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Out-of-surface vortices in spherical shells
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The interplay of topological defects with curvature is studied for out-of-surface magnetic vortices in thin
spherical nanoshells. In the case of an easy-surface Heisenberg magnet it is shown that the curvature of the
underlying surface leads to a coupling between the localized out-of-surface component of the vortex with its
delocalized in-surface structure, i.e., polarity-chirality coupling.
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I. INTRODUCTION

Understanding the interplay between geometry and topol-
ogy of condensed matter order is of fundamental importance in
several physical and biophysical contexts, and this combina-
tion raises a number of unsolved questions. Examples include
thin layers of superfluids' and superconductors,”® nematic
liquid crystal shells,* viral shells,” and cell membranes.® A
considerable effort has been invested in understanding the
role of the coupling between in-surface order and curvature
of the underlying surface.”® The topological defects of 2D
in-surface vector fields are characterized by a winding number
for the phaselike variable: vorticity ¢ € Z [topological charge
of 771(S") homotopy group]. On curved surfaces the Gaussian
curvature leads to screening topological charges.” Vortices
in curved superfluid films are a typical example of such
defects.

Vortices in magnets belong to a more general type of
topological defect. In addition to the vorticity, the magnetic
vortex is also characterized by the polarity p = 1, which
describes the vortex core magnetization. The topological
properties of magnetic vortices are characterized by the
relative homotopy group m,(5%,5")!° and depend on both
vorticity and polarity. Magnetic vortices were intensively
studied during past few decades for the sake of applications
in nanomagnetism as high-density magnetic storage devices'!
and miniature sensors.'? Investigations of different aspects of
magnetic vortex statics and dynamics were mainly restricted
to flat structures. In such nanomagnets, the vortex appears
as a ground state in sub-micrometer-sized magnets due to
competition between short-range exchange interactions and
long-range dipole interactions.'>!3 The ground state of smaller
samples is typically characterized by in-plane quasiuniform
magnetization. Contrary to in-surface, a quasiuniform mag-
netization distribution in thin spherical shells is forbidden for
topological reasons; instead, two oppositely disposed vortices
are expected.

In a flat nanomagnet, the vortex state is degenerated with
respect to polarity. Hence, one can link the vortex polarity to
the bit of information with possible spintronics applications.'*
One of the consequence of a more complicated topology of
the magnetic vortex is a gyroscopical force that depends on
both vorticity and polarity of the vortex. Therefore, the vortex
polarity can be switched by exciting the gyroscopical motion.
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The switching thresholds for the two polarities are equal only
in ideally flat structures.'®> Experiments on permalloy platelets
have revealed a relatively large asymmetry in thresholds,'>!°
which originates from the lack of the mirror symmetry of rough
thin-film structures.'” This indicates the interplay between the
vortex polarity and the curvature of the underlying surface.

The influence of a curvature on magnetic properties
has been studied both experimentally and theoretically for
geometries of cylinder,18 torus,!® cone,? solid spheres,21 and
hemispherical cap structures.’?A precise theoretical descrip-
tion of peculiarities of vortices on spherical surfaces is not
available in literature. Most theoretical studies are limited to
skyrmion-like solutions.??

In this paper, we study the structure of magnetic vortices on
a thin spherical shell with an easy-surface anisotropy. Using
the anisotropic Heisenberg model, we find possible solutions
of the vortex type. In contrast to vortices in flat magnets, there
is an interplay between the localized out-of-surface and the
delocalized in-surface structures. In other words, the vortex
core plays the role of a charge source for the vortex phase
structure.

