + h)]

)
− eiθr

Lζ

(
x2

2L
− D

2iL(ε + h)
− L

6
+

∞∑
k=1

4iL(ε + h)(−1)k cos( kπx
L

)

k2π2[Dk2π2/L2 − 2i(ε + h)]

)

+ eiθd

Wζ

(
y − y2

2W
+ D

2iW (ε + h)
− W

3
−

∞∑
l=1

4iW (ε + h) cos( lπy

W
)

l2π2[Dl2π2/W 2 − 2i(ε + h)]

)
− eiθu

Wζ

(
y2

2W
− D

2iW (ε + h)

−W

6
+

∞∑
l=1

4iW (ε + h)(−1)l cos( lπy

W
)

l2π2[Dl2π2/W 2 − 2i(ε + h)]

)}
. (15)

The length and width of the ferromagnetic region sandwiched between the superconductors are denoted by L and W , respectively.
As can be seen, the anomalous component of the retarded Green’s function depends on all four condensation phases, which in turn
leads to an interference between these superconducting phases in the Josephson current. In Eq. (14) there are eight different terms
of anomalous components of the Green’s function involved in the supercurrent relation. Therefore, one must find eight solutions
similar to Eq. (15) for other terms and substitute them into the supercurrent relation Eq. (14) in order to obtain the supercurrent
at one terminal. To obtain analytical solutions for the total supercurrent flowing at the other superconducting terminals, one must
repeat the latter described process. We have done so and arrived at the analytical expressions describing the supercurrent in the
system as follows. The supercurrent at x = 0,L terminals is obtained as

Ix(x = 0)

I0
=

∫ ∞

−∞

dε

�0

�2 tanh(βε)

�2 − ε2

∑
σ=±

{(
WD

L3ζ 2(ε + σh)
+ 8WD

L3ζ

∞∑
k=1

(−1)k(ε + σh)

D2k4π4/L4 + 4(ε + σh)2

)
sin(θl − θr )

+ D sin(θl − θu)

LWζ 2(ε + σh)
+ D sin(θl − θd )

LWζ 2(ε + σh)

}
, (16)

Ix(x = L)

I0
=

∫ ∞

−∞

dε

�0

�2 tanh(βε)

�2 − ε2

∑
σ=±

{(
WD

L3ζ 2(ε + σh)
+ 8WD

L3ζ

∞∑
k=1

(−1)k(ε + σh)

D2k4π4/L4 + 4(ε + σh)2

)
sin(θl − θr )

+ D sin(θd − θr )

LWζ 2(ε + σh)
+ D sin(θu − θr )

LWζ 2(ε + σh)

}
. (17)

And also at the W = 0,L terminals,
Iy(y = 0)

I0
=

∫ ∞

−∞

dε

�0

�2 tanh(βε)

�2 − ε2

∑
σ=±

{(
LD

W 3ζ 2(ε + σh)
+ 8LD

W 3ζ

∞∑
l=1

(−1)l(ε + σh)

D2l4π4/W 4 + 4(ε + σh)2

)
sin(θd − θu)

+ D sin(θd − θr )

LWζ 2(ε + σh)
+ D sin(θd − θl)

LWζ 2(ε + σh)

}
, (18)

Iy(y = W )

I0
=

∫ ∞

−∞

dε

�0

�2 tanh(βε)

�2 − ε2

∑
σ=±

{(
LD

W 3ζ 2(ε + σh)
+ 8LD

W 3ζ

∞∑
l=1

(−1)l(ε + σh)

D2l4π4/W 4 + 4(ε + σh)2

)
sin(θd − θu)

+ D sin(θl − θu)

LWζ 2(ε + σh)
+ D sin(θr − θu)

LWζ 2(ε + σh)

}
. (19)

