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Universal finite-temperature properties of a three-dimensional quantum antiferromagnet
in the vicinity of a quantum critical point
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We consider a three-dimensional quantum antiferromagnet which can be driven through a quantum critical
point (QCP) by varying a tuning parameter g. Starting from the magnetically ordered phase, the Néel temperature
will decrease to zero as the QCP is approached. From a generic quantum field theory, together with numerical
results from a specific microscopic Heisenberg spin model, we demonstrate the existence of universal behavior
near the QCP. We compare our results with available data for TlCuCl3.
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The subject of continuous quantum phase transitions
(QPT’s) and the behavior of quantum systems in the vicinity
of the corresponding quantum critical points is a frontier
area of research both in theory and in experiment.1,2 A
QPT is a transition at zero temperature in the nature of the
ground state and is due to quantum fluctuations that can be
enhanced or suppressed by varying some coupling constant.
In real materials QPT’s can be driven by pressure, by applied
magnetic field, or by some other parameter.

In the present work we consider an O(3) QPT which occurs
between a magnetically ordered Néel phase and a magnetically
disordered “valence-bond-solid” (VBS) phase in a class of
SU(2)-invariant Heisenberg spin systems. This problem has
attracted a great deal of attention in recent years, mainly in
two-dimensional (2D) systems. It has been established that
the interplay between quantum fluctuations and thermal fluc-
tuations at low but finite temperatures influences the dynamics
in the vicinity of a QPT in a highly nontrivial way.3,4 However,
in 2D systems there is no finite-temperature magnetic order,
due to the well-known Mermin-Wagner theorem. One would
expect that in 3D systems (3D + time) the presence of a
finite Néel temperature and an extended region of magnetic
order will affect the interplay between quantum and thermal
fluctuations, and lead to new features not seen in 2D. An
obvious question is the nature of the vanishing of the Néel
temperature and its scaling with the magnetization and with
the coupling constant as the QPT is approached. To the best of
our knowledge the generic problem of the finite-temperature
behavior of 3D systems in the vicinity of an O(3) QPT has not
been previously considered. The present work addresses this
question.

Specifically, we discuss three aspects of this question.
The first is to consider a general Landau-Ginzburg field
theory, which is independent of the details of any microscopic
model, and hence generic. The predictions of this approach
are then compared with experimental results for the material
TlCuCl3. Finally we present results obtained for a specific
microscopic Heisenberg spin model, obtained using a variety
of series-expansion methods. While the numerical precision
close to the QPT is only moderate, the results are consistent
with the field theory predictions, and reinforce our conclusion
that the behavior is universal. We note that the universality
discussed here refers to the fact that physical quantities near
the quantum critical point (QCP), such as the Néel temperature,

are determined through universal formulas, involving only a
small number of parameters. In the field of phase transitions the
term universality usually refers to the independence of critical
exponents of specific details of the system. The QCP here is
at the upper critical dimension (3 + 1) and thus the exponents
will take the usual mean-field values. In spite of the trivial
exponents there are universal coefficients relating different
quantities. This is a different notion of universality close to that
accepted in quantum electrodynamics and chromodynamics.
There are also logarithmic corrections that are easy to calculate
(at least the leading logarithm) and generally very difficult to
observe, either in experiment or in numerical calculations.
Generally the logarithmic corrections give just running (scale-
dependent) coupling constants.5,6

To develop a quantum field theoretic description we start
from the standard effective Lagrangian describing an O(3)
QPT, of the form2,5,6

L = 1

2
( �̇ϕ − [ �ϕ × �B])2 − c2

2
(∇ �ϕ)2 − m2

2
�ϕ2 − α

4
[ �ϕ2]2. (1)

In the present work we consider zero magnetic field, B = 0.
The vector field �ϕ describes the staggered magnetization. The
QPT results from the mass term, assumed to be of the form
m2 = λ2(g − gc), where λ2 > 0 is a coefficient and g is a
coupling parameter (in TlCuCl3 the coupling parameter is an
external hydrostatic pressure). When g > gc the mass squared
is positive and this corresponds to the magnetically disordered
phase with gapped triply degenerate excitations. These are
sometimes called “triplons” but we will use the term “magnon”
in both phases. The zero-temperature gap is

� = m = λ
√

g − gc. (2)

