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Little-Parks oscillations near a persistent current loop
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We investigate the Little-Parks oscillations caused by a persistent current loop set on the top edge of a
mesoscopic superconducting thin-walled cylinder with a finite height. For a short cylinder the Little-Parks
oscillations are approximately the same ones as the standard effect, as there is only one magnetic flux piercing
the cylinder. For a tall cylinder the inhomogeneity of the magnetic field makes different magnetic fluxes pierce
the cylinder at distinct heights and we show here that this produces two distinct Little-Parks oscillatory regimes
according to the persistent current loop. We show that these two regimes, and also the transition between them, are
observable in current measurements done in the superconducting cylinder. The two regimes stem from different
behavior along the height, as seen in the order parameter, numerically obtained from the Ginzburg-Landau theory
through the finite element method.
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I. INTRODUCTION

In the last decades we have witnessed a huge progress in
the microfabrication of systems and measurement techniques
that have allowed the study of mesoscopic superconducting
structures.1 The critical temperature of a superconducting ring
oscillates according to the applied external magnetic field, as
shown by Little and Parks (LP) in 1962.2 The LP effect can be
regarded as a forerunner of recent developments,3 because
of its eminently mesoscopic nature. It predicts that for a
thin-walled cylinder of radius R, the critical temperature varies
as �Tc = (h̄2/8mR2)(�/�0 − n)2, where m is the Copper pair
mass, �0 is the fundamental flux, � = H πR2 is the magnetic
flux trapped inside the ring, and n describes a quantum number.
A temperature variation detectable within experimental range,
say �Tc ∼ 10−5 K, means that the radius must be in the
mesoscopic domain, R ∼ 1.0 μm. The LP oscillations are
detected by measuring two consecutive temperature maxima,
each occurring for �Tc = 0, when the total magnetic flux
�, which is the sum of the external magnetic flux piercing
a given surface and the magnetic flux produced by the
circulation of the screening supercurrents along the curve
bounding this surface, add up to n�0. Since its initial
proposal the LP effect has been measured by several different
techniques and several distinct systems, such as a perforated
disk with varying hole size,4 a patterned microstructure of an
oxide superconductor,5 a single mesoscopic Al ring (SQUID
measurement of the susceptibility),6 an array of Al loops
(specific heat measurement),7 and a single YBCO submicron
ring.8 The LP effect can be used to demonstrate many features
of the superconducting state, such as the interaction among
two superconducting order parameters9,10 and the study of
superconductor/ferromagnet hybrids.11 The LP effect is well
described by the Ginzburg-Landau theory in most of the
situations.12–15 The LP can also exist through fluctuations in
the normal phase for very small rings with effective radius
R/ξ < 0.6 under a constant magnetic field.16

In this paper we investigate the LP effect in a thin-walled
cylinder with a finite height produced by the inhomogeneous
magnetic field of a persistent current loop, put on its top. This

external magnetic field is that of a magnetic moment pointing
along the thin-walled cylinder major axis. In the standard LP
effect the height of the thin-walled cylinder plays no role
because the applied external field is constant and oriented
along the major axis. However, in the present situation the
height plays a major role.11 We report here new features
due to the inhomogeneity distribution of the supercurrent
in the cylinder, which in its top edge feels a magnetic flux
more intense than in the bottom. Our theoretical framework
is developed in a current bias regime, which means that the
persistent current circulating in the loop is varied and the
response of the thin-walled cylinder observed.

The persistent current loop of a (nonsuperconducting)
metallic mesoscopic ring has been observed decades ago17

and in principle can be used for an experimental realization
of the present proposal. The persistent current loop created
by a superconducting mesoscopic ring is another way to
realize the present system. In this case the system has two
superconductors, for instance, Nb and Al, the former used for
the persistent current loop and the latter for the the thin-walled
cylinder. Since the Nb critical temperature (Tc = 9.25 K) is
7.8 times larger than that of Al (Tc = 1.18 K),18 the LP
oscillations observed in the thin-walled cylinder are near to the
Al transition to the normal state, which happens to fall in the
very low temperature domain of the Nb current loop. Therefore
the Nb ring generates a stable steady magnetic whose value is
swept continuously from zero to its maximum value by varying
the persistent current to the maximum Nb critical current. Let
a and R be the radii of the external current loop and of the thin-
walled cylinder, respectively, as shown in Fig. 1. We are mostly
interested here in the effects brought by the inhomogeneity of
the field, and for this reason will concentrate on the case R > a.
The magnetic moment of the persistent current loop is given
by μ = Iloop πa2, but notice that the thin-walled cylinder also
defines a magnetic moment scale, given by μ0 = �0ξ0/2π ,
where ξ0 is the zero temperature coherence length of the
superconductor that makes the Al thin-walled cylinder. We
study the LP oscillations by sweeping the ratio μ/μ0 to its
maximum value μc/μ0. Thus it is of fundamental importance
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FIG. 1. (Color online) This figure depicts the persistent current
loop (radius a = 5.0ξ0) on top of a thin-walled superconducting rod
(radius R = 10.0ξ0) put 0.5ξ0 away from its edge. Two heights are
treated here, corresponding to a short (Z0 = 2.0ξ0) and a tall (10.0ξ0)
cylinder.

to determine the maximum attained magnetic moment in the
current loop, μc = Ic πa2, Ic being the Nb critical current.
According to Michotte et al.19 for T = 1.5 K the Nb critical
current is Ic = 2000 μA for a wire of width 75 nm. Therefore a
ring with radius a = 0.5 μm achieves the maximum magnetic
moment μc = 1.5 × 10−16 A m2. To determine the magnetic
moment scale μ0 of the thin-walled cylinder, it suffices to know
the zero temperature coherence length of Al. Nanoscopic Al
rings have been extensively studied in the literature, such as
by Ong et al.7 and Bluhm et al.9 Data fit in both cases leads to
the values of ξ0 equal to 150 and 70 nm, respectively. Here we
shall consider ξ0 = 100 nm which gives μ0 = 3.2 × 10−23.
In summary we find that maximum magnetic moment ratio
is μc/μ0 = 3 × 106. Therefore the current circulating in the
external loop can be swept up to six orders of magnitude in our
suggested system. Notice that our theoretical calculations do
not rely on this specific realization which is only a suggested
experimental setup for it.

