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Thermodynamics of ferrotoroidic materials: Toroidocaloric effect
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The three primary ferroics, namely ferromagnets, ferroelectrics, and ferroelastics, exhibit corresponding large
(or even giant) magnetocaloric, electrocaloric, and elastocaloric effects when a phase transition is induced by
the application of an appropriate external field. Recently the suite of primary ferroics has been extended to include
ferrotoroidic materials in which there is an ordering of toroidic moments in the form of magnetic-vortex-like
structures, examples being LiCo(PO4)3 and Ba2CoGe2O7. In the present work we formulate the thermodynamics
of ferrotoroidic materials. Within a Landau free energy framework we calculate the toroidocaloric effect by
quantifying isothermal entropy change (or adiabatic temperature change) in the presence of an applied toroidic
field when usual magnetization and polarization may also be present simultaneously. We also obtain a nonlinear
Clausius-Clapeyron relation for phase coexistence.
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I. INTRODUCTION

Ferroic phenomenon or the presence of switchable domain
walls in an external field is a direct consequence of a specific
broken symmetry.1 Loss of spatial inversion symmetry results
in ferroelectricity whereas loss of time reversal symmetry
results in ferromagnetism. Ferroelasticity is a result of broken
rotational symmetry although it remains invariant under both
spatial inversion and time reversal symmetries. The fourth
possibility corresponds to when both spatial inversion and time
reversal symmetries are simultaneously broken. This is the
case for recently discovered ferrotoroidic materials2 where the
long-range order is related to an ordering of magnetic-vortex-
like structures characterized by a toroidal dipolar moment.
It is important to mention that the ferrotoroidic order is
also related to magnetoelectric behavior3 which is one of
the main attractions of multiferroics—materials that exhibit
two or more ferroic orders simultaneously. This class includes
magnetoelastics as well as magnetic shape memory alloys.

In general, both electric and magnetic toroidal moments
can be defined within the context of electromagnetism.4,5 In
the present paper we will exclusively consider the magnetic
toroidal moment which is the only one that has the required
spatial and time inversion symmetries.4 We note that in
recent years the study of the unique properties of ferroelectric
materials carrying an electric toroidal moment has received
considerable attention.6,7

Ferrotoroidic domain walls have been observed in
LiCo(PO4)3 using the second harmonic generation technique8

and a symmetry classification of such domains has been given
recently.9 Spontaneous toroidal moments have been attributed
to exist in the multiferroic phase of Ba2CoGe2O7 (BCG)10

and may be related to the observed unusual magnetoelectric
effects.11,12 Single-crystalline thin films of MnTiO3 with an
ilmenite structure also exhibit a ferrotoroidic structure.13

Neutron polarimetry indicates that the magnetoelectric MnPS3

is a viable candidate for ferrotoroidicity.14 The magnetic phase
transition in BiFeO3 implies the appearance of a toroidal

moment.15 Ab initio calculations suggest that the olivine
material Li4MnFeCoNiP4O16 is possibly ferrotoroidic.16

A sequence of possibly two ferrotoroidic phase transi-
tions has been considered phenomenologically for Ni-Br
boracites.17 Another physical realization of toroidal order has
been considered as an interacting system of disks with a
triangle of spins on each disk.18 Both charge and spin currents
can lead to a toroidal state.19 Recent observation of orbital
currents in CuO through resonant x-ray diffraction provides
direct evidence of antiferrotoroidic ordering.20 Ferrotoroidic
materials exhibit linear magnetoelectric effect; in fact, the
toroidal moment is related to an antisymmetric component of
the magnetoelectric tensor (αij �= αji). Moreover, the toroidal
moment can be viewed as a quantum geometric phase.21

Beyond the magnetoelectric applications toroidic materials
can also act as novel metamaterials.22

One way of realizing the physical consequences of toroidal
moment is to characterize the thermal response of the material
to an externally applied field that couples to this moment
and gives rise to measurable caloric effects. Actually, caloric
effects are inherent to every material and are commonly
quantified by the adiabatic temperature change or by the
isothermal entropy change that occur when an external field
is applied or removed. In the solid state, the most studied
caloric effect is the magnetocaloric effect,23 mainly after the
discovery in the mid-nineties of materials displaying a giant
magnetocaloric effect in the vicinity of room temperature.24

However, in recent years other caloric effects such as the
electrocaloric,25 elastocaloric,26 or barocaloric27 have also
received considerable attention.

