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Majorana fermions in superconducting helical magnets
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In a variety of rare-earth-based compounds, singlet superconductivity coexists with helical magnetism. Here
we demonstrate that surfaces of these systems should generically host a finite density of zero-energy Majorana
modes. In the limit of vanishing disorder, these modes lead to a divergent contribution to zero-energy density
of states and to zero-temperature entropy proportional to the sample surface area. When confined to a wire
geometry, a discrete number of Majorana modes can be isolated. The relatively large characteristic energy scales
for superconductivity and magnetism, compared to other proposals, as well as the lack of need for fine tuning,
make helical magnetic superconducting compounds favorable for the observation and experimental investigation
of Majorana fermions.
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I. INTRODUCTION

Majorana fermions (MF) have attracted considerable at-
tention recently as a promising tool for topological quantum
computing, quantum information storage,1–3 and for uncon-
ventional quantum transport phemonena.4 The appeal of MF is
in their nonlocal character, when realized in topological states
of matter: A single binary quantum degree of freedom can be
split into two MF spatially isolated from each other, and thus
protected from decoherence caused by local environmental
perturbations. An active search for material realizations of
MF is under way. A list of the candidate systems includes
chiral p-wave superconductors,3,5 topological insulator with
proximity induced superconductivity,6 noncentrosymmetric
superconductors,7–9 and 5/2 quantum Hall state.10 In these
systems Majorana zero modes can appear in the vortex cores
or at the edges.11–13

The practical implementation of most of these proposals
is hampered by the small energy scale which separates the
Majorana modes from the electronic continuum, and by
the need to precisely tune different system parameters. For
instance, recently, an elegant proposal to create and manipulate
Majorana fermions was made based on superconducting nano-
wires in the presence of Rashba spin-orbit interaction and
magnetic field.12–14 It requires a delicate balancing of the
various coupling constants: A gap in the electronic spectrum,
which has to be sufficiently large to prevent detrimental effects
of disorder, has to be opened by an external magnetic field,
which, at the same time, cannot be too large to avoid destroying
superconductivity. It is clear that progress in the experimental
search of Majorana fermions would be greatly facilitated by the
identification of candidate systems, where Majorana physics
can be explored in a larger energy range without the need to
satisfy highly demanding experimental constraints.

Here, we propose the use of helical magnetic super-
conductors (HMS) as such a candidate system. While the
bulk properties of HMS have been investigated in the past,
the sub-gap surface states in this class of materials have
remained unexplored. We show that the spin helix in these
systems plays a role analogous to the combination of the

spin-orbit interaction and of the magnetic field in the case
of superconducting Rashba nanowires, and leads to formation
of zero-energy Majorana surface states. Importantly, however,
the pair-breaking effects of the exchange interaction in HMS
are dramatically reduced due to the spatial modulation of
magnetism, as is evidenced by a large variety of existing
materials15–18 that exhibit coexisting helical magnetism and
superconductivity with relatively large transition temperatures
(e.g, in ErNi2B2C the superconducting critical temperature is
10.5 K and the Neel temperature is 6.8 K). This property makes
the readily available HMS a favorable system for the detection
of Majorana zero modes, without the need to match demanding
experimental constraints, and offering an increase of an order
of magnitude (or more) in the energy scale relevant for Ma-
jorana physics as compared to a typical semiconductor-based
system. While in idealized truly 1D systems the HMS and
the superconducting Rashba systems are unitarily equivalent,
in wires of finite width or in bulk systems (relevant to actual
experiments) they are not. As we demonstrate, a remarkable
feature of 2D and 3D HMS is that they generically possess
a finite density of zero-energy Majorana surface modes. The
resulting large density of states can be accessed with surface
probes (tunneling microscopy or photoemission) and should
also manifest in thermodynamical measurements as a residual
low-temperature entropy proportional to the surface area of
the sample.