In the preceding equations, σ = ± comes from the spin-
dependent nature of the ferromagnetic material which is
sandwiched between the four superconducting terminals. To
be more specific, Ix(x = 0), Ix(x = L), Iy(y = 0), and Iy(y =
W ) represent the Josephson current in the x direction at
x = 0,L and in the y direction at y = 0,W , respectively. The
above currents involve three sinusoidal terms whose arguments
include phase differences of the lead the supercurrent is being
calculated at and the three other terminals. As expected, the
obtained supercurrents show explicitly that these interfering
terms in the x and y directions vanish for large L and W ,

respectively. This fact is also found in ballistic junctions.26,32

In these two limits, either large L or large W , the system
takes on quasi-one-dimensional features and we recover
the well-known standard sinusoidal Josephson relation for
the supercurrent. However, in the opposite regime where
L � W , the proximity-induced order parameters from the
superconducting terminals overlap substantially and additional
terms compared to the one-dimensional case appear in the
expressions for the supercurrent. As we show, the supercurrent
can behave very differently from one-dimensional junctions
as a function of the phase in one superconducting terminal

144520-4



SUPERCONDUCTING PHASE TRANSISTOR IN DIFFUSIVE . . . PHYSICAL REVIEW B 85, 144520 (2012)

due to this overlap. In fact, the supercurrent is a function
of a superposition of sinusoidal phase differences between
the different superconducting leads, and one may express
the supercurrent relations as I (xi) = ∑

j Ij sin(θi − θj ) in
weakly coupled systems.26,29–32 The conservation of the charge
current is also satisfied by the current relationships, namely,
Eqs. (16)–(19). It can be verified explicitly that

Ix(x = 0) + Iy(y = 0) = Ix(x = L) + Iy(y = W ), (20)

which constitutes the Kirchhoff law of electricity. We proceed
to investigate and justify the obtained analytical supercurrent
numerically and study how it depends on the superconducting
phases of the terminals. First, we compare our analytical
expressions for the supercurrent with the results obtained via
a macroscopic Ginzburg-Landau theory in the next section.

C. Ginzburg-Landau approach: Analytical macroscopic
discussions

In this section, we make a complementary discussion
and examine qualitatively the quasiclassical findings of the
previous section by comparison with a phenomenological
Ginzburg-Landau (GL) theory.38 The phenomenological ap-
proach is a macroscopic theory which is unable to explain
the microscopic mechanism underlying superconductivity but
instead describes the macroscopic properties near a phase tran-
sition of the system by writing the free energy as an expansion
in the order parameter. We note that the smallness of the
superconducting order parameter may be compared directly
with the weak proximity effect regime in the quasiclassical
theory for temperatures near Tc. We assume here that the
normal region’s characteristic length scale (d) satisfies ξ � d,
where ξ is the coherence length. In this case the condensation
wave functions overlap effectively via the proximity effect.
It is instructive to briefly consider first the one-dimensional
case, where one may write an ansatz for the wave function as
follows4,39:

ψ = ψ1eiθ1X + ψ2e
iθ2 (1 − X ). (21)

Here, ψj is the amplitude of the condensate wave func-
tion in the region j = 1,2 while θj is the corresponding
superconducting phase. The function X is unknown, but it
is assumed to satisfy X → 1 inside region 1 and X → 0
inside region 2. We now generalize this ansatz to the present
four-terminal two-dimensional case. Assume that deep inside
the superconducting banks the order parameter is given as

ψ = ψue
iθu , ψde

iθd , ψle
iθl , ψre

iθr . (22)

Inside the contact region, the four condensations’ wave
functions overlap and consequently we expect a solution as

ψ = ψre
iθrXY(1 − Y) + ψle

iθl (1 − X )Y(1 − Y)

+ψue
iθuYX (1 − X ) + ψde

iθd (1 − Y)X (1 − X ),

(23)

where we have generalized the mentioned one-dimensional
ansatz for the four-terminal junction. The functions X and
Y satisfy the following asymptotic behavior: X → 0 in the

left, X → 1 in the right, Y → 0 in the bottom, and Y → 1 in
the top superconductors. The supercurrent density can now be
defined by the second GL equation,4,39

js = αh̄e

βm
Im{ψ∗∇ψ}, (24)

where α and β are phenomenological coefficients in the
GL theory. After some calculations, we find the following
expressions for jx and jy , the supercurrent components in the
x and y directions:

jx = X ′(1 − Y)Y{−Y(1 − Y)ψlψr sin(θl − θr )