A crucial feature common to most materials exhibiting a
giant caloric effect is the occurrence of a first-order phase
transition. The expected large (discontinuous) change of the
order parameter at the transition involves a large entropy
content (associated with the latent heat) which is at the origin
of the giant caloric effect. Moreover, a strong coupling between
different degrees of freedom such as structural, magnetic, and

144429-11098-0121/2012/85(14)/144429(9) ©2012 American Physical Society

http://dx.doi.org/10.1103/PhysRevB.85.144429


TERESA CASTÁN, ANTONI PLANES, AND AVADH SAXENA PHYSICAL REVIEW B 85, 144429 (2012)

electric enables the transition to be driven by different fields
conjugated to such properties. The study of caloric effects is
thus a convenient method in order to study the thermodynamics
of this class of complex materials. For instance, this should
apply to multiferroic materials which are expected to show
more than one caloric effect, e.g., simultaneous electrocaloric
and magnetocaloric effects, or more precisely a magneto-
electrocaloric effect. The latter has not been reported yet.
The present paper deals with the thermal response and the
associated caloric effects resulting from changes of toroidal
order in ferrotoroidic materials (undergoing a paratoroidic to
ferrotoroidic transition). These changes are likely to give rise
to a toroidocaloric effect in this class of materials. Indeed,
the study of toroidocaloric effect is expected to provide new
insights into understanding the important problem of switching
the toroidal moment.7

In this paper we study the thermodynamics of multiferroics
and first derive expressions for magnetoelectrocaloric and
toroidocaloric equations in Sec. II and Sec. III treating
magnetization, polarization, and toroidization as independent
order parameters. In Sec. IV we present a Landau free energy
for a paratoroidic to ferrotoroidic transition with a specific
coupling between toroidization, polarization, and magnetiza-
tion; derive a phase coexistence (Clausius-Clapeyron) relation;
and compute the toroidocaloric effect. Possible experimental
implications are discussed in Sec. V in which we also present
our main conclusions.

II. CALORIC EFFECTS: GENERAL ASPECTS

Consider a generic thermodynamic system and take temper-
ature (T ) and generalized forces or fields ({Yi}) as independent
variables. Differential changes of the fields will yield a
differential change of entropy [S = S(T ,{Yi})] given by

dS = C

T
dT +

∑
i

(
∂S

∂Yi

)
T ,{Yj�=i}

dYi

= C

T
dT +

∑
i

(
∂Xi

∂T

)
{Yj}

dYi, (1)

where C/T = (
∂S
∂T

)
{Yi} defines the heat capacity at constant

fields {Yi} and we have taken into account the general Maxwell
relations: (

∂S

∂Yi

)
T ,{Yj�=i}

=
(

∂Xi

∂T

)
{Yj}

. (2)

Here {Xi} denote generalized displacements thermodynam-
ically conjugated to the fields {Yi}. Any interplay between
the different degrees of freedom will be taken into account
through the fact that any Xi is, in principle, a function of all
fields. Therefore, the interplay must be introduced through the
state equations.

For each generalized displacement a caloric effect will
occur when the corresponding conjugated field is varied.
Suppose, for instance, that the field Yi changes from 0 to Yi
so that the system passes from a state (Ti,0) to (Tf ,Yi), where
Ti and Tf are the temperatures of the initial and final states
respectively. The corresponding change of entropy is given by
S(Tf ,Yi) − S(Ti,0). The two limits of interest that quantify

the caloric effect associated to the property Xi conjugated to
the field Yi are the isothermal and the adiabatic limits. In
the isothermal case Ti = Tf = T and the thermal response is
characterized by a change of entropy given by

�S(T ,0 → Y) = S(T ,Yi) − S(T ,0)

=
∫ Yi

0

(
∂Xi

∂T

)
{Yj}

dYi. (3)

In the adiabatic limit, �S = 0, and the thermal response is
quantified by the change of temperature given by

�T (Ti,0 → Y) = Tf (Yi) − Ti(0)

= −
∫ Yi

0

T

C

(
∂Xi

∂T

)
{Yj}

dYi. (4)

Therefore, the caloric response of a material to a given field
Yj will be given by ( ∂Xi

∂T
){Yj}.