To describe the present system, two other lengths must
be considered, namely, the distance from the current loop
to the center of the thin-walled cylinder z1 and the height
of the thin-walled cylinder Z0 = 2z0, z0 being the distance
from the edge to its center. Throughout this paper the distance
between the current loop and the top edge of the thin-walled
cylinder is kept fixed and equal to half coherence length, thus
z1 = 0.5ξ0 + z0. Our analysis is restricted to the thin-walled
cylinder, which means that its width is smaller than the
coherence length w < ξ0 and therefore only two coordinates
are needed to determine a point in the cylinder, namely,
(ρ = R,ϕ,|z| � z0) in cylindrical coordinates with the origin
at the center of the thin-walled cylinder. The order parameter
inside the thin-walled cylinder is expressed by its phase φ

and amplitude f , such that 	 = f (z) exp [ıφ(ϕ,z)]. The well-
known condition of a single value order parameter implies that
	(ϕ + 2π ) = 	(ϕ) and this means that the order parameter
must be the same along the z axis: φ = Lϕ, where L is an
integer to be associated with the angular momentum of the

vortex state trapped in the thin-walled cylinder. Therefore
the order parameter is assumed to have the general form
	(z,ϕ) = f (z) exp

(
ıLϕ

)
. The dipolar magnetic field falls

with the inverse of the cube of the distance to the current loop,
thus being strong in the top and weak at the bottom and this will
make the amplitude strongly z dependent. Although the current
in the external loop always makes the thin-walled cylinder feel
a dipolar magnetic field, its inhomogeneity is only noticeable
in case the thin-walled cylinder is sufficiently tall. For this
reason we numerically study here two examples of thin-walled
cylinders, a short (Z0 = 2.0ξ0) and a tall (Z0 = 10.0ξ0) one.
The former basically yields standard LP oscillations and the
latter comprises novel phenomena because the top and the
bottom edges of the thin-walled cylinder are pierced by very
distinct magnetic fluxes.

We solve the nonlinear GL equation for the thin-walled
cylinder through the finite element method (COMSOL and
MATLAB softwares) and check that our numerical procedure
is correct in the short cylinder limit since in this case we also
solve the theory analytically. This gives confidence that our
numerical results for the thin-walled cylinder are reliable.

The paper is organized as follows. In Sec. II we review the
basic Ginzburh-Landau formalism applied to the thin-walled
cylinder in present of a persistent current loop. In Sec. III
we explore the limit that the amplitude f can be considered as
constant along the height to obtain important theorems relating
the zero current to the minimum of the free energy. In Sec. IV
we numerically study the short and tall cylinders and find that
the latter displays two distinct regimes according to the the
value of the persistent current. Finally in Sec. V we reach
some conclusion about the results obtained here.

II. THEORETICAL BACKGROUND

The Ginzburg-Landau theory describes the superconductor
near to its critical temperature Tc. Because the London
penetration length is taken to be much larger than the hollow
cylinder height, the shielding of the magnetic field is safely
ignored in our calculations. Hence the free energy density is
simply that of the sum of terms involving the order parameter:

F =
∫




dυ

[
h̄2

2m

∣∣∣∣
(

�∇ − 2πi

�0

�A
)

	

∣∣∣∣
2

+ α(T )|	|2 + β

2
|	|4

]
,

(1)

where α(T ) ≡ α0( T
Tc

− 1), therefore α(T ) � 0 to sustain the
superconducting state, and β is a constant. The volume of the
thin-walled cylinder is 
 ≡ 2πRwZ0 and the dimensionless
volume element is dυ ≡ d3x/
. From the variational princi-
ple one obtains the Ginzburg-Landau equation that determines
the order parameter which minimizes this free energy:

− h̄2

2m

(
�∇ − 2πi

�0

�A
)2

	 = −α(T )	 + β|	|2	. (2)

The persistent current loop has its center located at coordinates
(0,0,z1), its magnetic moment is μ = Iloopπa2, Iloop being the
circulating current. The vector potential describing its field in
space is given by �A(ρ,z) = Aϕ(ρ,z)ϕ̂,20

Aϕ(ρ,z) ≡ μρ

[ρ2 + a2 + (z − z1)2]3/2
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×
∞∑

n=0

(4n + 1)!!

22nn!(n + 1)!

(
aρ

ρ2 + a2 + (z − z1)2

)2n

= μρ

[ρ2 + a2 + (z − z1)2]3/2

×
{

1 + 15

8
q2 + 315

64
q4 + · · ·

}
,

q = aρ

ρ2 + a2 + (z − z1)2
. (3)

The thin-walled condition restricts the radial coordinate to
ρ = R, and so, it suffices to use the expression

Aϕ(R,z) = μ

R2
η(z), (4)

where

η(z) ≡ 1[
1 + (

a
R

)2 + (
z−z1

R

)2]3/2 (1 + 1.8750p2 + 4.9219p4

+ 14.6631p6 + 46.7386p8 + 155.4058p10

+ 531.8949p12 + 1.8593 103p14 + 6.6042 103p16

+ 2.3757 104p18 + 8.6335 104p20 + · · ·), (5)

p =
a
R

1 + (
a
R

)2 + (
z−z1

R

)2 . (6)

A term c2n p2n of this series expansion has the coefficient c2n

growing with n, as shown above, that must be overcome by p2n

in order to achieve convergency. For instance, in the present
case of interest, R = 10.0ξ0, a = 5.0ξ0, and we take the top
edge of the cylinder z − z1 = −0.5ξ0 to obtain p = 0.3992.
Precision of the order 10−3 is only achieved near the n =
10 term when c20 = 8.6335 × 104 times p20 = 1.05 × 10−8

gives c20 p20 = 9.0651 × 10−4.
It is worthwhile to compute the magnetic flux that pierces a

ring resulting from the intersection of the thin-walled cylinder
with a plane z:

