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Supercurrent fluctuations in filaments
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We evaluate the average and the standard deviation of the supercurrent in superconducting nanobridges,
as functions of temperature, phase difference, and sample parameters, in an equilibrium situation. We also
evaluate the autocorrelation of the supercurrent as a function of the elapsed time. The behavior of supercurrent
fluctuations is qualitatively different from that of the normal current: they depend on the phase difference, have a
different temperature dependence, have nonzero averages, and for an appropriate range their standard deviation
is independent of the probing time. We considered two radically different filaments and obtained very similar
results for both. Fluctuations of the supercurrent can in principle be measured.
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I. INTRODUCTION

Josephson junctions are of common use in many technolog-
ical devices and their behavior as a circuit element is described
in textbooks;1–3 the influence of thermal fluctuations on the
normal current is described as Johnson noise. The voltage due
to thermal noise was studied by Ivanchenko and Zil’berman4

and by Ambegaokar and Halperin.5

In this study we are interested in the equilibrium fluc-
tuations of the supercurrent. Since supercurrent is actually
an equilibrium variable rather than a diffusion process, we
may expect—and will indeed find—that its fluctuations are
qualitatively different from those of the normal current. Early
works on fluctuations in junctions6 state that there is no noise in
supercurrent to quadratic order in the temperature. On the other
hand, Averin and Imam7 found that supercurrent fluctuations
in mesoscopic contacts are large on the scale of the classical
shot noise.

The kind of junction considered in this article is a filament
close to the critical temperature, which can be described by
means of the Ginzburg-Landau model. If the entire filament
has a critical temperature that is above the experimental
temperature T , the filament may be regarded as a constriction;
if parts of the filament have a critical temperature below
T , it may be regarded as a superconductor-normal metal-
superconductor (SNS) junction. In the case where fluctuations
are ignored, the junction-like behavior of a filament has been
studied for static8 and for dynamic9 situations.

The situation we will study here is a case of dynamic
equilibrium. We will consider a superconducting filament that
bridges between two “banks.” At the banks fluctuations are
negligible and the order parameter will have fixed equilibrium
values, whereas along the filament the order parameter and
the electromagnetic potential fluctuate. In the absence of
fluctuations, the current along the filament would be given
by the current-phase relation.

II. METHOD AND DEFINITIONS

We will use the time-dependent Ginzburg-Landau (TDGL)
equations with Langevin terms, which will be handled nu-
merically by means of finite differences. We have described
this method in detail in the past10,11 and shown good
agreement with statistical mechanics and with experiments.

The Langevin method states the following: if a system has
an equilibrium temperature T and a variable Q which in
the absence of thermal fluctuations follows an evolution
Q(t + τ ) = Q(t) − (�Q∂G/∂Q)τ , where τ is a short lapse of
time, G the energy of the system, and �Q a relaxation constant,
then, when fluctuations are taken into account, Q(t + τ ) =
Q(t) − (�Q∂G/∂Q)τ + ηQ, where ηQ is a random variable
with zero average, normal distribution, and variance〈

η2
Q

〉 = 2�QkBT τ , (1)

where kB is the Boltzmann constant.
For a one-dimensional filament we define the

gauge-invariant order parameter ψ̃(x) = exp[(2πi/

�0)
∫ x

0 A(x ′)dx ′]ψ(x), where x is the arc length, ψ the
“canonical” order parameter, A the tangential component of
the vector electromagnetic potential, and �0 the quantum of
flux. In the absence of fluctuations, the 1D-TDGL equation
can be written as12

ηh̄
∂ψ̃

∂t
= −

[
α + β|ψ̃ |2 − h̄2

2m

∂2

∂x2
− 1

w

∂w

∂x

∂

∂x

− 2πiηh̄

�0

∫ x

0

∂A

∂t
(x ′)dx ′

]
ψ̃ , (2)

where m is the mass of a Cooper pair, w(x) the cross section
of the filament, and η, α, and β are material parameters; the
sign of α determines whether the local critical temperature Tc

is above or below T . TDGL is valid only close to Tc and not
far from equilibrium;13,14 since we are anyway interested in
fluctuations that are important only close to Tc, this is not a
real limitation for our purpose.