When g < gc the mass squared is negative and this results in
a nonzero expectation value

|〈 �ϕ〉| =
√

|m2|
α

= λ√
α

√
gc − g (3)

that describes the spontaneous staggered magnetization at zero
temperature. This is a magnetically ordered phase with a
gapped longitudinal mode and two transverse gapless Gold-
stone modes. We note that ϕ has dimensions of (energy)−1/2,
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FIG. 1. (Color online) The phase diagram in the vicinity of a
QPT. The blue triangles connected by the blue solid line show
results of series-expansion calculations of the spin-wave gap in the
magnetically disordered VBS phase. The Néel temperature is shown
at g < gc where the system is magnetically ordered at T < TN .
The red squares connected by the red dashed line show results of
series-expansion calculations of TN . The magenta solid line shows
the field theory prediction for TN .

and therefore cannot be directly compared with the dimension-
less staggered magnetization. The zero-temperature energy of
the magnetically ordered ground state is

E = − λ4

4α
(g − gc)2. (4)

The generic phase diagram is shown in Fig. 1. The specific
parameter values shown in the figure correspond to the
particular model which we consider below.

The magnetic ordering at g < gc is destroyed at T > TN .
To find TN we calculate the self-energy � shown in Fig. 2.
The four-leg vertex in Fig. 2 is due to the quartic α term
in Eq. (1). To calculate the single-loop self-energy in the
magnetically disordered phase it is sufficient to decouple
the quartic interaction, α[ �ϕ2]2 → α〈 �ϕ2〉 �ϕ2 → � �ϕ2. When
performing the decoupling, one has to be careful about the
combinatorial factor which is due to the various ways of
the field couplings. A straightforward calculation gives the
following self-energy in the magnetically disordered phase
(g > gc or T > TN at g < gc):

� = 5α
〈
ϕ2

i

〉 = 5α
∑

k

1

ωk

(
nki + 1

2

)
, (5)

where i is any of three Cartesian components of �ϕ, and nki =
〈a†

kiaki〉 = 1/(eωk/T − 1) is the thermal population of this
component. The quantum fluctuation part of (5) is ultraviolet

FIG. 2. Magnon self-energy.

divergent:

5α
∑

k

1

2ωk

= 5α

4π2

∫ 	

0

k2dk√
δ2 + c2k2

≈ 5α

8π2c3

[
c2	2 − δ2 ln

(
c	

δ

)]
.

Here 	 is an ultraviolet cutoff and δ is the gap in the spectrum,
for example at T = 0 and g > gc, δ = �. The quadratically
divergent part proportional to 	2 of the self-energy has to
be removed by renormalization. In other words, this part is
absorbed in the value of the critical coupling constant gc.
The logarithmic part depends on both the ultraviolet cutoff
	 and the infrared cutoff δ and is therefore a real physical
correction. However, we expect this logarithmic correction to
be small and therefore we disregard it, (see also the discussion
in Ref. 6). The parameter that suppresses the correction is
the prefactor 1/π2, and in essence it is related to the 3D
character of the problem. Neither the existing experimental
data presented below nor results of numerical simulations also
presented below have a sufficient accuracy to pin down the
logarithmic corrections. All in all this implies that the entire
quantum part of the self-energy is renormalized out,

�R ≈ 5α
∑

k

nki

ωk
, (6)

where the subscript R stands for “renormalized.” At T = TN

the excitation spectrum is gapless, δ = 0, ωk = ck. Hence a

calculation of the integral in Eq. (6) gives �R = 5αT 2
N

12c3 . If the
magnon spectrum is anisotropic with three different principal
velocities then c3 has to be replaced by c1c2c3. The magnon gap
at the Néel temperature is zero, δ2 = m2 + �R = 0, and hence

TN =
√

12λ2c1c2c3

5α

√
gc − g. (7)

Thus, the Néel temperature is directly proportional to the
zero-temperature staggered magnetization (3). A similar
scaling was obtained recently in Monte Carlo simulations
with various kinds of model.7