Examples

In the case of the magnetocaloric effect the corresponding
expression for the isothermal entropy change is

�S(T ,0 → H) =
∫ H

0

(
∂M
∂T

)
{H}

· dH (5)

and for the adiabatic temperature change it is

�T (Ti,0 → H) = −
∫ H

0

T

C

(
∂M
∂T

)
{H}

· dH, (6)

where H is the magnetic field (strictly we should write
μ0H = B) and M is the magnetization. Notice that by just
replacing H by the electric field E and M by the polarization
P the corresponding changes of entropy and temperature that
quantify the electrocaloric effect are obtained. Similarly, by
replacing H by the stress σ and M by the strain ε we get
the corresponding changes of entropy and temperature for
the mechanocaloric effect. Therefore, a barocaloric effect (a
particular case of mechanocaloric effect) involving pressure p

and change in volume �V is also expected.

III. MATERIALS WITH TOROIDAL ORDER:
THERMODYNAMICS

The three basic moments of the electromagnetic field
are electric, magnetic, and toroidal moments. Therefore, we
assume that the three ferroic properties are characterized
by the corresponding moments per unit volume, polariza-
tion (P), magnetization (M), and toroidization (τ ), that can
be assumed as independent (vector) order parameters.
Here the toroidization is assumed to originate only from
the existence of magnetic toroidal moments. In fact, this
appears to be the case for LiCo(PO4)3

8 and Ba2CoGe2O.11,12

The corresponding thermodynamically conjugated fields will
be the electric, E, magnetic, H, and toroidal, G, fields.
Therefore, the “thermodynamic identity” for such a (closed)
system reads

dU = T dS + E · dP + H · dM + G · dτ , (7)

where U is the internal energy per unit volume, T the temper-
ature, and S the entropy per unit volume. The field G coupling
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to the toroidization is related to the electric and magnetic
fields through G = E × H. This choice, however, deserves
some discussion. Note that the natural conjugated field of
the magnetic toroidal moment is ∇ × B.4 Nevertheless, since
we are only considering homogeneous macroscopic bodies in
thermodynamic equilibrium, from symmetry considerations
we assume that G is the appropriate macroscopic field that
enables external control of the toroidization. This is actually
in agreement with Refs. 3 and 4, where it is shown that
the free energy of a system with magnetic toroidal moment
must include a term proportional to the product τ · G. It
is worth pointing out that the field G cannot be modified
independently of the fields conjugated to polarization and
magnetization. From the thermodynamic identity (7), this
relationship between G, E, and H requires that(

∂U

∂τ

)
S,P,M

=
(

∂U

∂P

)
S,M,τ

×
(

∂U

∂M

)
S,P,τ

. (8)

We now define the Gibbs free energy G through the following
Legendre transform:

G = U − T S − E · P − M · H − τ · G. (9)

Differentiating this expression and replacing dU in (9), we
obtain

dG = −SdT − [P + (H × τ )] · dE − [M + (τ × E)] · dH.

(10)
Taking into account that double differentiation of G is
independent of the order in which it is carried out, we obtain
the following Maxwell relations:(

∂S

∂E

)
T ,H

=
(

∂P
∂T

)
E,H

+ H ×
(

∂τ

∂T

)
E,H

(11)

and (
∂S

∂H

)
T ,E

=
(

∂M
∂T

)
H,E

+
(

∂τ

∂T

)
H,E

× E. (12)

We now take into account that polarization and magnetiza-
tion can be written as the sum of an intrinsic term originating
from (preexisting) free electric and magnetic moments and a
contribution arising from the toroidal moments. The toroidal
contributions satisfy1,3,19

Pt = −τ × H (13)

and

Mt = τ × E. (14)

Then, the Maxwell relations (11) and (12) can be written in
the form(

∂S

∂E

)
T ,H

=
(

∂Pi

∂T

)
E,H

+
(

∂Pt

∂T

)
E,H

=
(

∂P
∂T

)
E,H

(15)

and(
∂S

∂H

)
T ,E

=
(

∂Mi

∂T

)
H,E

+
(

∂Mt

∂T

)
H,E

=
(

∂M
∂T

)
H,E

,

(16)
where the intrinsic contributions to the polarization and
magnetization are related to the total as P = Pi + Pt and
M = Mi + Mt.