Thermal fluctuations are added to Eq. (2) in two steps:10 a
Langevin term is added to account for fluctuations of ψ(x),
and then the phase of ψ̃(x) is modified in order to account for
fluctuations of A(x ′) (i.e., Johnson noise). In Ref. 10 it is shown
that both ψ and A behave as the variable Q in Eq. (1). The
current along the filament is obtained from the requirement11

that the phase difference between the banks remains fixed.
We will take the boundary conditions ψ̃(0,t) =√−α(0)/β(0), ψ̃(L,t) = √−α(L)/β(L) exp(iγ ), where L is

the length of the filament; γ is the gauge-invariant phase
difference. The normal current IN (x,t) and the supercurrent
IS(x,t) are not separately constant along the filament. We
define the supercurrent as the weighted average IS(t) =
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∫ L

0 IS(x,t)w(x)−1dx/
∫ L

0 w(x)−1dx. w(x)−1 appears as a nat-
ural weight in Refs. 10,11; in this work we consider uniform
cross section only, so that this weight and the fourth term
in Eq. (2) can be ignored. We define dimensionless sample
parameters that characterize the filament:

α̃ = αmL2/h̄2, β̃ = βmL/h̄2w, R̃ = 4e2ηL/h̄σw, (3)

where e is the electron charge and σ is the electrical
conductivity.

Using BCS, dirty limit,1 and free electron gas approxima-
tions, the geometric parameters for a uniform filament can
be expressed in terms of the sample parameters, T − Tc, and
microscopic parameters. We obtain

L2 = πh̄2kF eα̃/6mkB(T − Tc), w = 0.51L/ne
2
eβ̃, (4)

where kF is the Fermi wave vector, e the mean free path, and
ne the electron density. Within these approximations we also
have η = 3/4kF e.

III. RESULTS

We have examined two situations. The first (Sec. III A) is
that of filaments with uniform superconductivity; in the second
case (Sec. III B) the middle of the filament is nominally normal.
The filament was divided into 30 computational cells and evo-
lution was followed in steps of duration 1.3 × 10−4ηmL2/h̄.
The first 107 steps had the purpose of relaxation to typical
values of ψ̃ and then 12 × 107 steps were used for averaging.
Changing the time step by an order of magnitude typically
leads to changes in the average current that are smaller than
5%; the influence of the number of computational cells is
discussed in the Appendix. The averages shown in the figures
are averages over time and IS0 denotes the supercurrent in the
absence of thermal fluctuations.

A. Uniform filament

1. Fluctuation-temperature dependence

In this section we take −α̃ = β̃ = R̃ = 1 and study the
influence of temperature. It should be emphasized that the
temperature is always very close to Tc, so that the fluctuation
temperature is a conceptual entity. Operationally, the fluctu-
ation temperature is a value of T that we set into Eq. (1) as
a control of the fluctuation strength. When we report on the
value of IS for T = 0, what we mean is the value that would be
obtained in the absence of fluctuations. The main motivation
for studying the influence of T is the comparison with the
fluctuations of the normal current, which have a variance
proportional to T .

If temperature is varied in an experiment with a fixed
sample, this mainly affects the value of α̃. If the experimentalist
really wants to change the effective value of T , two strategies
seem possible. One of them is electrostatic tuning of Tc, as
implemented with a ferromagnetic layer;15 another possibility
is repetition of the experiment with samples that have different
critical temperatures (or different lengths, since the influence
of temperature scales as L2). Although measurements for
several values of T while keeping fixed values of the
sample parameters would be experimentally demanding, in
the absence of available data we consider it instructive to
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FIG. 1. (Color online) Average deviation of the supercurrent from
the value that would be obtained without thermal fluctuations, as
a function of the phase difference and for α = −h̄2/mL2, β =
h̄2w/mL, R̃ = 1 and several values of the fluctuation temperature T

(solid curves). T = 0.1n2h̄2/mL2kB , where n is the number marked
next to each curve. For comparison, we have also drawn the curve
−IS0/3 (dashed line).

study the trends due to the separate variations of each of the
parameters in the theory.