The interplay of superconductivity and magnetism has long
been a subject of active research. Uniform ferromagnetism is
known to be strongly antagonistic to singlet superconductivity
due to the orbital magnetic field, which disrupts the supercon-
ducting phase by introducing vortices, and the exchange field
that tends to split the singlet Cooper pairs. However, if the
magnetization is spatially nonuniform on a scale smaller than
the superconducting coherence length, both of these effects are
dramatically suppressed. In fact, the onset of superconductivity
itself can drive a uniform ferromagnet into a nonuniform
(helical, or Ising-domain) state.15–18 Examples of materials
where helical magnetism coexists with superconductivity are
those where magnetism originates from the partially filled f

orbitals of rare earth atoms, as is the case for the compounds
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such as HoMo6S8, ErRh4B4, and TmNi2B2C.17 Because the f

orbitals are very compact, they directly interact only with the
itinerant electrons, which can derive from the higher energy
delocalized bands of the same atoms, or from other elements
in the compound. The exchange interaction between local
moments and itinerant electrons is typically much smaller than
the itinerant electron bandwidth. Under these conditions, the
local moments tend to order into a helical state, whose optimal
pitch K is determined by the maximum of the itinerant electron
spin susceptibility χ (q) (the Ruderman-Kittel-Kasuya-Yosida
mechanism19). As long as the superconducting coherence
length ξ is longer than the period of the helix, Kξ � 1,
superconductivity is only weakly affected.

II. MODEL

Our analysis is based upon the mean-field superconducting
Kondo lattice model,

H = −
∑
i,j

tij c
†
iαcjα −

∑
i

μc
†
iαciα + Jc

†
iαSi · σ αβciβ

+�c
†
i↑c

†
i↓ + �∗ci↓ci↑, (1)

which has been applied with success for a theoretical descrip-
tion of the bulk properties of HMS.16,17 This Hamiltonian
describes electrons hopping between lattice sites i,j and
interacting with classical magenetic order parameter Si . Here
ti,j is the intersite hopping, J is the exchange interaction
constant, σ = (σx,σ y,σ z) is the vector of Pauli matrices, and
ciα is the operator of electron annihilation on site i with spin
α. For the helical state we choose S(r) = (cos Kz, sin Kz,0).
Even in the presence of helical magnetism the paring amplitude
� in the singlet channel remains essentially uniform.16,17

The Hamiltonian (1) is position dependent; however, the
explicit z dependence can be eliminated by performing a
gauge transformation on electrons, ci↑ → ci↑eiKz/2 and ci↓ →
ci↓e−iKz/2, which leaves the superconducting term invariant.
This transformation changes the kinetic energy, which in
momentum space becomes

εpc†pαcpα → ε̃(p)c†pαcpα + hz(p)c†pασ z
αβcpβ.

Here ε̃(p) = (εp−K/2 + εp+K/2)/2 and hz(p) = (εp+K/2 −
εp−K/2)/2. If we assume here that the crystal structure is
centrosymmetric; then ε̃ is symmetric with respect to all
components of p and K, while h is antisymmetric with respect
to pz and K , and symmetric with respect to px,y . The complete
Hamiltonian is

H =
∑

p

[ε̃(p) − μ]c†pαcpα

−hz(p)c†pασ z
αβcpβ − Jc†pασ x

αβcpβ

−�c
†
p↑c

†
−p↓ − �∗c−p↓cp↑. (2)

It describes superconducting electrons in a momentum-
dependent exchange field, h = (J,0,hz). More specifically, the
normal part is equivalent to an equal mixture of the Rashba and
the Dresselhaus spin-orbit interactions, while J plays a role
of an external Zeeman field. For J = 0 there are two Fermi
surfaces intersecting at pz = 0 (where hz = 0). Finite J splits
this degeneracy. The local spin quantization axis is rotated by

angle φ(p) = tan−1[J/hz(p)] relative to the ẑ axis in the x̂-ẑ
plane.

It is useful to transform the Hamiltonian to the basis that is
locally aligned with the momentum-dependent field h,

(
cp↑
cp↓

)
= e−iσ yφ(p)/2

(
dp↑
dp↓

)
. (3)

In this basis the Hamiltonian becomes

H =
∑

p

[
ε̃(p) − |h(p)|σ z

αβ − μ
]
d†

pαdpβ

+ 1

2
sin

φ(p) − φ(−p)

2
(�d†

pαd
†
−pα + �∗d−pαdpα)

+ cos
φ(p) − φ(−p)

2
(�d

†
p↑d

†
−p↓ + �∗d−p↓dp↑). (4)