A second set of Maxwell relations are obtained from
differentiation with respect to E and M. This yields(

∂Pt

∂H

)
T ,E

=
(

∂Mt

∂E

)
T ,H

, (17)

where we have taken into account that the intrinsic components
Pi and Mi do not depend on H and E, respectively. This
means that magnetoelectricity in the system originates only
from the toroidal order. Notice that Eq. (17) just expresses
that the magnetoelectric tensor αij obeys Pi = χ

p

ijEj + αijHj

and Mi = αijEj + χm
ij Hj , where χ

p

ij and χm
ij are dielectric and

magnetic susceptibility tensors, respectively. From the τ · G
term in Eq. (9) it also follows that the components of the
toroidal moment obey the proportionality τ1 ∼ (α23 − α32),
τ2 ∼ (α31 − α13), and τ3 ∼ (α12 − α21).

An interesting relationship between τ and Pt , Mt can be
obtained considering that

Pt × Mt = −(τ × H) × (τ × E)

= (τ × E) × (τ × H)

= −(τ × E) × (H × τ )

= −τ × (E × H) × τ

= −τ × G × τ . (18)

Taking into account the general vectorial relation A × B ×
A = A(A · B) − 1

2A2B, we can rewrite the preceding equation
as

Pt × Mt = 1
2τ 2G − τ (G · τ ), (19)

which points out that Pt × Mt is different from zero only
under an applied toroidal field G. Here τ = |τ | denotes the
magnitude of toroidization.

The toroidocaloric effect

The equation quantifying the toroidocaloric effect under an
applied electric or magnetic field is obtained using Maxwell
relations (11) and (12). We obtain the following isothermal
changes of entropy:

�S(T ,0 → E)

=
∫ E

0

[(
∂Pi

∂T

)
E,H

+ H ×
(

∂τ

∂T

)
E,H

]
· dE (20)

and

�S(T ,0 → H)

=
∫ H

0

[(
∂Mi

∂T

)
H,E

+
(

∂τ

∂T

)
H,E

× E

]
· dH. (21)

The corresponding equations for the adiabatic change of
temperature are

�T (Ti,0 → E)

= −
∫ E

0

T

C

[(
∂Pi

∂T

)
E,H

+ H ×
(

∂τ

∂T

)
E,H

]
· dE (22)

and

�T (Ti,0 → H)

= −
∫ H

0

T

C

[(
∂Mi

∂T

)
H,E

+
(

∂τ

∂T

)
H,E

× E

]
· dH. (23)
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The second term in the square brackets in Eqs. (20)–(23)
represents the toroidal contribution. It is interesting to notice
that when applying an electric (magnetic) field, no toroidal
contribution to the caloric effect will occur if the magnetic
(electric) field is zero.

If only toroidal order is present in the system the above
equations for isothermal entropy change reduce to

�S(T ,0 → E) =
∫ E

0

(
∂Pt

∂T

)
E,H

· dE (24)

and

�S(T ,0 → H) =
∫ H

0

(
∂Mt

∂T

)
H,E

· dH. (25)

One finds similar expressions for the adiabatic temperature
change �T (Ti,0 → E) and �T (Ti,0 → H).

IV. LANDAU MODEL FOR A MATERIAL UNDERGOING A
FERROTOROIDIC TRANSITION

We assume that the toroidization (τ = |τ |) is the order
parameter to describe a paratoroidic to ferrotoroidic transition
and propose the following minimal Landau model which
includes a coupling between toroidization (τ ), magnetization
(M), and polarization (P ), and the presence of toroidal (G),
magnetic (H ), and electric (E) fields:

F (T ,τ ,P,M)

= 1
2A0

(
T − T 0

c

)
τ 2 + 1

4Cτ 4 + 1
2χ−1

p P 2 + 1
2χ−1

m M2

+ κτ · (P × M) − G · τ − H · M − E · P. (26)

Note that the term κ is the lowest order symmetry allowed
term (satisfying space and time reversal symmetry) which
provides the coupling between toroidization, polarization,
and magnetization (see Ref. 28). Here the inverse toroidic
susceptibility χ−1

t = A0(T − T 0
c ), where A0 is the “toroidic

stiffness,” T 0
c is the transition temperature, and C > 0 is the

nonlinear toroidic coefficient. In particular, χt = ∂P/∂H =
∂M/∂E. We also note that a Landau theory of ferrotoroidic
transitions in boracites17 and Ba2CoGe2O7 (BCG)10 has been
considered previously. However, these studies did not consider
any caloric effects.