�(μ,z) ≡
∮

z

d�l · �A(R,z) = 2πRAϕ(R,z) = 2πμ

R
η(z), (7)

�(μ,z)

�0
= μ

μ0

ξ0

R
η(z). (8)

Equation (8) shows that the ratio between the magnetic
moments μ/μ0 together with the geometrical parameters
defines the ratio between the z plane magnetic flux and the
fundamental flux. In order to gain insight into this series
expansion, let us analyze it in the case treated here, namely,
the ratio between the current loop and the thin-walled cylinder
radii is equal to one half, a/R = 0.5. Suppose a point at the
surface of the thin-walled cylinder is near to its top, such
that (z − z1)/R ≈ 0. In this case we have that p2 ≈ 0.16 and
1 + 15

8 p2 + 315
64 p4 + · · · ≈ 1 + 0.30 + 0.12 + · · ·. We learn

that the series terms contribute in this example, although they
do not add any significant qualitative change if instead we had
considered the point like dipole limit a → 0. Thus in this limit
all the corrections in powers of (a/R)2 do not exist and the
field is that of a point like magnetic dipole, �μ = μẑ given by
�A = �μ × �r/|�r|3, where �r = Rρ̂ + (z − z1)ẑ falls in the surface

of the thin-walled cylinder.

We write the order parameter in terms of its amplitude f

and phase φ = Lϕ to obtain the following expression for the
kinetic energy in terms of the geometry, the angular momentum
L and the vector potential Aϕ :

G ≡ h̄2

2m

∫



dυ

{(
∂f

∂z

)2

+ 1

R2

[
L − �(μ,z)

�0

]2

f 2

}
. (9)

Then the free energy density becomes

F = G +
∫




dυ

[
−α(T )f 2 + β

2
f 4

]
. (10)

We also write the supercurrent density �J ≡ qh̄

m
	[	∗( �∇ −

2πi
�0

�A)	] in terms of the amplitude and the phase decomposi-
tion using the cylindrical symmetry

�J = qh̄

mR
[f (z)]2

[
L − �0(μ,z)

�0

]
ϕ̂. (11)

There has been many proposed methods to calculate the current
of the LP effect.21,22 In our numerical calculations the current
circulating in the thin-walled cylinder is simply obtained as an
integration of the current density �J along the cross section of
the cylinder. According to the thin-walled condition w ∼ ξ0,
and so,

I = w

∫ z0

−z0
dz �J · ϕ̂ = I0

∫ z0

−z0

dz

Z0

[
f (z)√
α0/β

]2[
L − �(μ,z)

�0

]
,

(12)

in terms of the current parameter I0 ≡ (qh̄Z0wα0)/(mβR).
The LP oscillations occur near to the critical temperature,
where the order parameter is weak, and so, besides the
nonlinear, the linear version of Eq. (2), with the cubic term
neglected, can be used. Then there is a Schrödinger like
equation for the amplitude f (z), once the order parameter
is taken as 	(z,ϕ) = f (z) exp (ıLϕ):

[
− h̄2

2m

d2

dz2
+ V (z)

]
f (z) = −α(T )f (z), (13)

where the potential is given by

V (z) = h̄2

2mR2

[
L − �(μ,z)

�0

]2

, (14)

and the boundary condition at the edges of the thin-walled
cylinder are df (z)/dz|(z=±z0) = 0, which is automatically
satisfied in the limit of a constant f . Let us consider the
ill-defined limit, but still instructive, of f z independent,
such that d2f (z)/dz2 ≈ 0. Then the above equation defines a
condition under the simple assumption that there is a nonzero
f : V (z) + α(T ) = 0 or equally, T/Tc = 1 − (ξ0/R)2[L −
�(μ,z)/�0]2. This defines the LP temperature, which is a
function of the flux that pierces the thin-walled cylinder along
the z plane. However because �(μ,z) is z dependent, the found
ratio T/Tc is in contradiction with the original argument.
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Indeed a z independent amplitude f is only possible for a
very short thin-walled cylinder, and this entitles us to take
z = 0, which means the medium plane. We choose to express
the above ratio T/Tc in terms of the T = 0 coherence length,
ξ0 ≡

√
h̄2/2mα0. The dimensionless ratio �(μ,z)/�0 can be

written in terms of the dimensionless length ratios R/ξ0,
a/R, and (z − z1)/R, and the dimensionless magnetic moment
ratio μ/μ0 where μ0 has been previously defined. This naive
approach to the LP oscillations is improved in the next sections
by treating the z dependence of this problem. The thin-walled
cylinder in presence of the inhomogeneous field produced by
the persistent current loop field makes the amplitude dependent
on its height position f (z). In this case we also solve the above
Schrödinger equation in order to determine f (z).

III. THE RING LIMIT

A thin-walled cylinder such the order parameter amplitude
f is constant along the z direction, and therefore ∂f/∂z = 0,
we define as a ring. The validity of the ring treatment restricts
the height to a few coherence length units, which means that
the ratio z0/ξ0 cannot be very large. In the ring limit all that is
necessary to determine the order parameter and the free energy
is to compute the integrals

g(μ) ≡
∫ z0

−z0

dz

Z0

[
L − �(μ,z)

�0

]2

(15)

and

g′(μ) ≡
∫ z0

−z0

dz

Z0

[
L − �(μ,z)

�0

]
. (16)

The kinetic energy energy becomes G = α0( ξ0

R
)2gf 2 and the

current I = qh̄

m

wZ0
R

f 2g′. Then we have for the free energy,

F =
[
α0

(
ξ0

R

)2

g + α(T )

]
f 2 + β

2
f 4 (17)

whose minimization determines the order parameter and its
minimum:

f 2 = − 1

β

[
α0

(
ξ0

R

)2

g + α(T )

]
,

(18)

F = − 1

β

[
α0

(
ξ0

R

)2

g + α(T )

]2

.