Figure 1 shows the average deviation of IS from IS0 as a
function of γ , for several values of T . We see that fluctuations
not only lead to variance of the supercurrent, as in the case of
normal current, but also lead to a shift of the average value.
IS and IS0 are negative for 0 < γ < π , so that |〈IS〉| < |IS0|.
For a material with critical temperature of the order of 1 K,
the highest temperature in Fig. 1 corresponds to a filament
length of the order of 30 nm and the highest current deviation,
to the order of 10 nA. The γ dependence of 〈IS〉 − IS0 has
some resemblance to that of IS0, which has been included
in the figure for comparison. Figure 2 presents 〈IS〉 − IS0 as
a function of T ; it is apparent that this deviation behaves
differently for different values of γ .

Figure 3 shows the standard deviation of IS as a function of
γ . Note that whereas the standard deviation of Johnson noise
is inversely proportional to the square root of the probing time
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FIG. 2. Deviation of the supercurrent from the fluctuation-free
value, as a function of the fluctuation temperature and for several
phase differences, marked next to each curve.
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FIG. 3. Standard deviation of the supercurrent, as a function of
the phase difference, for several values of T . The temperatures and
sample parameters are the same as in Fig. 1.

(provided that it is long compared to h̄/kBT ), the standard
deviation of IS is independent of the probing time (provided
that it is short compared to the decoherence time that we will
find below). In addition, the standard deviation of IS depends
on the phase difference, whereas that of IN does not. On the
other hand, the present result does not support the scenario
assumed in Ref. 16, according to which fluctuations of the
order parameter just scale the supercurrent, while the shape of
the current-phase relation remains fixed; if this were the case,
the standard deviation of IS would be proportional to IS0.

Figure 4 shows the temperature dependence of the standard
deviation of IS . Whereas for the normal current the standard
deviation is proportional to T 1/2, no similar scaling is found
for the supercurrent. Proportionality seems to occur in the case
γ = π , but this is only approximate.

Figure 5 shows the autocorrelation of the super-
current, K(t ′) = [〈IS(t + t ′)IS(t)〉 − 〈IS〉2]/(〈I 2

S 〉 − 〈IS〉2) for
0 � γ � π . We see that the smaller the value of γ , the
shorter the typical time required to “forget” a previous
value of IS . The inset shows the spectral density J (ω) =
(1/π )

∫ ∞
0 K(t) cos(ωt)dt .
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FIG. 4. Dependence of the standard deviation of the supercurrent
on the fluctuation temperature. The lowest curve is for γ = 0, the
highest for γ = π , and the curves in between are in steps of π/6.
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FIG. 5. (Color online) Autocorrelation function of IS , as a
function of the elapsed time t ′, for T = 2.5h̄2/mL2kB and γ = nπ/3,
n = 0,1,2,3. The other parameters are as in Fig. 1. Inset: spectral
density for γ = 0,π/2,π .

If IS is measured many times, each time during a probing
period of length τ such that K(τ ) ∼ 1, then each measurement
can essentially be regarded as instantaneous and the standard
deviation of IS is given by Fig. 3, with practically no τ

dependence; if K(τ ) ∼ 0, then fluctuations of IS essentially
become white noise and the standard deviation of IS should
decrease as τ−1/2. According to Fig. 5, the crossover value
of τ (the “decoherence time”) increases with γ and is of the
order of 0.1ηmL2/h̄ (for L ∼ 1 μm and kF e ∼ 10, this is of
the order of 10−10 s).