Equation (7) can be compared with experimental data8

for TlCuCl3. The values of the gaps at zero temperature
versus pressure are plotted in Fig. 3. The critical pressure is
pc = 1.07 kbar. Note that Fig. 3 is mirror reflected compared
to Fig. 1; the magnetically ordered phase is at p > pc, and
therefore, to compare with Eqs. (2), (3), and (7), we choose
g = −p. In the ideal situation corresponding to the action
(1) one should expect triply degenerate gapped excitations in
the magnetically disordered phase at p < pc, as well as one
longitudinal gapped mode (�z) and two gapless transverse
modes in the magnetically ordered phase at p > pc. In the
real compound there is a small easy-plane anisotropy and
due to the anisotropy one of the transverse magnons in the
magnetically ordered phase is gapped, with �x = 0.38 meV.
For the same reason the triple degeneracy at p < pc is lifted.
Disregarding the small anisotropy effects and using Eq. (2),
we fit the gap in the magnetically disordered phase. The
fit is shown in Fig. 3 by the blue dashed line, and results
in the value of λ ≈ 0.66 meV/kbar1/2. Other parameters of
the effective action (1) were determined in the analysis of
magnon spectra and Bose condensation of magnons performed
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FIG. 3. (Color online) Zero-temperature magnon gaps and Néel
temperature in TlCuCl3 versus pressure. All values are given in meV.
The system is magnetically disordered at p � pc = 1.07 kbar, and
magnetically ordered at p � pc. Symbols show experimental data
from Ref. 8 and curves show theoretical results.

in Ref. 6, c1 = 7.09 meV, c2 = 1.12 meV, c3 = 0.51 meV,
and α = 21(1 ± 0.2) meV3. Substitution in Eq. (7) gives the
theoretical prediction of the Néel temperature plotted in Fig. 3
by the solid magenta curve with error bars that are mainly due
to uncertainty in the value of α. This curve is close to the
experimental points, shown by magenta stars. In spite of
the agreement the experimental values of the Néel temperature
are slightly higher compared to the theory, especially close to
the QPT point. As one would expect, the magnetic anisotropy,
pointed out above, leads to an enhancement of the Néel
temperature. We have performed a similar theoretical analysis
taking account of the anisotropy. This analysis shows that at
T 	 �x = 0.38 meV the Néel temperature is enhanced by
a factor

√
5/4 ≈ 1.12 compared to that given by Eq. (7). At

T 
 �x = 0.38 meV, Eq. (7) is certainly correct. While the
12% enhancement acts in the right direction, it is not sufficient
to fully explain the discrepancy close to the QCP.

While the above theory is generic, and independent of
the details of any microscopic model, it is interesting and
important to consider a specific model and compare results
with general theory. A specific microscopic model can be
analyzed only numerically, so below we consider a sort of
numerical experiment versus the real experiment discussed
above. Many previous numerical studies of QPT’s have been
reported. These have been largely based on Heisenberg spin
models in which the system can be tuned through a QPT by
varying a particular coupling parameter in the Hamiltonian.
Most of these models have been two dimensional. Examples
include antiferromagnets with strong and weak bonds, with
or without frustration,9–11 and bilayer systems,12,13 where the
QPT separates a conventional Néel antiferromagnetic phase
from a spin-dimerized phase with only short-range correlations
and no magnetic order.

Here we consider a 3D spin-1/2 Heisenberg antiferromag-
net. Our model, shown in Fig. 4(a), has weak and strong bonds
of strength J and gJ , respectively. For g = 1 we have an
isotropic cubic antiferromagnet, which has reduced staggered
magnetization in the ground state [M0 = 0.42 (Ref. 14)] and

J gJ

Antiferromagnet
Neel

(Valence Bond Solid)
Dimerized phase

QPT g

(a) (b)

FIG. 4. (a) The model, with thin lines denoting J bonds and thick
lines denoting gJ bonds; (b) schematic phase diagram of the model
at T = 0.

a critical temperature T/J = 1.89.15 On the other hand, for
g 
 1 the strong bonds form spin-singlet dimers, leading
to the VBS phase. A QPT separates these phases, as shown
schematically in Fig. 4(b).

This model has been studied previously16,17 in connection
with magnetic-field-induced QPT’s, using quantum Monte
Carlo methods, and the quantum critical point was located at
gc = 4.013 ± 0.003. However, the important questions of the
universal behavior of the Néel temperature and the dynamics
of the dimerized phase were not discussed.

Our numerical calculations are based on series-expansion
methods18 and involve several separate parts. The various
series have been analyzed in the usual way, via Padé
approximants. The error bars shown on some of the data
points are not statistical errors but confidence limits based
on the consistency and spread between different high-order
approximants. For many data points, these error bars are
smaller than the point size.