Notice that since g > 0 and the above equation determines
that α0( ξ0

R
)2g + α(T ) � 0 because f 2

0 > 0, then there is a
temperature bond given by α(T ) � −α0( ξ0

R
)2g. The upper

bond defines the LP temperature, which corresponds to the
vanishing of the order parameter, such that the superconductor
reaches the normal state for a temperature which depends on
g and the α0 parameter, according to the above equation.
Therefore the LP oscillations obtained from the nonlinear
theory in case of f constant are expressed in terms of the
integrals g and g′. The corresponding free energy, current, and

critical temperature are defined as follows:

F(μ,T ) = −F0

[
T − Tc(μ)

Tc

]2

, (19)

Tc(μ)

Tc

= 1 −
(

ξ0

R

)2

g(μ), (20)

I (μ,T ) = −I0

[
T − Tc(μ)

Tc

]
g′(μ). (21)

The integrals g(μ) and g′(μ) can be expressed in terms of the
following defined integrals:

〈L〉 ≡
∫ z0

−z0

dz

Z0

�(μ,z)

�0
(22)

and

〈L2〉 ≡
∫ z0

−z0

dz

Z0

(
�(μ,z)

�0

)2

, (23)

such that the two integrals can be written as

〈L〉 = μ

μ0
I1, I1 ≡ ξ0

R

∫ z0

−z0

dz

Z0
η(z), (24)

and

〈L2〉 =
(

μ

μ0

)2

I2, I2 ≡
(

ξ0

R

)2 ∫ z0

−z0

dz

Z0
[η(z)]2. (25)

By taking that ( ξ0

R
)2

∫ z0
−z0

dz
Z0

[η(z) − I1]2 � 0, we obtain that

I2 − I 2
1 � 0. (26)

Next we show three important features of the LP oscillations
with respect to the magnetic moment μ that can be expressed
in terms of the above functions g(μ) and g′(μ), written in the
following way:

g(μ) = L2 − 2L
μ

μ0
I1 +

(
μ

μ0

)2

I2 (27)

and

g′(μ) = L − μ

μ0
I1. (28)

These three three features are valid to all temperatures, and for
this reason assume that T �= Tc(μ). They are associated with
three special moments, μf , μc, and μt , defined as such:

(1) The minimum of the free energy. According to Eq. (19),
∂F/∂μ = 0 is the same condition as the minimum with respect
to the critical temperature ∂Tc(μ)/∂μ = 0 which boils down
to ∂g(μ)/∂μ = 0. This defines the magnetic moment μf :

μf

μ0
= L

I1

I2
. (29)

(2) The vanishing of the current. According to Eq. (21) the
condition I (μ) = 0 happens for g′(μ) = 0. This defines the
magnetic moment μc:

μc

μ0
= L

1

I1
. (30)
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(3) The highest LP temperature. According to Eq. (20) this
occurs when the LP temperature becomes the critical one.
However the condition T c(μ)/Tc = 1 is the same as g(μ) = 0.
This defines the magnetic moment μt :

μt

μ0
= L

I1

I2

(
1 ± ı

√
I2

I 2
1

− 1

)
. (31)

Then we prove that the LP temperature never reaches the
critical temperature Tc, unless for the zero height ring, where
�0(μ,z) = �0(μ,0) (I2 = I 2

1 ). Notice that

μc

μf

= I2

I 2
1

� 1, (32)

which means that the current in the thin-walled cylinder always
vanishes after the free energy reaches its minimum (μc � μf )
by increasing the current in the loop. Another important aspect
to consider is that the three special magnetic moments, defined
by Eqs. (29), (30), and (31), are temperature independent.
This means that the distance between two consecutive L and
L + 1 magnetic moments, either free energy minima or zeros
of the current, are temperature independent and equal to
I1/I2 and 1/I1, respectively. For a very short ring, defined
to have height comparable to the coherence length Z0 � ξ0,
the integrals I1 and I2 are easily computed since it is enough
to take the integrands at the center of the ring z ≈ 0 to
obtain that I1 ≈ η(0) and I2 ≈ η(0)2. The three conditions,
namely, the minimum of the free energy, the vanishing of
the current, and the highest LP temperature take place at
the same point μ/μ0 = L/I1 because I 2

1 = I2. Inserting the
integrals and using the magnetic flux definition of Eq. (7) in
the center plane of the ring we obtain for the free energy
density, critical temperature, and current density the following
expressions:

F(μ,T ) = −F0

[
T − Tc(μ)

Tc

]2

, (33)

Tc(μ)

Tc

≡ 1 −
(

ξ0

R

)2[
L − �(μ,0)

�0

]2

, (34)

I (μ,T ) = −I0

[
T − Tc(μ)

Tc

][
L − �(μ,0)

�0

]
, (35)

where we have defined the parameters, associated with the free
energy F0 ≡ α2

0/β and to the current I0 previously defined.
Notice that the above LP temperature was previously obtained
using the linear approach. The above case is the standard LP
effect, valid for a constant applied external field and arbitrary
height.

To show how the height of the cylinder affects the LP
oscillations we discuss below the approximation that f is still a
constant, but the integrals g and g′ must be integrated along the
z axis. We get analytical insight into this problem by taking that
the current loop is very small as compared to the thin-walled
cylinder, a/R � 1, such that just the first term of the series
expansion given in Eq. (4) is enough to describe the external
magnetic field:

η(z) = 1[
1 + (

z−z1
R

)2]3/2 . (36)

This vector potential is introduced into Eqs. (15) and (16) to
obtain that

I1 = ξ0

Z0

{ (
z0−z1

R

)
√

1 + (
z0−z1

R

)2
+

(
z0+z1

R

)
√

1 + (
z0+z1

R

)2

}
, (37)

I2 = ξ 2
0

Z0R

{
1

4

[ (
z0−z1

R

)
(
1 + (

z0−z1
R

)2)2 +
(

z0+z1
R

)
(
1 + (

z0+z1
R

)2)2

]

+ 3

8

[ (
z0−z1

R

)
1 + (

z0−z1
R

)2 +
(

z0+z1
R

)
1 + (

z0+z1
R

)2

]

+ 3

8

[
arctan

(
z0 − z1

R

)
+ arctan

(
z0 + z1

R

)]}
. (38)

These integrals are expanded in a Taylor series in powers of
(z0/R)2, which is a small parameter since the approximation of
f constant is a good one only for a short cylinder. We obtain
for the integrals I1 and I2 the following values by keeping
contributions of lowest order (z0/R)2 and neglecting higher
ones:

I1 = ξ0

R

1[
1 + (

z1
R

)2]3/2

{
1 − 1

2

1 − 4
(

z1
R

)2

[
1 + (

z1
R

)2]2

(
z0

R

)2
}

,

(39)

I2 =
(

ξ0

R

)2 1[
1 + (

z1
R

)2]3

{
1 − 1 − 7

(
z1
R

)2

[
1 + (

z1
R

)2]2

(
z0

R

)2
}

.