Minimization with respect to polarization and magnetiza-
tion gives

∂F

∂P
= χ−1

p P − E + κ(M × τ ) = 0 (27)

and

∂F

∂M
= χ−1

m M − H + κ(τ × P) = 0. (28)

We now solve these two equations assuming (for simplic-
ity) that E = (E,0,0) and H = (0,H,0) and therefore G =
(0,0,EH ) and τ = (0,0,τ ). For P [= (P,0,0)] and M [=
(0,M,0)] we obtain

P = χpE − κχpχmHτ + O(τ 2) � χpE − αH (29)

and

M = χmH − κχpχmEτ + O(τ 2) � χmH − αE, (30)

where in the above two equations we have neglected the non-
linear magnetoelectric effects. The magnetoelectric coefficient
α = κχpχmτ is a quadrilinear product of electric susceptibility
(χp = ∂P/∂E), magnetic susceptibility (χm = ∂M/∂H), the
coupling constant κ , and the toroidization τ . Thus, either for
κ = 0 or τ = 0 there is no magnetoelectric effect. Substitution
of P (29) and M (30) in the free energy (26) gives the following
general type of effective free energy:

Fe = F0(E,H ) + 1
2Aτ 2 + 1

3Bτ 3 + 1
4Cτ 4 + λτ, (31)

with

F0 = − 1
2 (χpE2 + χmH 2), (32)

A = A0
(
T − T 0

c

) − κ2χpχm[χmH 2 + χpE2]

= A0(T − Tc), (33)

Tc = T 0
c + κ2

A0
χpχm[χmH 2 + χpE2], (34)

B = 3κ3χ2
mχ2

pEH, (35)

λ = (κχmχp − 1)EH. (36)

This corresponds to the free energy of a system subjected
to an effective external field λ, proportional to the toroidal
field G = EH . When G = 0, and therefore from (35) B = 0,
the free energy (31) describes a paratoroidal-to-ferrotoroidal
second-order phase transition whereas under the application
of a toroidal field G �= 0 (and B �= 0), the transition becomes
a first-order one. Actually, the physics contained in (31) is
very rich since, in addition to λ, the cubic B coefficient
also depends on the toroidal field G and the linear A(T )
term explicitly depends on the E and H fields. In other
words, λ, A(T ), and B are not independent. This leads to
a competition between B and λ depending on the value of
the coupling constant κ (i.e., the choice of the ferrotoroidic
material) and to a nonlinear Clausius-Clapeyron equation. It is
worth pointing out that the addition of nonlinear terms in Eqs.
(29) and (30) would lead to higher order terms in the expansion
(31) that go beyond the minimal model. However, within the
spirit of the Landau theory, we expect such terms are not
essential.

For some purposes, it may be convenient to rescale the free
energy according to the definitions proposed in Ref. 29:

a0 = A0C

B2
,

h = λC2

|B|3 ,

(37)

τr = C

|B|τ,

fr = Feff

B4
C3,

which yields the following rescaled free energy, valid for B �=
0 only:

fr = f0 + 1
2 a τr

2 + 1
3 τr

3 + 1
4 τr

4 + hτr . (38)
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FIG. 1. (Color online) Rescaled phase diagram as a function of the
field h for the temperature coefficient a(Tt ) (upper panel) and the order
parameter τr (lower panel). Different symbols denote results obtained
for different values of the effective coupling constant κ∗ = κχpχm.

As usual, the linear coefficient a is temperature dependent
a = a0(T − Tc) and provides the temperature scale, while h

provides the scale of the external effective field.

A. Phase diagram

Figure 1 shows the phase diagram for the rescaled variables
(37) defined above. In the upper panel we have plotted the
behavior of h vs a(T ) which gives the coexistence line. The
region above the line is paratoroidic whereas below it is
ferrotoroidic. The coexistence line ends in a critical point that
can be calculated from the condition

− ∂h

∂τ
= a + 2τ + 3τ 2 = 0. (39)

One obtains that the critical point is located at (hc,ac) =
( 1

27 , 1
3 ). Notice that the field is h � 0 for κ∗ � 1 whereas

for κ∗ > 1 we have h > 0 but h < hc = 1
27 . The existence

of this critical point is also revealed from the turning point
in the behavior of τr vs h shown in the lower panel. Below
the critical field (h < hc), there are two possible values of
τr related to the two possible wells in the free energy, as
is schematically illustrated in the insets. Different symbols
denote that the results have been obtained for different values
of the effective coupling parameter κ∗ = κχmχp by solving
numerically the model (31). The subsequent application of
scaling relations defined in (37) leads to the curves shown in
Fig. 1.