−X 2(1 − Y)ψdψr sin(θd − θr ) − X 2Yψuψr

× sin(θu − θr ) + (1 − X )2(1 − Y)ψdψl sin(θd − θl)

+Y(1 − X )2ψuψl sin(θu − θl)}, (25)

jy = Y ′(1 − X )X {−X (1 − X )ψuψd sin(θu − θd )

−Y2(1 − X )ψlψu sin(θl − θu) − Y2Xψrψu

× sin(θr − θu) +(1 − Y)2(1 − X )ψlψd sin(θl − θd )

+X (1 − Y)2ψdψr sin(θr − θd )}, (26)

in which the prime denotes derivation. The obtained results
illustrate that, for instance in jx , the terms coupling the top and
bottom superconducting terminals vanish. In this way, we see
that the phenomenological GL approach produces identical
dependencies on the superconducting phase differences as
the microscopic approach using quasiclassical theory. Direct
comparison with, e.g., Eqs. (16) and (17) in the appropriate
limits for X shows consistency with Eq. (25).

III. FOUR-TERMINAL NONMAGNETIC JOSEPHSON
JUNCTION

In this section, we first set h = 0 (the exchange field of the
ferromagnetic layer) and consider an S/N/S junction. Basically,
there are two methods for inducing a supercurrent into our
Josephson system: (1) via an external flux where the external
magnetic field penetrates the junction through a superconduct-
ing quantum interference device (SQUID)-like geometry and
(2) via a current bias where the supercurrent is injected into the
system. A combination of these two methods is also possible
by utilizing different configurations of a multiterminal system
(for a comprehensive investigation of such possibilities, see
Refs. 26,29–32,43). The supercurrent at each terminal can
be generally expressed as Ii = ∑

i,j Ii,j sin(θi − θj ). Thus if
one is able to tune the superconducting phases independently,
the supercurrent will be a 2π -periodic function of one of the
superconducting phases.

Numerical justification of current-phase relationships

In this section, we discuss the analytical findings obtained
in the previous section and present numerical results using
a real energy representation. In the actual plots, we consider
a temperature T = 0.05Tc and also set the normal region’s
length and width to L = W � 2.5ξS . In this representation, we
normalize lengths against ξS and introduce the Thouless energy
εT = (h̄D/L2). Also, we have normalized the quasiparticles’
energy by the superconducting gap at zero temperature, �0,
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and consider units so that h̄ = kB = 1. Moreover, we add
a small imaginary number η/�0 = 0.1 to the quasiparticle
energy to account for inelastic scattering, which leads to a finite
lifetime for quasiparticle excitations. Setting ζ = 7 ensures the
validity of weak proximity in numerical calculations. Solving
numerically the resultant complex boundary-value partial
differential equations, the approximate solution components
of the Usadel equation are assumed to be linear combinations
of bicubic Hermite basis functions. They are required to satisfy
the Usadel equations (5) and (6) exactly at four collocation
points in each subrectangle of a grid, and to satisfy the
boundary conditions exactly at certain boundary collocation
points. We mention in passing that we include first-order
terms of the anomalous Green’s function in the Kupryianov-
Lukichev boundary conditions, as was done in Ref. 40, in
contrast to the usual approximation in the literature where such
terms are discarded. By doing so, we improve the accuracy of
the analytical solution in our numerical investigations. Finally,
the linear algebraic equations resulting from the collocation
method, which are highly nonsymmetric and thus difficult to
solve using iterative and sparse direct solvers, are solved using
a Jacobi conjugate-gradient method, which means that the
conjugate gradient method (Sec. 4.8 of Ref. 41) is applied to
the preconditioned normal equations D−1AT Ax = D−1AT b,
where D is the diagonal part of AT A. For a generalized
discussion see Ref. 42. The same framework was very recently
used in Ref. 34 to study the anomalous Fraunhofer pattern
appearing in an inhomogeneous S/F/S structure.