We notice that the above equations do satisfy the inequality of
Eq. (26),

I2 − I 2
1 = 3

(
ξ0

R

)2( z0
R

)2( z1
R

)2

[
1 + (

z1
R

)2]5
. (40)

As an example let us consider the short cylinder with radius
R = 10.0ξ0, half-height z0 = 1.0ξ0, and the current loop just
above its top z1 = 1.5ξ0. Then I2 − I 2

1 ∼ (
ξ0

R

)2( z0
R

)2( z1
R

)2 ∼
10−6. The distance between two consecutive free energy
minima is 10.2456μ0 and between two consecutive current
zeros is 10.3507μ0.

IV. NUMERICAL ANALYSIS

We obtain numerical solutions of the nonlinear GL equation
below,[

− h̄2

2m

d2

dz2
+ V (z)

]
f (z) = −α(T )f (z) + βf (z)3, (41)

by solving it through the finite element method (COMSOL

and MATLAB softwares). Then we obtain the free energy, the
current density, and the current from Eqs. (1), (11), and (12),
respectively, by input of f (z), obtained from Eq. (41).

To obtain the numerical solutions of Eq. (41) we cast
it in dimensionless quantities, represented by a bar on top
of the corresponding variable: f̄ = √

β/α(T )f , z̄ = z/ξ (T ),
where ξ (T ) = ξ0/

√
1 − T/Tc and V̄ = V/α(T ). The explicit

temperature dependence disappears from Eq. (41) which
becomes [

− d2

dz̄2
+ V̄ (z̄)

]
f̄ (z̄) = −f̄ (z̄) + f̄ (z̄)3. (42)
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In practical grounds this means that all the lengths are mea-
sured in units of ξ (T ), the temperature dependent coherence
length, and so ratios between two lengths become temperature
independent. For instance, the function η, defined by Eq. (5), is
found to be temperature independent, η(z̄) = η(z), since it only
depends on ratios. The dimensionless version of the potential,
defined in Eq. (43), becomes temperature dependent and given
by

V̄ (z̄) = 1

R̄(T )2

[
L − μ̄(T )

η(z̄)

R̄(T )

]2

, (43)

where R̄(T ) = R/ξ (T ), μ̄(T ) = μ/μ0(T ), and μ0(T ) =
�0ξ (T )/2π . Notice that the product μ0(T )R̄(T ) = �0R/2π

is temperature independent. Like the radius, the height of the
cylinder also shrinks to zero as T approaches Tc: z̄0 = z0/ξ (T ).

The free energy, the current density, and the current,
obtained from Eqs. (1), (11), and (12), respectively, by
input of f (z), determined from Eq. (41), are also cast into
dimensionless units. The current is given by

Ī =
∫ z̄0

−z̄0

dz̄

Z̄0
f̄ (z̄)2

[
L − μ̄(T )

η(z̄)

R̄(T )

]
, (44)

where Ī = I/I0(T ), I0(T ) ≡ [
qh̄Z̄0wα(T )

]
/
(
mβR̄

)
. The free

energy in reduced units becomes

F̄ =
∫ z̄0

−z̄0

dz̄

Z̄0

{[
df̄ (z̄)

dz̄

]2

+ [V̄ (z̄) − 1]f̄ (z̄)2 + 1

2
f̄ (z̄)4

}
,

(45)

where F̄ = F/F0(T ), F0(T ) ≡ α(T )2/2β.
We concentrate our numerical study on two thin-walled

cylinders, both with the same radius R = 10.0ξ0 in presence
of the same current loop ring with radius a = 5.0ξ0, set at 0.5ξ0

above the top edge. The two cylinders only differ by the height,
taken to be Z0 = 2.0ξ0 and Z0 = 10.0ξ0, such that z1 = 1.5ξ0

and 5.5ξ0, respectively. We apply the same numerical method
to both, but the short cylinder is expected to have the amplitude
f nearly z independent and be approximately described by the
analytical ring limit previously considered. From the other
side the tall cylinder, Z0 = 10.0ξ0 can only be described by
the full numerical treatment since the amplitude varies along
the cylinder’s height f (z). All the free energy and the current
plots are in terms of the T = 0 magnetic moment μ/μ0(0),
in order to have a temperature independent scale. Notice that
μ0(T ) = �0ξ (T )/2π and we are taking its zero temperature
value as our magnetic moment scale.

Figures 2 and 3 show the LP temperature versus magnetic
moment temperature diagram derived from the linear theory.
The ratio Tc(μ)/Tc is calculated from the lowest eigenvalue of
Eqs. (42) and (14) for given L and μ/μ0(0) values. These L

lines set the border line that separates the superconducting to
the normal state in the diagram. The two cylinders display very
distinct Tc(μ)/Tc versus μ/μ0(0) curves, as shown in Figs. 2
and 3.

Figure 2 covers the 0 to 200 μ/μ0(0) range, which contains
the first 20 L lines of the Z0 = 2ξ0 cylinder. Notice the
parabolic shape of the L lines and their nearly homogeneous
spatial distribution. The distance between two consecutive
maxima of L and L + 1 lines is described by the formula
�μ/μ0(0) ≈ 9.5. Notice that for increasing magnetic moment

FIG. 2. (Color online) The LP temperature Tc(μ) vs the magnetic
moment μ is shown here for the short cylinder (height Z0 = 2.0ξ0).
The L lines, ranging from 0 to 20, are obtained from the linear theory
[Eq. (13)] and describe angular momenta trapped in the cylinder.

the ratio Tc(μ)/Tc becomes lower than one, indicating that the
height of the cylinder matters in this case, and our theoretical
considerations developed in the ring limit applies to this
situation and is determined by Eq. (20) and not by Eq. (34).
The ratio Tc(μ)/Tc reaches one only in case there is only a
single magnetic flux piercing the ring, that is, in case of the
nearly zero height cylinder or of the constant magnetic field
applied to cylinder of a arbitrary height.