The first two lines of Eq. (4) represent two decoupled
superconducting bands with the spin enslaved to the local
h(p) direction. For |�| � max(J,|h|), the superconducting
interband coupling [the third line of Eq. (4)] provides only
a small perturbation, which can be neglected. Then, within
a given band, the superconductivity corresponds to an equal
spin pairing with an effective p-wave order parameter am-
plitude hz(p)�/[2|h(p)|]. The transformation from s wave in
the original model to p wave upon projection is an inevitable
consequence of superconductivity needing to conform to the
lifted spin degeneracy. The same transformation can be applied
to other combinations of magnetic fields, exchange interac-
tions, or spin-orbital effects. The effective order parameter
will depend on the details: For instance, for 2D Rashba
superconductors, the induced effective superconductivity is a
chiral px ± ipy due to the different h(p) configuration around
the Fermi surfaces.20,21 It is important that the effective ex-
change field acting on electrons, h, be momentum dependent.
Otherwise, s-wave superconductivity projected onto either
a spin-up or spin-down Fermi surface would give zero, as
is the case for a uniform ferromagnet, h = (J,0,0).22 For
HMS hz(p) vanishes when pz = 0, and a line of nodes in
the superconducting gap appears at the Fermi surface.16,17

III. ORIGIN OF SURFACE ZERO MODES

In the idealized 1D case (or for any fixed pair px and
py) the Hamiltonian (2) is unitarily equivalent to the model
of 1D Rashba superconductor.12,13,23,24 Since in a range of
parameters this model gives isolated Majorana edge modes,
from this mapping it immediately follows that for a certain
parameter range there will be Majorana modes on the surface
of HMS. However, a more general argument for the existence
of the Majorana modes follows from a direct solution of
the Bogoliubov-de Gennes (BdG) equations for spinless
fermions in the experimentally important regime of weak
superconductivity. For convenience, we keep the surface
perpendicular to the ẑ axis, but take an arbitrary nonchiral
p-wave order parameter, �(p). If the line of fixed (px,py)
crosses the Fermi surface in two points, pR = (px,py,pzR)
and pL = (px,py,pzL), the quasiclassical BdG equations in
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the vicinity of these points read25

−iνR∂zuR + �RvR = EuR (5)

iνR∂zvR + �RuR = EvR (6)

for “right-movers” with velocity νR = ∂ε/∂pz|pR
, and sim-

ilarly for the “left-movers” (the detailed derivation is in
Appendix A). If the sign of νR�R is the same as of νL�L,
e.g., positive, then one can construct a zero-energy solution
normalizable for z > 0 that vanishes at z = 0 as(

u

v

)
=

(
1
i

) [
e

(ipzR− �R
νR

)z − e
(ipzL− �L

νL
)z]

eipxx+ipyy . (7)

Hermitian conjugation relates the zero modes at (px,py) and
(−px,−py). Therefore, their linear superpositions are the
canonical Majorana zero modes (see Appendix B for details).
If, on the other hand, νR�RνL�L < 0, no normalizable
solution that satisfies boundary conditions can be constructed
at E = 0 and thus there are no zero-energy Majorana modes.
In addition, if there is an even number of pairs of points
where the line of fixed (px,py) crosses the Fermi surface, then,
generically, instead of Majorana modes there will be complex
fermions at finite energies.

The situation is illustrated in Fig. 1, where we used the band
structure of a helical magnet on a cubic lattice with the nearest
neighbor hopping of unit strength and lattice constant taken
as a unit of length [ε(p) = −2(cos px + cos py + cos pz)]. In
panels (a) and (b) we show a series of energy-dependent
py = 0 cuts of the Fermi surfaces for the cases J < K/2
and J > K/2, respectively (the Fermi surface topologies at
low energies differ in these cases). In Fig. 1(c), the dashed
lines indicate the lines of constant px and py , which can cross
either one or both Fermi surfaces. The case shown by the
upper dashed line satisfies the conditions for the existence of
undoubled Majoranas: There are only two crossing points,
and between them, both velocities in the ẑ direction, and
the pz-wave order parameter, change sign. On the other
hand, for the lower dashed line, there are crossings on both
Fermi surfaces. In this case, any finite interband coupling will
lead to fusion of the two Majorana modes belonging to the
individual bands into a finite energy fermion. In Fig. 1(d)
we illustrate a more general case of alignment of the axis of the
nonchiral p-wave superconducting order parameter relative
to the surface. In this case, the Majorana modes will exist
within the shaded range of momenta px,py . Interestingly, such
finite concentration of Majorana zero modes has also been
predicted to exist in some time-reversal-invariant systems:26

The results presented here indicate that the presence or absence
of time-reversal invariance is not the determining factor for the
presence or absence of a large density of zero-energy surface
states.