In order to clarify the behavior of the supercurrent in
the present four-terminal Josephson junction with respect
to condensate phases of the four superconductors, we use
the following strategy. We focus on the behavior of the
supercurrent with respect to one superconductor’s phase (the
left one) and set two phases equal to zero (θdown = θright = 0),
while varying θup. The motivation for this is to see if the
supercurrent flowing in one direction can be tuned explicitly
by the superconducting phase difference in the transverse
direction, which would correspond to a superconducting-
phase-transistor-like device.

In general, the supercurrent inside the normal diffusive
region is described by a vector field and depends on the
position. The total flowing current is conserved, as we have
proven analytically. We focus here on the supercurrent flowing
into and out of the terminals, i.e., at the positions x = 0,
y = 0, x = L, and y = W gates. The results are shown in
Fig. 2, where we plot the supercurrent at the four gates as a
function of the left superconducting phase where θu is varied
while θd = θr = 0. The top left frame shows the supercurrent
at x = 0 as a function of the left superconducting phase, the
top right is the supercurrent at x = L, the bottom left frame
displays the supercurrent at y = 0, and finally the bottom
right frame shows the supercurrent at y = W . The standard
sinusoidal current-phase relation appears at all gates in the
special case where θu is equal to zero. This behavior can be
understood by considering Eqs. (16)–(19). In this case, only
terms with sin(θl) survive and the supercurrent exhibits a pure
sinusoidal relation versus θl . When θu increases, the phase
shift effectively adds a constant which can be either positive
or negative. In particular, the currents at x = L and y = 0 shift
either upward or downward depending on the value of θu, as
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FIG. 2. (Color online) Top left: Supercurrent in the x direction
as a function of left condensation phase, θleft, at left superconductor
gate, i.e., x = 0. Top right: Supercurrent in the x direction vs left
superconducting phase, θleft, at right superconductor gate, i.e., x = L.
Bottom left: Supercurrent in the y direction as a function of left
condensation phase at down superconductor gate, i.e., y = 0. Bottom
right: Supercurrent in the y direction vs left superconducting phase at
up gate, i.e., y = W . Here other superconductor phases, namely θup

and θdown, are assumed to be zero.

can be understood by looking at Eqs. (17) and (18): a change
in θu only varies constant terms involving sin(θu).

In contrast, variation in θu influences the currents at x = 0
and y = W in a more complicated manner. In this case, there is
an explicit dependence on the phase difference θl − θu, which
induces a strongly nonsinusoidal behavior in the current-phase
relation. Interestingly, we see that it is possible to cancel
out the current even for a finite value of θl by choosing
θu appropriately. This observation suggests that the present
four-terminal device can act as a superconducting phase
transistor, where the phase difference in one direction controls
the supercurrent flowing in the perpendicular direction. The
underlying mechanism behind this is the interference between
the condensate wave functions in the diffusive normal region,
which results in an intricate phase dependence of the super-
current as shown in the analytical results.

IV. FOUR-TERMINAL MAGNETIC JOSEPHSON
JUNCTION

In this section, we consider a four-terminal Josephson
junction with a ferromagnetic barrier where the exchange
field of the magnetic layer is oriented along the z direction.
In the usual two-terminal magnetic Josephson junctions, an
increment of the ferromagnetic barrier thickness not only
reverses the current direction at particular thicknesses but also
renders the minimum of junction energy to change from 0 su-
perconducting phase difference to a π phase. The phenomenon
is the so-called 0-π transition. As discussed in Ref. 26, the
junction energy where there are several superconducting leads
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FIG. 3. (Color online) Critical supercurrent as a function of the
normalized junction length L/ξS at different superconducting gates
and for various values of θup, the superconducting phase of the up
terminal. Top left: At the left superconductor gate, i.e., x = 0. Top
right: At the right superconductor gate, i.e., x = L. Bottom left: At
the down superconductor gate, i.e., y = 0. Bottom right: At the up
gate, i.e., y = W . The other superconductor phases are fixed at zero.

can be expressed as EJ = ∑
j<i γj,i[1 − cos(θj − θi)]. Here,

the i and j indices stand for the ith and j th superconducting
leads. Below we demonstrate that an increment in the thickness
of the ferromagnet can reverse the flow of the supercurrent into
a pair of the superconducting terminals (along the direction of
increment), whereas the current direction in the other terminal
pair remains unaltered.