Figure 3 shows a much richer structure for the L lines
of the R = 10ξ0 cylinder, due to the inhomogeneity of the
magnetic field that results in distinct magnetic fluxes piercing
this cylinder, each for a different z plane intersect. Notice the
presence of an inner and an external (true) border lines. To
understand the R = 10ξ0 diagram, we selected a few L lines,
plotted as thick lines for best visualization purposes: L = 5,
12, 20, and 41. The L = 12 line is a key case because of its
double peak structure with a local minimum between them, a
common feature to many lines. The first peak is narrow and
tall, while the second peak is short and broad and takes place

FIG. 3. (Color online) The LP temperature Tc(μ) vs the magnetic
moment μ is shown here for the tall cylinder (height Z0 = 10.0ξ0).
The L lines, ranging from 0 to 41, are obtained from the linear
theory [Eq. (13)] and describe angular momenta states trapped in the
cylinder. A few selected curves are shown as thick lines and their
properties discussed in the text.
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at a larger magnetic moment than the first peak. The tips of
the narrow and broad peaks of the L = 20 line still fall inside
the plotted temperature range, 0.8 to 1.0 Tc(μ)/Tc. The L = 5
thick line shows the onset of the second peak, not present in
the lower L lines, which only have a single peak. The L = 5
and 6 can be regarded as transition lines to the onset of the
second peak and L = 7 is the critical line because the second
peak is clearly established for L = 8 and beyond. L = 41
is the highest line in this diagram, seen around μ/μ0(0) =
400 and setting the end of an inner transition line inside the
superconducting region. The first (narrow) peak contributes to
the true border line only up to L = 4 then to submerge and
form an inner border line for high L values. Thus this inner
border line is the curve tangent to the maximum of the first
peaks. From its side, the second (broad) peak only contributes
to the true superconducting normal state border line, from the
L = 5 line up to L = 20 line. For the sake of the argument we
have included the L = 5, 6, and 7 lines in this set, although the
second peak is only in an embryonic level there. In conclusion,
the superconducting normal state border line has less angular
momentum states for the tall cylinder since L = 20 is the
maximum possible value reached at μ/μ0 = 510, whereas for
the short cylinder, L = 20 is reached for μ/μ0 = 200.

The full nonlinear theory is used to obtain the next plots,
which means that Eq. (42) is numerically solved by means
of the finite element method, and next the free energy and
current calculated from Eqs. (45) and (44), respectively. In the
dimensionless treatment the temperature T is introduced by
adjustment of the radius and of the height, given by R̄(T ) and
Z̄0(T ), respectively.

Figure 4 shows several L free energy lines of the Z0 = 2.0ξ0

cylinder for the two temperatures of T/Tc = 0.8 and 0.9.
The minimum of each L line is also a free energy mini-
mum. These minima are equally spaced and two consecutive
ones, associated with L and L + 1 lines, are separated by
�μ/μ0(0) ≈ 9.5 in agreement with our theoretical analysis
that predicts �μ/μ0(0) = I1/I2, according to Eq. (29). This
position is temperature independent and Fig. 4 has a dashed

FIG. 4. (Color online) The free energy of the short cylinder
(height Z0 = 2.0ξ0) is shown here for two temperatures T = 0.8Tc

and T = 0.9Tc. Free energy L lines ranging from 0 to 20 are shown
vs the magnetic moment μ of the persistent current loop. A dashed
vertical line indicates that the position of the minima is approximately
the same for the two temperatures.

FIG. 5. (Color online) The current circulating in the short cylinder
(height Z0 = 2.0ξ0) is shown here for two temperatures T = 0.8Tc

and T = 0.9Tc. Current L lines ranging from 0 to 20 are shown vs the
magnetic moment μ of the persistent current loop. A dashed vertical
line indicates that the vanishing of the current is approximately the
same for the two temperatures.

straight line to indicate that for the two temperatures the
minimum is in the same magnetic moment value.

Figure 5 shows the vanishing of the current of each
L line for the two temperatures of T/Tc = 0.8 and 0.9.
The zeros are found to be equally spaced, �μ/μ0(0) ≈ 9.5,
also in agreement with our theoretical analysis that predicts
�μ/μ0(0) = 1/I1, according to Eq. (30). The dashed vertical
straight line is a guide to the eye to show that the current
vanishes at the same magnetic moment independently of the
temperature.

Figure 6 shows the free energy of the tall cylinder (Z0 =
10.0ξ0) for the temperature of T/Tc = 0.8. Distinctly from the
short cylinder case, here the minimum of a L line is not a free
energy minimum, unless approximately for the first few lines,
L = 0 to 4. The L lines undergo a transition in shape from
the small to the large L limits. To understand this transition
we selected the L = 3 and 12 lines, also shown in the inset,

FIG. 6. (Color online) The free energy of the tall cylinder (height
Z0 = 10.0ξ0) is shown here for the temperature T = 0.8Tc. Free
energy L lines ranging from 0 to 20 are shown vs the magnetic
moment μ of the persistent current loop. Some L states are depicted
as thick lines to exemplify the three existing regimes: single well
(L = 3), transition (L = 7), and double well (L = 12). The inset
helps to visualize the transition regime.
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FIG. 7. (Color online) The free energy of the tall cylinder (height
Z0 = 10.0ξ0) is shown here for the temperature T = 0.9Tc. Free
energy L lines ranging from 0 to 18 are shown vs the magnetic
moment μ of the persistent current loop. Some L states are depicted
as thick lines to exemplify the three existing regimes: single well
(L = 3), transition (L = 5), and double well (L = 8). The inset helps
to visualize the transition regime.

as they are representative of each side of the transition. While
the L = 3 line has a single minimum, L = 12 has double
well shape with two minima at μ/μ0(0) ≈ 130 and 270, the
first one being the lowest one in free energy. Nevertheless,
the second well is more important than the first one because
it sets the true free energy minimum at μ/μ0(0) ≈ 300, thus
away from the L line secondary local minimum. The first one
has other competing states with lower energy, the lowest one
being the L = 7 state, which is drawn as a thick line to help
the visualization. The L = 7 state is a critical one as it sets the
onset of the double well structure. This double well structure
is not a feature present in all lines, the first ones simply do not
have it. In conclusion, the free energy clearly shows two types,
single and double well shaped, that dominate the small and
large magnetic moment regimes, respectively. This behavior
is also seen in the temperature T/Tc = 0.9, as shown in Fig. 7.
There L = 5 is the critical line, and we have also plotted as
thick lines the L = 3 and L = 8 to show the single to double
well transition.