II. MODEL AND THE VORTEX SOLUTIONS

The magnetic energy of a classical Heisenberg easy-surface
ferromagnet has the following form:

1)

. 2
E=A/dr|:—m-V2m+(mlTn):|,

with the exchange constant A, the anisotropy constant
K > 0, magnetic length £ = \/A/K, and the surface normal
n, and the integration is over the volume of the spherical
shell. In the following, we use the local spherical reference
frame for the unit magnetization vector m = (m,,my,m,) =
(cos ®, sin ® cos P, sin ® sin ®). Here the angular magnetic
variables ® = O(r) and ® = ®(r) describe the magnetization
distribution with respect to the spherical coordinates (7,7, x)
of the radius-vector r. Hereafter, we consider a case of thin
and high anisotropy shells, 7 <« ¢ <« L, where & is thickness
of the shell and L is its inner radius. Therefore, we assume that
the magnetization does not depend on the radial coordinate r.
On the indicated conditions the total magnetic energy in terms
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of the local reference frame reads

2 T
E =Ah/ dX/ dz?sinz?{(%@—i—cosd))z
0 0

+ ! (a®+'z9'c1>)2+L2 2C)
—_ Sin Sin — COS™ &
sin2 ¢~ 02

+ sin? @[(aﬁcb — sin ® cot ©)?

1
+ ——(3,® +cos ¥ +sin® cot @ cos ®)* | {.  (2)
sin? ¢

In this case, the static magnetization configuration the energy
functional (2) produces the Euler-Lagrange equations,

V2@ — sin O cos ®|:(VCI>)2 —1+cot?® — L—2:| (3a)
72

sinZ ® .
=2— [E9,® — dy(sint} cos D)],
sin ¥
5 _ sin’ © - . .
V-(sin“ VD) = —2— 5 [E0,©® + sin ¥ sin @3y O],
(3b)

where E = cot ® coty — cos @ and the V operators denotes
the angular parts of the corresponding differential operators in
the spherical local basis.

In the case of a high easy-surface anisotropy (¢ — 0), the
solution of Egs. (3) which minimize the energy (2) reads
® =m/2, ® = const. This is a vortex solution where the
magnetization is confined within the sphere surface except
for two diametrically opposite point singularities: vortex
cores. Such “in-surface” vortices are well studied in different
media.”® Here we demonstrate that taking into account the
out-of-surface structure of the vortex core (finite 0 < £ << L)
essentially changes the vortex state properties in case of the
curved surface as compared with planar magnets.”* In the
following, we consider only the azimuthally symmetric vortex
solution ® = (), ® = O©(¥) by analogy with the planar
vortices.

The out-of-surface magnetization of the vortex core, the
so-called polarity, takes two values, p = £1 (outward and in-
ward). The magnetization distribution can be analyzed asymp-
totically near the vortex center (¢ = 0); see Appendix A.
The size of the vortex core is determined by the vortex
out-of-surface magnetization, cos ® ~ p(1 — 92 /2193), with
Y. < 1. Moreover, the in-surface magnetization is described
by the angular variable ® ~ ®; — p sin &2 /(40,), where
the constant ®; will be determined later. Although the
asymptotic limit of out-of-surface component is similar to that
of a vortex in planar magnets,> the phase ® depends on the
vortex polarity p, which is a distinct feature compared with
the constant value in planar vortices. Since the out-of-surface
magnetization has an exponentially localized structure, the
following ansatz function (similar to the vortices in planar
magnets”) can be used for description:

-0 )2
’

1,0 1
c0s© = pret G 4 pre 1 @

where p; and p, are polarities of the vortices at the poles.
Stability of the vortex solutions for the case £ « L was
confirmed numerically using micromagnetic simulations; see
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the latter text. The obtained out-of-surface component of the
vortices appears to be in good agreement with the ansatz
(4); see Fig. 3. We now consider the vortex in-surface
magnetization. Accurate within the vortex core corrections,
the @ distribution can be described by the following equation:

4" 0, m,(u)
1+ g2

with u = Intan(/2) and m,(u) = cos ®. The function g(u)
consists of two peaks localized near the vortex cores at u, ~
In cot(D./2).