We have used a dimer expansion18 to obtain series for the
ground-state energy and the magnon energies in the VBS
phase, in powers of 1/g, to orders 11 and 8, respectively.
The ground-state energy (per dimer) is shown in Fig. 5, and is
discussed further below. The average exchange parameter

Jg = J (1 + g)

is used hereafter to set an energy scale.
Figure 6 shows the magnon dispersion curves along two

symmetry lines in the Brillouin zone, for g = 6 and 4.2.
As is evident, a minimum occurs at (π,π,0) and we expect
this gap to vanish as g → gc+. This data provides a dimer
series for the gap �. Analysis of the gap series has to allow
for the expected square-root singularity at gc, and we have
used a Huse transformation to remove this singularity. The
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E
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FIG. 5. (Color online) The ground-state energy in the Néel phase
(red squares) and dimer phase (black circles) versus the coupling
constant. The lines are fits to the energy, as discussed in the text.
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FIG. 6. (Color online) The magnon dispersion curves along two
symmetry lines in the Brillouin zone, for g = 6 and 4.2. The squares
and dots show results of the series-expansion calculations; error bars
are smaller than the size of the symbols. The dashed lines show splines
between the points.

resulting gap data are shown in Fig. 1 by blue triangles. Our
estimate of the critical point gc obtained from these data is
fully consistent with, although somewhat less precise than, the
Monte Carlo estimate gc = 4.013. We use this value in our
further analysis. The gap data can be very well fitted by the
expression 0.316

√
g − gc, which is shown in Fig. 1 by the

blue solid line. This provides the estimate λ = 0.316Jg .
Results for the magnon energies near k = (π,π,0), fitted to

the expression

ε(k) =
√

�2 + c2
1(π − k1)2 + c2

2(π − k2)2 + c2
3k

2
3,

provide estimates of the magnon velocities near the QCP,
c1 = c2 = 0.516Jg,c3 = 0.337Jg . These values contain an
uncertainty up to ±5%.

Next, we have used Ising expansions18 in the Néel phase to
obtain series for the ground-state energy and magnetization
to order 12 in an anisotropy parameter x. These series
must be evaluated at x = 1, corresponding to the isotropic
Hamiltonian. Since x = 1 is a singular point some care in
the Padé analysis is required, as discussed below. These
energy series evaluated at x via Padé approximants provide
the data shown in Fig. 5 by red squares. The energies in
the VBS phase, discussed above, are shown as black circles.
As can be seen, the two energy curves, from the Néel and
VBS phases, respectively, meet smoothly at the QCP, as
expected for a second-order transition. These data can then
be used to estimate the parameter α in Eq. (4). The VBS
energy can be accurately fitted with a straight line EVBS/Jg =
−0.3244 − 0.0040(g − gc), shown as the black dashed line
in Fig. 5. The Néel data can be fitted with a quadratic
expression, as in Eq. (4), EN/Jg = EVBS(g) + 0.000 03 −
0.0101(g − gc)2. However, this fitting is subject to uncertainty,
as the energies near the QCP are changing only in the fourth
figure, and the data are not that precise. Indeed, inclusion of
a small cubic term in the fit changes the coefficient of the
quadratic term significantly, EN/Jg = EVBS(g) − 0.000 28 −
0.0088(g − gc)2 + 0.0008(g − gc)3. Comparing the coeffi-
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FIG. 7. The zero-temperature ground-state magnetization in the
Néel phase, versus the coupling constant g. The dots show results of
the series-expansion calculations, and the dashed line shows the poly-
nomial fit M = √

gc − g[0.403 − 0.085(gc − g) + 0.012(gc − g)2].

cient of the quadratic term with Eq. (4), we determine the
value of the quartic coupling constant. Our final estimate is
α = 0.283J 3

g , with an uncertainty of ±15%.
Substitution of the determined parameters into Eq. (7) gives

TN/Jg = 0.275
√

gc − g. This dependence is shown in Fig. 1
by the solid magenta line with error bars. The main uncertainty,
∼7%, in the coefficient 0.275 comes from the uncertainty in the
value of α discussed above. An additional few percent come
from uncertainties in λ and the magnon velocities. Altogether
we estimate the computational uncertainly in the value of the
coefficient 0.275 as 10%. This is shown as error bars in the
solid magenta curve in Fig. 1.