Figure 8 shows that the Z0 = 10.0ξ0 cylinder displays novel
features as compared to the standard LP problem. The current
of the transition L line that separates the single (low L) to the
double well (high L) behavior displays unusual behavior. Both
limits are characterized by distinct slopes but apart from this
both single and double well regions are similar. as shown for
the, but not in the transition (L = 7) line. This is seen for both
temperatures T/Tc = 0.8 and 0.9. The transition lines occur
for L = 7 and 5, respectively, and displays a very unusual
current pattern near its zero.

The zeros of the current and the free energy minima
coincide for the standard LP, but the inhomogeneous external
field sets them apart, as shown here. For this reason we plot
the free energy for a given temperature (T = 0.8Tc) together
with straight vertical lines associated with the zeros of the
current. Figure 9 shows for the Z0 = 2.0ξ0 cylinder that
these straight vertical lines fall very close to the free energy
minima in agreement with our theoretical predictions derived
in the ring limit. We have selected a few magnetic moment

FIG. 8. (Color online) The current circulating in the tall cylinder
(height Z0 = 10.0ξ0) is shown here for the temperatures T = 0.8Tc

and T = 0.9Tc. Current L lines ranging are shown vs the magnetic
moment μ of the persistent current loop for the L values of Figs. 6
and 7. The single and double well regimes reflect in current lines with
different slopes and the two regimes are separated by a transition line,
L = 7 for T = 0.8Tc, and L = 5 for T = 0.9Tc, respectively.

values (red dashed vertical lines) in this diagram for further
analysis, given by μ/μ0 = 9.62, 66.64, 114.04, and 190.29,
whose free energy minima correspond to the L = 1, 7 12,
and 20 lines. Interestingly we find that these vertical lines
intercept the matching points between the L − 1 and L + 1
free energy lines up to numerical precision. The distance
between consecutive vertical lines is in agreement with the
theoretical prediction for �μc/μ0(0) ≈ 9.5. We observe that
this property seems to be general, namely, also valid for the
Z0 = 10.0ξ0 cylinder, as shown in Fig. 10. However for the
tall cylinder the situation is quite different as the vertical lines
clearly form two sets, a low and a high magnetic moment
set with a gap between them, located at the L = 7 line.
The two sets feature distinct separation between consecutive

FIG. 9. (Color online) Vertical lines associated with the vanishing
of the current are plotted together with the free energy for the short
cylinder (height Z0 = 2.0ξ0) at the temperature T = 0.8Tc. L states
ranging from 0 to 20 are considered here. The μ values equal to
9.62, 66.64, 114.04, and 190.29, labeled as (1), (7), (12), and (20),
respectively, are depicted as red dashed vertical lines and are selected
for further analysis in Fig. 11.
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FIG. 10. (Color online) Vertical lines associated with the vanish-
ing of the current are plotted together with the free energy for the
tall cylinder (height Z0 = 10.0ξ0) at the temperature T = 0.8Tc. L

states ranging from 0 to 20 are considered here. The μ values equal
to 12.75, 85.64, 129.02, and 264.97, labeled as (1), (6), (7), and (11),
respectively, are depicted as red dashed vertical lines and are selected
for further analysis in Fig. 12.

vertical lines with very distinct behavior regarding the free
energy minima. The vertical lines of Fig. 10 split into two
sets according to their separation. For low values of magnetic
moment (until L = 5) the distance between two consecutive
lines is �μ/μ0(0) ≈ 14.7. Then, there is a transition region
(L = 6,7,8), and for L > 9 the curves of the free energy are
dominated by the second well. In this region the distance
between the lines is given by �μ/μ0(0) ≈ 30.1. Comparison

between tall and short cylinders show that their low magnetic
moment has similar behavior, but not for the high magnetic
moment regime because of the double well shape of the L

lines for the tall cylinder. The zeros of the current are far from
the free energy minima and yet they coincide with the crossing
of the L − 1 and L + 1 free energy lines. In this case we have
also selected a few magnetic moment values (red dashed lines)
for further analysis: μ/μ0 = 12.75, 85.64, 129.02, and 264.97,
They are labeled 1, 6, 7, and 11 because they fall within the
regimes where these L lines provide the free energy minima.

In the ring limit (very short cylinder) it is easy to verify
that the crossing point between any L − 1 and L + 1 free
energy curves happens at the magnetic moment value of the
vanishing of the L state current. In the ring limit the amplitude
f is constant and the free energies FL−1 and FL+1 for states
L − 1 and L + 1, respectively, are given by

FL−1 = − 1

β

[
α0

(
ξ0

R

)2

gL−1 + α(T )

]2

(46)

and

FL+1 = − 1

β

[
α0

(
ξ0

R

)2

gL+1 + α(T )

]2

(47)

according to Eq. (18). Next take FL−1 = FL+1 to obtain
gL−1(μ∗) = gL+1(μ∗), which gives∫ z0

−z0

dz

Z0

{[
L− 1 − �(μ∗,z)

�0

]2

−
[
L+ 1 − �(μ∗,z)

�0

]2}
= 0,

(48)