IV. NUMERICAL RESULTS

To verify the validity of the above considerations, we have
performed numerical simulations of the HMS Eq. (1) in two
dimensions on a square lattice. We consider the system with a
fixed number of sites in the ẑ direction and with translational
invariance in the x̂ direction. The helical direction K is chosen
either along ẑ or x̂. From the above argument based on the
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FIG. 1. (Color online) 2D cuts at py = 0 through the Fermi
surfaces of a helical magnet at different energies: (a) for the case
J < K/2 and (b) for J > K/2. The outer/inner (blue/red) line
corresponds to the lower/upper energy band. (c) The arrows indicate
the spin polarizations of momentum eigenstates on the Fermi surfaces.
The dashed lines parallel to the pz axis can have either two (upper
line) or four (lower line) crossings with the Fermi surfaces. The
former leads to undoubled Majorana surface modes, while the latter
does not. Panel (d) illustrates the case of arbitrary orientation of the
helical axis, and thus also of the p-wave superconductivity, relative
to the surface normal (ẑ). The undoubled Majorana modes exist in
the shaded interval of momenta parallel to the surface: There, both
the order parameter and the ẑ component of Fermi velocity change
sign upon reflection from the interface.

change of sign of velocity and order parameter upon reflection,
we expect to obtain Majorana modes in the K||ẑ but not in the
K ⊥ ẑ case. It is convenient to define p± = cos−1(cos K/2 +
μ ± J/2). For weak superconductivity, |�| � |J |, when both
bands are populated, p± are real and the Majorana fermions
exist in the interval (−|p+|, − |p−|) ⋃

(|p+|,|p−|). When only
one band is populated and p+ is real (the Fermi surface is
simply connected), then the Majorana modes exist for px in
the range (−p+,p−).

In Fig. 2 we present the results for the electronic spectra
for a set of parameters representing large and small �/J

and different chemical potentials. The spectra are doubled
as they include the Bogoliubov redundancy, and only the
non-negative energy states should be considered. We see
that in an interval of px that approximately coincides
with the interval (p−,p+) indicated by the vertical yellow
lines, there remains only one low energy mode. We verified that
the energy of the mode vanishes exponentially quickly with the
increasing distance between the edges and that the probability
amplitude is equally split between the two edges of the
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FIG. 2. (Color online) Results of numerical simulations of model
Eq. (1) on a square lattice with nearest neighbor hopping. The system
is periodic in the x̂ direction and has open boundaries in the ẑ

direction. The size of the system in the ẑ direction is 150 sites.
The helical wavevector K is either along ẑ (left column) or along
x̂ (right column). The horizontal axes are the momentum along the
edge (the lattice constant is the unit of length); the vertical axes
are the energy in units of intersite hopping. Case (a) corresponds
to the intermediate strength superconductivity, �/J = 0.4 [J,K

parameters from Fig. 1(a), the third pair of Fermi surfaces from the
top]. The range of momenta px > 0 where unpaired Majorana modes
are expected from the small-� consideration is shown by vertical
yellow lines. For K||x there are no Majorana modes, as expected,
since the sign of the order parameter does not change under reflection
from the interface. The near-zero energy modes at px = 0 are due to
the gapless superconductivity in the bulk. In case (b) the amplitude
of superconducting pairing has overcome the band splitting induced
by magnetic ordering. A full superconducting gap opens and there
are no zero-energy modes for either orientation of K relative to the
sample boundary. Case (c) corresponds to weak superconductivity,
�/J = 0.2, for the parameters in Fig. 1(b) (the top pair of Fermi
surfaces). The Majorana modes exist in the expected range of
momenta px—marked by vertical (yellow) lines—as discussed in
the main text.

sample, as expected for Majorana states. As can be seen from
Fig. 2(a), p± gives a good estimate of the momentum range
of Majorana modes even for rather large �/J = 0.4, and the
agreement becomes excellent for �/J = 0.2 [Fig. 2(c)]. When
the helical direction is aligned with the edge, K||x̂, there
are no zero-energy Majorana modes. The low energy states
near px = 0 are due to the gapless nature of the effective
px-wave order parameter in this case. Numerical results for
intermediate angles between the helical direction and the
sample surface are presented in Appendix C. The flat section
with zero modes appears in a finite range of angles, consistent
with the general argument based on the BdG consideration
of the previous section. Numerically we can also address
the regime of strong pairing. As expected, when pairing can
overwhelm the magnetic exchange gap, the system undergoes a
quantum phase transition into a fully gapped state adiabatically
connected to the trivial s-wave superconductor. In this regime,
naturally, there are no longer any Majorana surface states,
Fig. 2(b).