The faster relaxation of fluctuations for small γ is coun-
terintuitive, since according to Fig. 3 the influence of thermal
agitation is stronger for large γ , and we might expect this
agitation to destroy any particular configuration of the order
parameter that results in a particular supercurrent at a given
time. Figure 6 shows that the γ dependence of the relaxation
times of IS is not dominated by thermal agitation, but rather
by the fluctuationless dynamics. At T ∼ 0, memory loss of
particular configurations is faster for small γ ; thermal agitation
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FIG. 6. (Color online) Influence of fluctuations on the autocorre-
lation function. The dashed lines are for T ∼ 0 and the continuous
lines for T = 2.5h̄2/mL2kB . The lower (blue) lines are for γ = 0,
the middle lines for γ = π/2, and the upper (red) lines for γ = π .
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FIG. 7. (Color online) Deviation of the supercurrent from the
fluctuationless value as a function of the phase difference for several
values of α̃, marked next to each curve. T = 0.9h̄2/mL2kB , β =
h̄2w/mL, R̃ = 1. The dashed line has sinusoidal shape and is included
for comparison.

moderates the γ dependence. It is interesting to note that in the
case γ = 0 thermal agitation leads to delay of the relaxation.

The results in Figs. 3 and 6 can be interpreted as follows.
In the case γ = 0 the order parameter is pinned with the same
phase at both boundaries, giving a large energy advantage to a
uniform order parameter all along the filament. Therefore, the
system is comparatively rigid: deviations from the equilibrium
configuration are small and return to equilibrium is fast. In
the case γ = π the order parameter is pinned with opposite
phases at the boundaries, so that the system is frustrated and
comparatively indifferent; as a consequence, deviations from
equilibrium are large and return to it is slow.

2. Influence of sample parameters

Variation of R̃ by an order of magnitude has only a minor
influence on the supercurrent. In the following we report on
the influence of variations of α̃ and β̃.

Figure 7 shows the deviation of IS from its fluctuationless
value for several values of α̃. The typical sizes of 〈IS − IS0〉
are roughly proportional to α̃. For |α̃| � 1 this deviation has
a sinusoidal shape; as |α̃| increases, its maximum moves to
larger values of γ .

Figure 8 shows the standard deviation of IS for the same
values of α̃ as in Fig. 7. We find that for γ = 0 this standard
deviation is independent of α̃, whereas for γ = π it increases
with |α̃|.

The inset in Fig. 9 shows the behavior of 〈IS − IS0〉 for
several values of β̃. As could be expected, the influence of
increasing β̃ is qualitatively similar to that of decreasing |α̃|,
but far more moderate. Figure 9 shows the influence of β̃ on the
standard deviation of IS ; again, the influence is qualitatively
opposed to that of |α̃|, but variation of β̃ does have an effect
for γ = 0.

Figure 10 shows the standard deviation of the supercurrent
as a function of temperature, for γ = 0 and γ = π , and for
several values of α̃ and β̃. As already mentioned, for γ = 0 the
standard deviation seems to be independent of α̃. For γ = π ,
the slopes of the curves scale roughly as α̃0.7β̃−0.5 at T = 0;
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FIG. 8. (Color online) Standard deviation of the supercurrent, as
a function of the phase difference, for several values of α̃; same
parameters as in Fig. 7.

at T = 4h̄2/mL2kB the influence of α̃ is very weak and the
slopes scale roughly as β̃−0.2.

The upper panel of Fig. 11 shows the autocorrelation
function of IS for small and large values of α̃. We see that
the effect of increasing |α̃| is similar to that of lowering the
fluctuation temperature. The lower panel of the figure shows
the influence of varying β̃; the effect of increasing β̃ is similar
to that of raising the fluctuation temperature.

B. SNS junction

Here we report the results for the case α =
−(h̄2/mL2) cos(2πx/L); we take again β̃ = R̃ = 1. Although
taking a value of α that vanishes on the average may look as
a drastic change, the results are remarkably similar to those of
the previous section.