FIG. 11. (Color online) The current density J , the pair density |ψ |2, and the potential V of the linear equation [Eq. (43)] along the cylinder
height are shown here for the short cylinder (height Z0 = 2.0ξ0) at the temperature of T = 0.8Tc. The μ values, selected in Fig. 9, and equal
to 9.62, 66.64, 114.04, and 190.29, labeled as (1), (7), (12), and (20), are considered for this purpose. The persistent current loop is located at
position 1.5ξ0. The L lines and their corresponding figures are also listed here.
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FIG. 12. (Color online) The current density J , the pair density |ψ |2, and the potential V of the linear equation [Eq. (43)] along the cylinder
height are shown here for the tall cylinder (height Z0 = 10.0ξ0) at the temperature of T = 0.8Tc. The μ values, selected in Fig. 10, and equal
to 12.75, 85.64, 129.02, and 264.97, labeled as (1), (6), (7), and (11), are considered for this purpose. The persistent current loop is located at
position 5.5ξ0. The L lines and their corresponding figures are also listed here.

that once simplified becomes∫ z0

−z0

dz

Z0

[
L − �(μ∗,z)

�0

]
= 0. (49)

Inserting the definition of the magnetic flux �(μ∗,z) [Eq. (7)],
and expressing the result as a function of integral I1, previously
defined we obtain that

μ∗

μ0
= L

1

I1
. (50)

This shows that for constant amplitude f it holds that μ∗ = μc,
according to Eq. (30). We also stress that our present numerical
evidence shows that this property also holds for the tall cylinder
where the amplitude f is no longer constant.

To gain further insight into the structure of the supercon-
ducting state along the cylinder height, we plot in reduced units
the current density J (z), the superconducting density |ψ(z)|2,
and the potential V (z) as a function of z. Notice that the current
loop, which is the source of the inhomogeneous magnetic field,
is located in the positive z axis 0.5ξ0 above the maximum
height. Figure 11 shows these plots for the Z0 = 2.0ξ0 cylinder
at the selected magnetic moment values called (1), (7), (12),
and (20). All the possible crossing L states with the vertical
lines, as shown in Fig. 9, are in the J (z), |ψ(z)|2, and V (z)
plots. To understand the information given by these plots we
start the discussion of the J (z) plots. Because these magnetic
moment values are very near to the zeros of the current, we
take this property to claim that the sought free energy minimum

must be such that its J (z) integrated along the z axis will add
to a zero current. Figure 11(1a) shows that only the L = 1
curve qualifies for a free energy minimum since it is the only
one to cross the z axis thus yielding positive current for z < 0
and negative for z > 0. According to this criterion all others
L lines can be dismissed as they cannot be zero current states
since they do not cross the z axis. This reasoning also provides
the key to select the free energy minimum in Figs. 11(2a),
11(3a), and 11(4a). The present criterion uniquely selects the
L = 7, 12, and 20 states among the other ones drawn in these
figures, respectively, as the only possible free energy minimum
because only them fit as zero current states. For the short
cylinder the superconducting density |ψ(z)|2 and the potential
V (z) also provide features able to uniquely define the sought L
lines. For the free energy minimum states the density is nearly
constant according to Figs. 11(1b), 11(2b), 11(3b), and 11(4b).
Similarly the potential approaches zero for these states as seen
in Figs. 11(1c), 11(2c), 11(3c), and 11(4c).

Figure 12 shows these plots for the Z0 = 10.0ξ0 cylinder
at the selected magnetic moment values called (1), (6), (7),
and (11). Figure 12(1a) shows that in the low magnetic
moment regime the L state associated with the free energy
minimum can be judiciously selected by the zero current
condition and this is the L = 1 state. The same does not
hold for the intermediate magnetic moment values (6) and
(7) where many lines qualify at least at the naked eye level
precision, which means that many lines cross the z axis near
the center of the cylinder having positive current for z < 0
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and negative for z > 0. For the high magnetic moment limit
the situation is similar although the current vanishes near the
upper edge of the cylinder, z ≈ 5, because of the proximity to
the strong external current loop. The dramatic changes that the
superconducting state undergoes by increasing the magnetic
moment are witnessed in the superconducting density |ψ(z)|2,
and the potential V (z). Figures 12(1b), 12(2b), 12(3b), and
12(4b) show that density is mostly concentrated at the top
edge of the cylinder for μ/μ0 = 12.75, which falls in the
low magnetic moment regime. For the intermediate values of
μ/μ0 = 85.64 and 129.02 we find L states concentrated at
both edges to finally find that in the high magnetic moment
regime, represented by μ/μ0 = 264.97, the density is mostly
concentrated at the bottom. Indeed Figs. 12(1c), 12(2c),
12(3c), and 12(4c) show that the potential undergoes dramatic
changes from the low to the high magnetic moment regime.
In the former case (μ/μ0 = 85.64) it undergoes mild changes
from one edge to the other as it varies from 0 to 1 in reduced
units, while for the latter case (μ/μ0 = 264.97) it varies from
0 to 23, being very intense in the top edge. These plots explain
the reasons for the twofold regimes present in the LP oscillation
near the persistent current loop.

V. CONCLUSION

We have considered the Little-Parks oscillations on a thin-
walled superconducting cylinder with a persistent (magnetic

moment) current loop set on its top. This mesoscopic system is
shown here to have two regimes of temperature oscillations not
found in the original Little-Parks system, because instead of a
constant applied magnetic field there is an inhomogeneous
magnetic field created in space by the persistent current
loop. We observe that this inhomogeneity grows in relevance
according to the cylinder height, as expected. In order to unveil
the new features we have considered a short and a tall cylinder,
and report new results in both cases. For the short cylinder we
report new analytical expressions for the magnetic moments
associated with the free energy minima, to the zeros of the
current, and to the maximum attainable temperature [Eqs. (29),
(30), and (31)]. For instance, we find that the current in the
thin-walled cylinder vanishes at a magnetic moment greater
than that of the free energy minimum (μc � μf ). For the
tall cylinder we find novel features, perhaps best captured
by Fig. 8. This figure shows two distinct current regimes
for the tall cylinder, set at low and high L, respectively,
associated with distinct slopes with a clear transition L line
that separates them. The existence of these two regimes, and
the transition that separates them, are within the realm of
observable experimental measurements.
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