V. EFFECTS OF CONFINEMENT

For quantum information applications it is important to be
able to isolate a small number of Majorana zero modes. This
can be done by shaping sample into a wire. Suppose that a
2D wire is confined in the x̂ direction when the helical axis
is pointing along ẑ. When confined to a cylinder of perimeter
L, the allowed values of the momentum along the edge are
px = 2πn/L with n any integer. Since the modes with n 	= 0
come in pairs and n = 0 is unique, the odd number of Majorana
modes at a given edge persists as long as there is only one
(nonsuperconducting) Fermi surface. As soon as the the upper
energy band starts to be populated, the number of Majorana
modes becomes even. In the case of a ribbon [the width in the
x̂ direction is much smaller than in the helical (ẑ) direction],
one can first construct transverse modes ψnx

(x/Wx)eipzz from
the superpositions of the states with px = ±πnx/Wx , where
nx are positive integers. These states can be easily made to
satisfy the zero boundary conditions along the x̂ axis since they
have the same spin quantization axis. Since different transverse
modes correspond now to different nx > 0, even when both
high and low energy bands cross the Fermi surface the number
of Majorana surface modes per edge, NM ≈ (p+ − p−)W/π ,
can be either even or odd. In fact, with increasing chemical
potential, NM decreases since the distance between the Fermi
surfaces of the two bands shrinks. Assuming parabolic electron
dispersion, NM ≈ J/(pF δpx), i.e., NM is given by the ratio of
the exchange coupling to the 1D single particle level spacing.
Consequently, even for a large total number of transverse
modes ∼pF /δpx , NM can be ∼1. For comparison, in the case
of a 3D bar with finite dimensions in both x̂ and ŷ directions,
NM ∼ 2mJ/(δpxδpy). Even in this case, if Wx 	= Wy , NM

will be either odd or even as a function of system parameters
(μ,Wx,y,J ). The dependence of the parity of the Majorana
mode number on the system parameters, such as the transverse
dimensions, resembles the situation occurring in the case
of Rashba superconductors, though there the dependence is
somewhat more intricate.9,27

VI. SUMMARY

We have shown that ideal surfaces of HMS host a finite
density of zero-energy Majorana modes. When confined to
wires, the number of Majorana modes can be reduced to a
small number. The relatively large relevant energy scales—
with critical temperatures for superconductivity reaching up to
10 K and an exchange interaction of about 100 K, HMS offer
attractive conditions for the investigations of the Majorana
physics.
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APPENDIX A: DERIVATION OF THE BOGOLIUBOV-DE
GENNES (BDG) EQUATIONS FOR SPINLESS FERMIONS

In this section, for the sake of completeness, we derive the
BdG equations (5) and (6) of the main text. For simplicity of
presentation, we will assume that the Fermions have parabolic
dispersion, and that the superconducting order parameter is a
nonchiral p wave with the lobes oriented along a unit vector
n̂. Then the Hamiltonian in the real space representation is

H =
∫

dr
[
ψ†

( ∇2

2m
− μ

)
ψ

+ iαψ†(∂̂ · n̂)ψ† + iα∗ψ(∂̂ · n̂)ψ

]
, (A1)

where ψ and ψ† are the fermion filed annihilation and creation
operators, {ψ†(r),ψ(r′)} = δ(r − r′), m is the fermion mass,
∂̂ = (∂x,∂y,∂z), and α determines the amplitude of the order
parameter, which can smoothly vary in space. The Bogoliubov
quasiparticles γ are the eigenmodes of this Hamiltonian, i.e.,

[H,γ †] = Eγ †. (A2)

They can be expressed in terms of the fermion field operators
as

γ =
∫

dr[uψ + vψ†], (A3)

with u(r) and v(r) being scalar functions. Performing commu-
tation according to Eq. (A2) and collecting coefficients of ψ

and ψ†, we obtain the following equations for (u,v):( ∇2

2m
− μ

)
u − 2iα∗(∂̂ · n̂)v = Eu, (A4)