Actually, the unscaled free energy (31) is more suitable
for studying independently the effect of the external toroidal
field G and the material-dependent coupling parameter κ . For
convenience, we set χp = 1, χm = 1, C = 1, T 0

c = 1, and

0
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c

FIG. 2. (Color online) Phase diagram showing the effective field
λ as a function of the transition temperature A(Tt ) = Tt − Tc for
representative values of κ > 1, κ = 1, and κ < 1. The inset shows
the coexistence line in rescaled variables. The (blue) dot on the λ = 0
line corresponds to the case of B = 0.

A0 = 1, which renders the following dependence for the model
parameters:

B = 3κ3EH = 3κ3G, (40)

λ = (κ − 1)EH = (κ − 1)G, (41)

A(T ) = T − Tc, (42)

Tc = 1 + κ2(E2 + H 2). (43)

The only free parameter is the coupling constant κ . From
now on we will restrict ourselves to values of κ > 0 and
consequently to B � 0. Under these conditions, different
situations can be considered:

(1) B > 0 and λ = 0, which corresponds to κ = 1. In
the low-temperature regime the solution corresponds to a
minimum located at τ < 0.

(2) B > 0 and λ > 0, which corresponds to κ > 1. In this
case the low-temperature minimum also occurs at τ < 0.

(3) B > 0 and λ < 0, which corresponds to 0 < κ < 1. In
that case, competition between τ < 0 and τ > 0 occurs: λ < 0
favors the minimum to occur at τ > 0 while B > 0 favors the
minimum to occur at τ < 0.

As a reference case, we also consider the possibility of
G = 0. In that situation,

(4) B = 0 and λ = 0 for all values of κ . The transition is
continuous and occurs at T 0

c = 1. In the low-temperature phase
the free energy shows two symmetric minima at ±τ0.

The corresponding phase diagram obtained from the un-
scaled free energy (31) is depicted in Fig. 2. It shows the
behavior of the effective field λ as a function of the transition
temperature Tt [or A(Tt ) = Tt − Tc] for the three different
regimes of the coupling parameter mentioned above, namely
κ > 1, κ = 1, and κ < 1. (i) For κ > 1 (upper panel) the
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FIG. 3. (Color online) Toroidal order parameter as a function of
temperature for κ = 0.90, κ = 1, and κ = 1.05 and selected values
of the applied toroidal field G. The arrow in the lower panel indicates
the occurrence of the discontinuous transition.

transition exists for values of λ above the critical field λc(κ)
> 0, which in turn depends on the value of κ . Moreover, Tt

increases with λ as can be seen from the representative curves
obtained for κ = 1.05 and 1.10. (ii) For κ = 1 the effective
field is λ = 0 and the coexistence line is horizontal starting at
the critical point (at the origin) corresponding to the limiting
case of G = 0 (B = 0) and denoted by a blue dot. (iii) Finally,
for κ < 1 one has λ < 0 and the transition exists for values
of λ arbitrarily close to zero at temperatures Tt < Tc. For
increasing values of G, λ decreases while A(Tt ) increases;
thus eventually the latter may become positive. We stress that
all curves correspond to discontinuous phase transitions except
the point located at the origin that corresponds to B = 0 and
therefore to a continuous phase transition.

Figure 3 shows the temperature behavior of the toroidal
order parameter τ for three representative values of the
coupling parameter, namely κ = 0.90,1.0,1.05, and different
values of the toroidal field G = EH as indicated in the lateral
panels. The case κ = 1.05 (lower panel) nicely illustrates the
effect of the field on the ferrotoroidic transition in the region of
κ > 1. For zero field (G = 0), the transition is continuous and,
indeed, occurs at T = T 0

c = 1 (symmetric curve with double
branch). By increasing the field (G > 0), the transition first
disappears (continuous crossover, no singularity, from τ �= 0
to τ = 0) and subsequently for higher values of the field a
first-order transition occurs at a temperature Tt > T 0

c revealed
by a discontinuous jump in τ (indicated by an arrow), whose
magnitude increases with G. In the case of κ = 1 (middle
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FIG. 4. (Color online) Toroidal order parameter (τ ), magnetiza-
tion (M), and polarization (P ) as a function of temperature A(T ) =
T − Tc for κ = 1.0. The toroidal field is modified by changing the
magnetic field H but keeping constant the value of the electric field
E = 1.0.

panel), the transition is discontinuous and exists for every
value of G �= 0, although it is continuous for G = 0. In the
case κ < 1 as soon as the field is applied a first-order transition
from τ < 0 to τ > 0 occurs with cooling. For low values of
G, the transition takes place at Tt < Tc but with increasing
values of G, Tt also increases and the transition takes places
above Tc. This behavior results from the competition between
B and λ.