In order to analyze the ®-distribution outside cores, we use
the stepwise vortex shape model for the out-of-surface magne-
tization, m,(u) ~ p; — p1h(u + u.) + prh(u — u.) with the
Heaviside step function h(u). Using this approach, g(u)
becomes g(u) ~ %ﬁc[pIS(u + u.) — p28(u — u.)]. The con-
sequence of such a model is that the localized out-of-surface
structure plays the role of the charge density for the delocalized
in-surface structure. The solution of this model, which satisfies
the Neumann boundary conditions 9, ®(£o0) = 0, has the
implicit form,

Ouu® = —gu)sin®,  gu) = — . )

D(u) = Dy — %ﬂcpl sin @(—uo)[(u + o)y — (U — o) ],
D1 8in ®(—u.) = p sin P(u,), (6)

with u = uh(u). The further analysis essentially depends on
the relative orientations of vortices.

For the case of same polarities (p; = p> = p), the solution
@ that minimizes the energy (2) takes the following explicit
form outside vortex cores (9, < 1):

9
() ~ j:% <1 — pd.alntan 5) , %)

where « is solution of the equation o = cos(ad.u.m/2);
for details see Appendix B. Since d.u. < I, then o < 1.
Accordingly, ® takes constant values inside the vortex cores, in
particular, ®(¥ < v,) = &9 = £7/2(1 — pP¥.InJ.). Energy
of the vortex state with exception of the core energy E, depends
on the core size, £ — E. ﬁfuc. The dependence ® () is
indicated in Fig. 1 by dashed lines. The approximate solution
is in good agreement with the numerical solution of Eq. (3b),
where the out-of-surface component was chosen according to
Eq. (4). It should be emphasized that the phase of the vortex
on a spherical surface gains a coordinate dependence given by
Eq. (7) and has the maximum amplitude in the center of each
vortex, as opposed to the planar vortex.

For the case of opposite polarities (p1 = —p> = p), the
energy reaches its minimum for the trivial solutions (see
Appendix B) ® =x for p=1and ® =0 for p = —1 (as
earlier, we consider the case . << 1). Such a solution can
be considered as a three-dimensional generalization of the
well-known onion state in narrow nanorings. The energy of
the onion state, £ — E, « —1., is lower than that for the
vortex state, namely the energy gainis AE o o,. Nevertheless,
it should be emphasized that these two states are separated
by a high energy barrier related to the polarity switching of
one of the vortices. Therefore, we suggest that both states
can be realized experimentally even at room temperature.
To obtain knowingly the onion state, we suggest applying
the high-frequency circularly polarized alternating magnetic
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FIG. 1. (Color online) Possible vortex phases @ for the case of
same polarities p; = p, = p (right inset). Solid lines correspond to
the exact numerical solution of Eq. (3b), where the out-of-surface
component is chosen in the form of Eq. (4) with ¥, = 0.05. The
corresponding approximate solutions (7) are indicated by dashed
lines. The corresponding magnetization distribution on the sphere
surface is schematically shown in the left inset using arrows and
stream lines.

field in the unidirectional switching regime, similarly as was
done for disks.”® Applying the mentioned magnetic field in
a multiple-switching regime, one should expect to obtain the
vortex state with a probability slightly less than 1/2.

All possible vortexlike states described above are presented
in Fig. 2.
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FIG. 2. (Color online) All possible vortex states of the spherical
surface. The left column demonstrates the model out-of-surface mag-
netization distribution given by Eq. (4) for all possible combinations
of polarities. The right graph shows the corresponding distributions
of the phase ® (). For the correspondence, we use the notation p; p,,
e.g., “+1—1"denotes p; = +1and p, = —1.

PHYSICAL REVIEW B 85, 144433 (2012)

III. NUMERICAL ANALYSIS

In this paragraph, a comparison between the obtained
analytical results and the exact numerical solutions as well
as the micromagnetic simulations is given. The numerical
solution of Eq. (3) with the boundary conditions ®(0) =
O() = 0 and ®'(0) = ®'(;r) = 0 leads to a vortex structure
for the case of same polarities, p; = p, = 1. The obtained
out-of-surface structure of the vortex core cos @ is quite close
to the model solution (4) when ¥, = £/L (left graph of Fig. 3).
The solution for the vortex phase ®(¢) for same boundary
conditions corresponds to the twofold degenerated solutions
of the type given by Eq. (7) with opposite chiralities. One
of such solutions is plotted in the right graph (Fig. 3). The
exact solution ®(¢) has slightly larger amplitude of turning
compared with the model solution. This originates from a
larger effective core size ¥, of the exact solution compared
with the model given in Eq. (4) (left graph of Fig. 3).