Figure 12 shows the average deviation of IS(γ ) from IS0(γ )
for the same temperatures as in Fig. 1. We note that in
the present case the reduction of IS is smaller than in the
case of a uniform filament. This behavior makes sense, since
fluctuations may only be expected to destroy superconductivity
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FIG. 9. (Color online) Standard deviation of the supercurrent, as
a function of the phase difference, for several values of β̃, marked
next to each curve. T = 0.9h̄2/mL2kB , α = −h̄2/mL2, R̃ = 1. Inset:
deviation of IS from IS0 for the same parameters.
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FIG. 10. (Color online) Standard deviation of the supercurrent as
a function of temperature, for various values of γ , α̃, and β̃. The lower
curves are for γ = π and the curves for γ = 0 have been raised by 7
units. Most lines are marked by the pair of numbers |α̃|, β̃; in cases
where α̃ has no visible influence in the graph, only β̃ is indicated (for
β̃ = 1, α̃ = −0.2, − 1, − 2.5; for β̃ = 20, α̃ = −0.2, − 1).

when the entire filament is superconducting; on the other hand,
when half of the filament is normal and supercurrent can only
be due to proximity or fluctuations, these fluctuations also
have a supportive effect. For γ = π the average current has
to vanish by symmetry; the scattering in this value serves as a
measure of the accuracy of our results.

Figure 13 shows the standard deviation of IS(γ ) and
compares it with that of a uniform filament. For small
values of γ the standard deviation is similar to that of
Fig. 3, but as γ approaches π the standard deviation in the
present case is noticeably smaller than that of a uniform
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FIG. 11. (Color online) Autocorrelation function of IS for T =
0.9h̄2/mL2kB , R̃ = 1, and various values of γ , α̃, and β̃. (a) β̃ = 1;
(b) α̃ = 1.
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FIG. 12. (Color online) Reduction of average supercurrent due
to thermal fluctuations in the case α = −(h̄2/mL2) cos(2πx/L).
Annotations as in Fig. 1. For comparison, the curves for α =
−h̄2/mL2, T = 0.4h̄2/mL2kB , and T = 1.6h̄2/mL2kB have been
included as dotted lines.

filament. This result may seem surprising, since in the present
case superconductivity is more fragile and we might expect
increased fluctuations. A possible explanation could be that
when α and β are both positive, large fluctuations of the order
parameter in the middle of the filament are inhibited, leading
to smaller fluctuations of IS . Figure 14 presents these results
as functions of the temperature. As in the case of a uniform
filament, the standard deviation is not proportional to T 1/2.

Figure 15 compares the autocorrelation functions for the
cases α(x) = −(h̄2/mL2) cos(2πx/L) and α = −h̄2/mL2.
Again, we find that the difference is remarkably small, espe-
cially for small γ . Nominal suppression of superconductivity
in part of the filament just leads to a slightly faster decoherence.

IV. DISCUSSION

We have evaluated numerically the thermal fluctuations
of the supercurrent along filaments that bridge between two
banks (superconducting pieces with dimensions such that
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FIG. 13. (Color online) Standard deviation of the supercurrent in
the case α = −(h̄2/mL2) cos(2πx/L), for several temperatures. The
temperatures are the same as in Fig. 1. For comparison, the curves of
Fig. 3 are redrawn as dotted lines.
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FIG. 14. (Color online) Temperature dependence of the
standard deviation of the supercurrent. Solid lines: α =
−(h̄2/mL2) cos(2πx/L); dotted: α = −h̄2/mL2, redrawn from
Fig. 4.

fluctuations in them are negligible) in an equilibrium situation.
One case we considered was that of a uniform filament, made
of the same material as the banks; the second case was that of
a filament equal to the first at the contact points, but normal in
the middle.

These fluctuations have nontrivial properties, qualitatively
different from those of normal current. Additionally, in spite
of the blatant difference between both kinds of considered
filaments, the difference between the fluctuations in them is
minor, suggesting that the results we have found are generic.