The behavior of critical supercurrent as a function of magnetic
barrier thickness

We here present a numerical study of the transport
properties of four-terminal ferromagnetic Josephson junctions.
Although the numerical results are confirmed by the analytical
expressions presented in Sec. III, we include first-order
terms of the anomalous Green’s function in the Kupryianov-
Lukichev boundary conditions in contrast to the approximation
used for deriving the analytical expressions for supercurrent
where such terms are dropped. We now consider a nonzero
value of the ferromagnetic exchange field h. For a weak,
diffusive ferromagnetic alloy such as PdxNi1−x , the exchange
field h/�0 is tunable by means of the doping level x to take
values in the range meV to tens of meV. Here we fix h = 10�0,
which typically places the exchange field h in the range
10–20 meV. In order to investigate the effects of magnetic
barrier thickness on the supercurrent at each terminal and the
influence of the various superconducting phases, we follow a
similar strategy as in the previous section: θl is varied from 0 to
2π , where magnetic barrier length, L, is being varied from L =
2ξS to L = 5ξS . The other superconducting phases are fixed at
zero except θu, which is changed in order to demonstrate the
possible influence of the other superconducting phases. The

critical value of the supercurrent at each terminal is calculated
separately for each value of θu.

Figure 3 indicates the behavior of the critical supercurrent at
each superconductor lead as a function of normalized junction
length L/ξS for various values of θu. The top left frame
exhibits the critical current at the left terminal. Except for
θu = π , which shows two points changing the supercurrent
direction, the other values give rise to one sign change in the
critical current. Identical qualitative behavior appears for the
current at the right terminal except when θu = 0, as shown
in the bottom left frame. The top and bottom right frames
exhibit the critical supercurrent versus L/ξS at the down and
up terminals, respectively. The critical supercurrent at the two
terminals shows a smooth function of L/ξS , which is in stark
contrast with the behavior of the critical supercurrent at the
left and right terminal. Thus, the increment of the junction
length primarily affects the critical supercurrent flowing into
leads along the same direction of the increment. Moreover,
the direction of the current can be switched by tuning the
superconducting phase of up terminal. In contrast, the current
flowing into the superconducting banks perpendicular to the
junction length increment is left unchanged. This class of
multiterminal ferromagnet Josephson junction then offers an
interesting synthesis between 0 and π states, and possibly φ

states, due to the fact that the coefficients Ij can change sign
depending on the junction parameters such as L and W .

V. CONCLUSIONS

In conclusion, we have studied a four-terminal Josephson
junction where a diffusive normal or ferromagnetic metal
with sides L and W is sandwiched among four s-wave
superconductor leads. We have obtained explicit analytical
results using the quasiclassical Keldysh-Usadel method for the
supercurrent in the system. We find that the wave functions of
the four superconductors interfere efficiently when L � W

and modify the standard sinusoidal current-phase relation,
which confirms previous findings in ballistic junctions. These
findings are confirmed qualitatively by using a macroscopic
Ginzburg-Landau theory. We have presented numerical results
for the behavior of the supercurrent, and demonstrated that
the current flowing along one axis may be tuned by the
superconducting phase difference along the perpendicular
direction. It is demonstrated that such four-terminal junctions
can provide a rich switching circuit element (due to additional
degrees of freedom in comparison with one-dimensional
two-terminal Josephson junctions) where the various super-
conducting phases influence considerably the current behavior
at the terminals. In particular, we show that a reversal in
critical current direction as a function of junction length can be
switched by means of variation of the superconducting phase
of perpendicular terminals. The present investigations of diffu-
sive cruciate magnetic Josephson junctions may provide new
perspectives for the design of superconducting phase switches
that can be used in quantum circuits as switching elements.
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