In order to verify our results, we performed two types
of micromagnetic simulations by using the OOMMF code.?’
A thin spherical shell was simulated considering (i) local
magnetic interaction in the form of Eq. (1) and (ii) exchange
and nonlocal magnetostatic interactions. In both cases, the
material parameters>® were chosen to provide the same ratio
of characteristic magnetic length and the sphere radius £/L =
0.05. Physically, these two types of simulations are equivalent
in case of vanishing thickness, when the magnetostatic
interaction can be reduced to the easy-surface anisotropy.

Every simulation was repeated with two initial states: a
vortex state with m, = 0 and an onion state which was slightly
deformed to avoid a labile equilibrium. Small areas on the
poles gained uniform magnetization along the z axis to control
polarities of the vortices. The simulations of type (i) confirm
the analytical results with a high accuracy. In the case of
same polarities, the system relaxes to the vortex state with
the additional turning described by Eq. (7) (line 3 in Fig. 3).
For opposite polarities, the system relaxes to the state with
® =7 or & =0, as described above.

According to the simulations of type (ii), in the case where
p1 = p2, the magnetostatic interaction attenuates (but does not
suppress) the phenomenon of the vortex phase turning (line 4
in Fig. 3) due to an increased energy of volume magnetostatic
charges. In the case of p; = —p,, the shell of mentioned
size relaxes to the vortex state with & ~ £ /2 instead of
the onion state, which is preferred for spheres of smaller
size.” To obtain an approximate criterion of the separation
between vortex and onion states, the difference of energies of
the onion and vortex states are estimated as follows: AE =
AEqs + AE, where AE., ~ Lh? is the energy increase
due to volume magnetostatic charges and AE ~ —0.0%h
is the corresponding exchange energy decrease. Thereby, the
onion state is energetically preferable when L’k < 3. The
detailed study of ground states of soft-magnetic spherical
shells goes beyond the scope of this paper and is the subject
of a prospective work.

IV. CONCLUSIONS

In conclusion, we predict novel features of a magnetic vor-
tex in thin spherical shells in comparison with the well-known
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FIG. 3. (Color online) Structure of the vortex state for the case of same polarities (p; = p, = 1) obtained by different methods. Line 1:
exact numerical solution of Eq. (3) with boundary conditions ®(0) = ®(r) = 0 and ®'(0) = ®'(;r) = 0 and £/L = 0.05. Line 2: (left) the
ansatz (4) and (right) corresponding solution of Eq. (3b) where the function ®(?}) is determined by Eq. (4) with an angular vortex core size
Y. = £/L = 0.05. This line coincides with line “p = 1” in Fig. 1. Line 3 and line 4 correspond to micromagnetic simulations of types (i) and
(ii), respectively (see text for details). Line 5 in the left graph shows the out-of-surface structure of the vortex core for the case of opposite

polarities, when py = —p, = land ® = x.

vortex in a planar easy-plane magnet. We show that the
vortex on a spherical surface gains a coordinate and polarity-
dependent turning of its phase. An interplay between topo-
logical properties of the vortex, namely its polarity, and the
curvature of the underlying surface breaks the degeneration of
the phaselike variable @ with respect to the rotation by any
constant angle ®. This degeneration is known as well as for
vortices in different media and for m, vortices in flat magnets.
It is instructive to note that the angle ®( in magnetic nanodisks
determines the vortex chirality.*® Thus, one can speak about
polarity-chirality coupling.
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APPENDIX A: ASYMPTOTIC OF FUNCTIONS ©(#) AND
@ (#) IN THE NEIGHBORHOOD OF THE VORTEX ORIGIN