Experimentally, a phase difference may be applied by
connecting the banks so that together with the filament they
become a closed circuit that encloses a known magnetic flux;
the current can then be sensed through the field that it induces.
The main signatures of the effects found here are the γ

dependencies of the deviation of the average current from IS0

and that of the standard deviation of IS .
IS0 could be determined by repetition of the experiment with

samples of the same material and length but considerably wider
cross section, since IS0 is proportional to the cross section.
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FIG. 15. (Color online) Autocorrelation of the supercurrent, as a
function of the elapsed time, for α = −(h̄2/mL2) cos(2πx/L) and
several values of γ . The other parameters are as in Fig. 5. The dotted
lines are for α = −h̄2/mL2.

Increasing w would change the values of β̃ and R̃, and as a
consequence the value of 〈IS〉 − IS0 would also increase, but,
as shown in Fig. 9, to a much smaller extent.

Let us now discuss measurement of the standard devi-
ation of IS . The probing time should be of the order of
0.1mL2/h̄kF e. This time should be sufficiently large to be
experimentally accessible, and also sufficiently larger than
h̄/kBTc, so that fluctuations of the normal current can be
regarded as white noise. This requirement sets a lower bound
for L (for Tc = 10 K and kF e = 10, we require L 	 10−7 m).
An additional concern is that fluctuations of the supercurrent
should not be obscured by those of the normal current. In
order to check this possibility, let us examine a situation with
Tc − T and w chosen such that −α̃ = β̃ = 1. According to
our results, the standard deviation of IS for γ = π will be
of the order of (e/L)(kBT /m)1/2. On the other hand, if IN is
measured during periods of time τ , its standard deviation will
be (2kBT σw/Lτ )1/2. Using the free electron expression for σ ,
taking τ = 0.1mL2/h̄kF e and w from Eq. (4), we obtain that
the standard deviation of IS is of the same order of magnitude
as that of IN , so that in principle 〈I 2

S 〉 can be determined.
The present study may be regarded as a feasibility test for

the influence of supercurrent fluctuations. Analytic treatments
that uncover the scalings and asymptotic relations, as well as
the nonequilibrium behavior, are still required.
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APPENDIX: EVALUATION OF 〈IS〉 USING A TRANSFER
OPERATOR TECHNIQUE

The equilibrium average of the supercurrent is given by

〈IS〉 = 〈IS + IN 〉 = 2πkBT

�0

∂ ln Z

∂γ
, (A1)

where Z is the partition function, which has to be derived from
the Ginzburg-Landau free energy

F =
∫ L

0
wds[α|ψ̃ |2 + (β/2)|ψ̃ |4 + (h̄2/2m)|∂ψ̃/∂s|2].

(A2)

For a uniform filament and α < 0, writing s = Lt and
(Re ψ̃,Im ψ̃) = √−α/β r, F becomes

F = −wαh̄2

Lβm

∫ 1

0
dt

(
1

2

∣∣∣∣dr
dt

∣∣∣∣
2

+ V

)
, (A3)

with

V = (αL2m/h̄2)(r2 − r4/2) . (A4)

Following Ref. 17, a function r(t) is interpreted as a microstate
of the system and F as the energy of the system for that
microstate. It follows that the partition function is

Z = C

∫
Dr exp(−F/kBT ) , (A5)
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where
∫
Dr denotes integration over all functions r(t)

with boundary conditions r(0) = a0 = (1,0) and r(1) = a1 =
(cos γ, sin γ ), and C is an irrelevant multiplicative constant.
Dividing the integral in Eq. (A3) into N segments, N 	 1,
and introducing into Eq. (A5) we can write in this limit

Z =
(

N

2πS

)N−1 ∫
dr1 · · · drNδ(r1 − a0)δ(rN − a1)

× exp

[
−f (rN,rN−1)

NS

]
· · · exp

[
−f (r2,r1)

NS

]
, (A6)

with f (ri+1,ri) = V (ri+1) + (N2/2)|ri+1 − ri |2, S =
−kBT Lβm/wαh̄2, and the prefactor has been chosen for
convenience.