Figure 7 shows the ground-state magnetization in the
Néel phase as a function of the parameter g. At x = 1 the
magnetization is expected to have a singularity of the form
(1 − x) ln(1 − x).14 and this makes the extrapolation to x = 1
delicate. We have found that taking the second derivative of the
series and subsequent numerical integration yields consistent
estimates.19

Finally, we compute 12th-order high-temperature expan-
sions for the Néel susceptibility. This is the response to a
staggered field. This susceptibility is expected to have a strong
divergence at the critical temperature and can be used to
estimate TN (g). The Néel temperature calculated in this way
is shown in Fig. 1 by the red squares. The red dashed line just
connects the data points for guidance. The agreement between
predictions of the universal theory shown by the magenta curve
and results of the series computations is quite satisfactory.

In summary, we have shown that a three-dimensional
antiferromagnet in the vicinity of an O(3) quantum critical
point is expected to show universal behavior, including scaling
of the Néel temperature with the ground-state magnetization
and with the coupling constant. We predict the universal
scaling. Our prediction based on a field theory accurately
describes recent data on the material TlCuCl3. The universal
prediction is supported by numerical results obtained for
a microscopic S = 1/2 Heisenberg spin model with strong
and weak bonds, which is a specific example of a 3D
antiferromagnet with a QCP. Results are obtained via a variety
of series-expansion calculations and are shown to be in
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reasonable agreement with the predicted universal behavior,
within numerical uncertainties.
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H. Mutka, and M. Boehm, Phys. Rev. Lett. 100, 205701
(2008).

9R. R. P. Singh, M. P. Gelfand, and D. A. Huse, Phys. Rev. Lett. 61,
2484 (1988).

10M. Matsumoto, C. Yasuda, S. Todo, and H. Takayama, Phys. Rev.
B 65, 014407 (2001).

11S. Wenzel and W. Janke, Phys. Rev. B 79, 014410 (2009).
12Zheng Weihong, Phys. Rev. B 55, 12267 (1997).
13L. Wang, K. S. D. Beach, and A. W. Sandvik, Phys. Rev. B 73,

014431 (2006).
14J. Oitmaa, C. J. Hamer, and Zheng Weihong, Phys. Rev. B 50, 3877

(1994).
15J. Oitmaa and Weihong Zheng, J. Phys.: Condens. Matter 16, 8653

(2004).
16O. Nohadani, S. Wessel, B. Normand, and S. Haas, Phys. Rev. B

69, 220402 (2004).
17O. Nohadani, S. Wessel, and S. Haas, Phys. Rev. B 72, 024440

(2005).
18J. Oitmaa, C. J. Hamer, and Weihong Zheng, Series Expansion

Methods for Strongly Interacting Lattice Models (Cambridge
University Press, Cambridge, 2006).

19R. R. P. Singh (private communication).

144431-5

http://dx.doi.org/10.1063/1.3554314
http://arXiv.org/abs/arXiv:1002.3823
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevB.39.2344
http://dx.doi.org/10.1103/PhysRevB.49.11919
http://dx.doi.org/10.1103/PhysRevB.49.11919
http://dx.doi.org/10.1103/PhysRevB.84.134418
http://dx.doi.org/10.1103/PhysRevB.84.134418
http://dx.doi.org/10.1103/PhysRevB.85.020409
http://dx.doi.org/10.1103/PhysRevB.85.020409
http://dx.doi.org/10.1103/PhysRevLett.100.205701
http://dx.doi.org/10.1103/PhysRevLett.100.205701
http://dx.doi.org/10.1103/PhysRevLett.61.2484
http://dx.doi.org/10.1103/PhysRevLett.61.2484
http://dx.doi.org/10.1103/PhysRevB.65.014407
http://dx.doi.org/10.1103/PhysRevB.65.014407
http://dx.doi.org/10.1103/PhysRevB.79.014410
http://dx.doi.org/10.1103/PhysRevB.55.12267
http://dx.doi.org/10.1103/PhysRevB.73.014431
http://dx.doi.org/10.1103/PhysRevB.73.014431
http://dx.doi.org/10.1103/PhysRevB.50.3877
http://dx.doi.org/10.1103/PhysRevB.50.3877
http://dx.doi.org/10.1088/0953-8984/16/47/016
http://dx.doi.org/10.1088/0953-8984/16/47/016
http://dx.doi.org/10.1103/PhysRevB.69.220402
http://dx.doi.org/10.1103/PhysRevB.69.220402
http://dx.doi.org/10.1103/PhysRevB.72.024440
http://dx.doi.org/10.1103/PhysRevB.72.024440