−
( ∇2

2m
− μ

)
v − 2iα(∂̂ · n̂)u = Ev. (A5)

In the vicinity of a particular Fermi point pF , we can factor
the fast oscillating and the slow parts,(

u

v

)
=

(
ũ

ṽ

)
eipF r, (A6)

and for the slow part, finally, the BdG equations are

−iνF · ∂̂u + 2α∗(pF · n̂)v = Eu, (A7)

iνF · ∂̂v + 2α(pF · n̂)u = Ev. (A8)

The Fermi velocity, for arbitrary noninteracting dispersion εp
is νF = ∂εp/∂p. For nonchiral order parameter, and for the
situation when the translational invariance is broken in the
ẑ direction only (e.g., by the presence of a surface), these
equations are precisely Eqs. (5) and (6) of the main text.

APPENDIX B: ZERO-ENERGY SOLUTIONS OF THE BDG
EQUATIONS IN THE PRESENCE OF A SURFACE

We are interested in the existence of the zero-energy
quasiparticle states localized near the z = 0 surface. We
will attempt to construct these solutions as a combination
of incoming and outgoing plane waves that correspond to
the same values of px and py , in the vicinity of either

pR = (px,py,pzR) or pL = (px,py,pzL) Fermi points. Near
a particular Fermi point, we are looking for the solution of

−iν∂zu + �v = 0, (B1)

iν∂zv + �u = 0. (B2)

[Here we dropped the irrelevant global phase of the order
parameter � and tilde over (u,v)]. These equations can be
easily integrated to find that

u ± iv = A±e∓� z/ν. (B3)

The solution has to be normalizable at z � 0. Therefore, for a
given sign of �/ν, e.g., positive, A+ = 0, and consequently
u = −iv. Including now also the fast oscillating part, the indi-
vidual solutions near each of the Fermi points are proportional
to

(
1
i

)
eipF r−� z/ν. (B4)

Note that as long as the sign of �/νF is the same for both
Fermi points, the spinor part of the solutions is the same.
We can therefore take a linear combination of them such that
the full wave function vanishes at the boundary, z = 0. The
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FIG. 3. (Color online) Results of numerical simulations of model
Eq. (1) of the main text on a square lattice with nearest neighbor
hopping. The parameters are the same as in Fig. 2(a): J = 0.25, K =
1, μ = −3.5, � = 0.1. The system is periodic in the x̂ direction and
has open boundaries in the ẑ direction. The horizontal axes are the
momentum along the edge (the lattice constant is the unit of length);
the vertical axes are the energy in units of intersite hopping. The size
of the system in the ẑ direction is 150 sites. Different plots correspond
to various angles θ between the helical wavevector K and the ẑ axis
(K is assumed to be lying in the x̂-ẑ plane). The horizontal axes are the
momentum along the edge (the lattice constant is the unit of length);
the vertical axes are the energy in units of intersite hopping. Plots
for θ = 0 and θ = π/2 are the same as in Fig. 2(a). For intermediate
angles we see that the range of momenta where zero-energy Majorana
modes are present changes gradually.
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corresponding Bogoliubov quasiparticle is

γ =
∫

dr[ψ(r) + i ψ†(r)]
(
e(ipzR−�R/νR)z

− e(ipzR−�R/νR)z
)
eipxx+ipyy . (B5)

This is an operator that creates a zero-energy quasiparticle near
an infinite surface for a given value of (px,py). Despite being
a nondegenrate zero-energy solution, this state does not com-
pletely satisfy the criteria for Majorana zero mode, i.e., γ 	=
γ †. However, for a p-wave superconductor with an electronic
dispersion that is symmetric with respect to p → −p, for every
solution γ at a given (px,py), there is a corresponding solution
γ ′ at (−px,−py). They form a complex conjugate pair, γ † =
γ ′. The “canonical” Majorana zero modes can be constructed
out of them as γ + γ ′ and i(γ − γ ′). For an ideal surface, there

is no mixing between different (px,py) states and consequently
for each allowed (px,py) point there is only half of a complex
fermion mode.