We consider here an asymptotic solution of Egs. (3) in the
neighborhood of point ¢ = 0. The functions ®(¢) and P(F)
can be presented in form of the Tailor series,

N

1’9 n
@wh(—p>+pﬁ—c+ganﬁ, (Ala)
N
O~ ©0+anz9”, (Alb)
n=1

where p is the vortex polarity and /(x) is the Heaviside func-
tion. The expansion (Ala) satisfies the necessary boundary
conditions: ®(0) = 0 for p = +1 and ®(0) = & for p = —1.
To obtain the asymptotic expansion accurate within terms of
order O(¥") we can restrict ourselves with N = v 4+ m, where
m = 2 is the order of Eqgs. (3). We then substitute the series
(A1) into (3), expand the obtained equations by the small
quantity ¥, and equate the series coefficients of the same
order terms until the order v. The obtained system results
arelation of expansion coefficients in (A1). For the case v = 2

the described procedure results in

a=b =0,
. (A2)
by — sin P
2 = P—4ﬁc

Thereby, we obtain the following asymptotic expansion accu-
rate within terms of order O(¥?):

U
O~ wh(=p)+ py
‘ (A3)

APPENDIX B: VORTEX PHASE SOLUTION ¢(#) FOR THE
STEPWISE VORTEX SHAPE MODEL

In the following, we focus on the solution of the Eq. (5). Us-
ing the stepwise vortex shape model m,(u) ~ p; — pih(u +
u;) + poh(u — u.), one can rewrite (5) in the following form:

0,u® = —gu)sin @,
(B1)

gu) ~ %ﬁc[pu?(u Fue) — padlu — ),

where §(u) is the Dirac § function. This approximation agrees
well with the real peaked form of the g function; see Fig. 4.
The general solution of (B1) takes the form,

D(u) = Do + Pru — %mpl sin d(—u)(u + 1)+
— pasin @)U — )] (B2)

with u; = uh(u) and h(u) being the Heaviside step function.
Using the Neumann boundary conditions 9, &(£o0) = 0, one

can find that ®; = 0 and
p18Sin ®(—u.) = py sin ®(u,). (B3)

Substituting (B3) into (B2) results in
s .
() = oo — Eﬁcpl sin @(—uc)[(u + uc)y — (@ —uc)yl.

(B4)
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FIG. 4. (Color online) Function g(u) from Eq. (5) for 9. = 0.05.

Thereby, for the interval —u, < u < u,, one can write ®(u) =
au + b, where constants a and b can be found from the system

pi1 sin(—au, + b) = py sin(au, + b),
(BS)

b4
a= —Eﬁcpl sin(—au. + b).
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Further analysis essentially depends on the relative polarities
of vortices. For the case of equal polarities p; = p, = p the
system (B5) has the following solutions:

b::l:%, a:q:%ﬂcpcos(auc), (B6a)
k

=k, sinb= (=1}t L5 B6b

a T, sin (G2)) 30, ( )

where k € Z. Taking into account that 9.u, < 1, one obtains
from (B6b) only the trivial solution @ =0 and b = k.
Substituting the obtained solutions into Hamiltonian (2)
results in the trivial solution corresponding to the energy
maximums and the solutions (B6a) minimizing the energy.
Therefore, for the case of equal polarities one obtains the
solution (7).

For the case of opposite polarities p; = —pr = p the
system (B5) results in

b4 X p
a= 2k +1), cosb=(—1)'Q2k+1) , (B7a)
Uc UcVe
. . 2D
b =km, sin(au.)=(—1)"a— (B7b)

70,

Due to the condition ¥.u. < 1 the system (B7) results in the
trivial solutions @ = 0 and b = kx and, consequently, ® = 0
or ® = 7. Analysis of the energy functional shows that for
p = lthesolution ® = m and, for p = —1, the solution ® = 0
correspond to the energy minimum.
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