Noting that δ(r − r′) = ∑
n �∗

n (r)�n(r′), where {�n} is any
complete set of normalized eigenstates, Z becomes

Z =
∑
n,n′

�n′ (a1)�∗
n (a0)

∫
drN�∗

n′ (rN ) · · ·

×
∫

dri(N/2πS) exp[−f (ri+1,ri)/NS] · · ·

×
∫

dr1(N/2πS) exp[−f (r2,r1)/NS]�n(r1) . (A7)

If the �n are chosen so that they obey the eigenvalue equation

∫
dri(N/2πS) exp[−f (ri+1,ri)/NS]�n(ri)

= exp[−εn/NS]�n(ri+1) , (A8)

then

Z =
∑

n

�n(a1)�∗
n (a0) exp(−εn/S) . (A9)

Expanding �n(ri) in powers of ri − ri+1 around �n(ri+1),
which is equivalent to an expansion in powers of N−1/2, the
integral in Eq. (A8) can be performed and �n is found to obey
the eigenvalue equation17

[−(S2/2)∇2 + V ]�n = εn�n , (A10)

where ∇2 is the Laplacian with respect to r.
In polar coordinates r = r(cos θ, sin θ ), the angular mo-

mentum operator is Lz = −i∂/∂θ . Noting that18 Lz commutes
with the “Hamiltonian” [−(S2/2)∇2 + V ], the �n can be
chosen so that they are also eigenstates of Lz, i.e., they can
have the form �n,[r(cos θ, sin θ )] = Rn,(r) exp(iθ ), where
Rn, is a real function and  an integer. Introducing this form

5Π 6

2Π 3

Π 2

0.00 0.02 0.04 0.06 0.08 0.10

0.8

1.0

1.2

1.4

1 N

I S
m

L
2

e

FIG. 16. Supercurrent as a function of the length of the com-
putational segments. The dashed lines extrapolate to the values
obtained by the method described in this appendix. The temperature
is 2.5h̄2/mL2kB , the phase difference is marked next to each line
and the other parameters are as in Fig. 1. We kept 12 terms in
expansion (A14).

into Eq. (A9) we obtain

Z =
∑



exp(iγ )Z , (A11)

with

Z =
∑

n

R2
n,(1) exp(−εn,/S) , (A12)

where summation in Eq. (A11) is made over all integers
and in Eq. (A12) over all the states with total angular
momentum .

Since the Hamiltonian is symmetric under the transforma-
tion r → −r, we can also write

Z = Z0 + 2
∞∑

=1

cos(γ )Z . (A13)

Applying Eq. (A1) we obtain

〈IS〉 = −4πkBT

�0Z

∞∑
=1

sin(γ )Z . (A14)

In order to complete the evaluation, Eqs. (A14) and
(A12) have to be supplemented with the values of εn,

and Rn,(1). Since only for small values of εn, is
there an appreciable contribution, this is accomplished
as follows. We start from a basis Hamiltonian HB =
−(S2/2)∇2 + (k2/2)r2, which has known eigenfunctions
RB

n,(r) = Cn,r
||e−kr2/2S

1F1(−n,|| + 1,kr2/S) and eigen-
values εB

n, = Sk(2n + || + 1), where Cn, is the normaliza-
tion constant and 1F1 is Kummer’s hypergeometric function.
k is still a free parameter. We select a subspace of the Hilbert
space which has a moderate number of low-energy eigenstates
of HB as a basis, project the true Hamiltonian into this
subspace, and then diagonalize this truncated Hamiltonian.

The value of k is chosen as follows. If the Hamiltonian
were not truncated, its lowest eigenvalue would be independent
of k; for the truncated Hamiltonian and for a given value ,
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the lowest eigenvalue is effectively independent of k within a
certain range and rises beyond this range. We choose k() in
the middle of this range.

Figure 16 compares the computational method taken from
Refs. 10,11 and the method developed in this appendix. The

comparison requires extrapolation to the continuum limit,
N → ∞. The convergence of 〈IS〉 to the continuum limit is
rather slow, but the variance of IS seems to saturate for N ∼ 20.
For temperatures lower than 0.4h̄2/mL2kB convergence in
Eq. (A14) becomes slow.
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