APPENDIX C: NUMERICAL RESULTS FOR A GENERAL
ORIENTATION OF THE AXIS OF p-WAVE ORDER

PARAMETER RELATIVE TO THE SAMPLE SURFACE

In Fig. 3 we demonstrate that the zero-energy Majorana
modes exist for a wide range of the relative orientations of
the surface normal and the order parameter axis, as has been
argued in the main text based on the analysis of the BdG
equations. This proves that the Majorana modes generically
appear on the surfaces of nonchiral p-wave superconductors,
as long as the translational invariance in the plane of the surface
is preserved.
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17M. L. Kulić and A. I. Buzdin, in Superconductivity, Vol. 1, edited

by K. H. Bennemann and J. B. Ketterson (Springer, Berlin, 2008).
18Titus and M. Sigrist, J. Phys. Soc. Jpn. 80, 114712 (2011).

19M.A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954); T. Kasuya,
Prog. Theor. Phys. 16, 45 (1956); K. Yosida, Phys. Rev. 106, 893
(1957).

20The effective p-wave superconductivity in the case of HMS is
distinct from the 2D Rashba superconductor in an important respect.
Since in HMS the rotation to the local spin quantization axis
corresponds to a nonsingular gauge transformation, the resulting
superconducting order parameter can be chosen real. In the case
of Rashba spin orbit, transforming to the local spin quantization
reference frame requires a singular gauge transformation, which
would lead to an effectively chiral px ± ipy order parameter.6

21L. P. Gor’kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).
22J. N. Kupferschmidt and P. W. Brouwer, Phys. Rev. B 83, 014512

(2011).
23T.-P. Choy, J. M. Edge, A. R. Akhmerov, and C. W. J. Beenakker,

Phys. Rev. B 84, 195442 (2011).
24B. Braunecker, G. I. Japaridze, J. Klinovaja, and D. Loss, Phys.

Rev. B 82, 045127 (2010).
25P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin,

New York, 1966).
26Y. Tanaka, Y. Mizuno, T. Yokoyama, K. Yada, and M. Sato, Phys.

Rev. Lett. 105, 097002 (2010); T. T. Heikkila and G. E. Volovik,
JETP Lett. 93, 59 (2011); A. P. Schnyder and S. Ryu, Phys. Rev. B
84, 060504(R) (2011).

27T. D. Stanescu, R. M. Lutchyn, S. Das Sarma, Phys. Rev. B 84,
144522 (2011).

144505-6

http://dx.doi.org/10.1016/S0003-4916(02)00018-0
http://dx.doi.org/10.1103/RevModPhys.80.1083
http://dx.doi.org/10.1103/PhysRevLett.86.268
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevLett.102.216404
http://dx.doi.org/10.1103/PhysRevB.61.10267
http://dx.doi.org/10.1103/PhysRevLett.100.096407
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.103.020401
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevLett.104.040502
http://dx.doi.org/10.1103/PhysRevB.83.094525
http://dx.doi.org/10.1016/0550-3213(91)90407-O
http://dx.doi.org/10.1070/1063-7869/44/10S/S29
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.177002
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1103/PhysRevLett.105.077001
http://dx.doi.org/10.1038/nphys1915
http://dx.doi.org/10.1103/PhysRev.116.898
http://dx.doi.org/10.1080/00018738500101741
http://dx.doi.org/10.1143/JPSJ.80.114712
http://dx.doi.org/10.1103/PhysRev.96.99
http://dx.doi.org/10.1143/PTP.16.45
http://dx.doi.org/10.1103/PhysRev.106.893
http://dx.doi.org/10.1103/PhysRev.106.893
http://dx.doi.org/10.1103/PhysRevLett.87.037004
http://dx.doi.org/10.1103/PhysRevB.83.014512
http://dx.doi.org/10.1103/PhysRevB.83.014512
http://dx.doi.org/10.1103/PhysRevB.84.195442
http://dx.doi.org/10.1103/PhysRevB.82.045127
http://dx.doi.org/10.1103/PhysRevB.82.045127
http://dx.doi.org/10.1103/PhysRevLett.105.097002
http://dx.doi.org/10.1103/PhysRevLett.105.097002
http://dx.doi.org/10.1103/PhysRevLett.105.097002
http://dx.doi.org/10.1103/PhysRevLett.105.097002
http://dx.doi.org/10.1103/PhysRevB.84.144522
http://dx.doi.org/10.1103/PhysRevB.84.144522