The temperature behavior of the polarization P and the
magnetization M can then be obtained from the expressions
(29) and (30), respectively. The results are shown in Fig. 4
for the case of κ = 1.0 and different values of G = EH (E =
1.0).

B. Nonlinear Clausius-Clapeyron equation

Since the transition predicted by the model is discontinuous,
it can be characterized by means of the corresponding
Clausius-Clapeyron equation. Such equation relates the slope
of the coexistence curve (Fig. 2, inset) to the magnitude of
the discontinuities in the order parameter and entropy at the
transition temperature. We recall that in the present model,
the harmonic [A(T )] and cubic (B) coefficients and the
effective field (λ) are not independent. As noted below, this
will give rise to a Clausius-Clapeyron equation which turns
out to be nonlinear in the order parameter discontinuity.

Indeed, at the transition, one can write

dFe
(I ) = dFe

(II ), (44)

where (I) and (II) are the para- and ferrotoroidic phases,
respectively. For each phase, the derivative of the effective
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free energy can be written as

dFe =
(

∂Fe

∂T

)
λ

dT +
(

∂Fe

∂λ

)
T

dλ, (45)

where Fe(T ,λ) is the thermodynamic free energy given by
the expression (31) with τ = τ (T ) in equilibrium. The partial
derivatives are (

∂Fe

∂T

)
λ

= −S = −A0

2
τ 2, (46)(

∂Fe

∂λ

)
T

= 1

E(κ − 1)

(
∂Fe

∂H

)
T

, (47)

where S is the entropy and the derivative with respect to the
field λ is taken at constant E, and(

∂Fe

∂H

)
T

= −H (1 + A0κ
2τ 2) + E

(
κ3τ 3 + τ (κ − 1)

)
. (48)

Taking into account (46), (47), and (48), condition (44) reads

dT (SII − SI ) = ∂λ(�Fe)dλ

= dλ

E(κ − 1)

[(
∂Fe

∂H

)(II )

T

−
(

∂Fe

∂H

)(I )

T

]
(49)

with (
∂Fe

∂H

)(II )

T

−
(

∂Fe

∂H

)(I )

T

= [(
τ 3

(II ) − τ 3
(I )

)
E − (

τ 2
(II ) − τ 2

(I )

)
H

]
κ3

+ (τ(II )−τ(I ))(κ − 1)E. (50)

Finally, the corresponding Clausius-Clapeyron equation
takes the form

dλ

dT
= �S

∂λ(�Fe)
= (SII − SI )E(κ − 1)(

∂Fe

∂H

)(II )

T
− (

∂Fe

∂H

)(I )

T

. (51)

Notice that for κ = 1, the slope of the coexistence curve is
zero although there exists a jump in both τ and S at the
transition point. In Fig. 5 we have plotted the coexistence
line for κ = 1.10 (black dots) and its numerical derivative
(continuous blue line). The squares (full red) are the results of
computing the right-hand side of Eq. (51) from the magnitude
of the discontinuity of τ and S at the transition temperature.
The agreement is very good.

C. Toroidocaloric effect

The toroidocaloric effect can be computed as

S(T ,G = EH ) − S(T ,G = 0)

=
∫ G=EH

0

(
∂τ

∂T

)
G

dG

= 1
2A0[τ 2(T ,G = 0) − τ 2(T ,G = EH )]. (52)

This is an important equation for the isothermal toroidal
field-induced entropy change which is analogous to the
expression found long ago for the adiabatic electric field-
induced temperature change in the case of the electrocaloric
effect.30 The isothermal entropy change (�S) as a function
of temperature for various values of applied toroidal field
(G = EH ) has been plotted in Fig. 6 for the same three

2.5 3.0 3.5 4.0 4.5 5.0
Transition Temperature, Tt

0

0.02

0.04

0.06

0.08

λ
ΔS/ δλ(ΔF

e
)

dλ/dT
t

κ=1.10

FIG. 5. (Color online) Verification of the Clausius-Clapeyron
equation. Coexistence line (black dots) for κ = 1.10 obtained at
constant E = 1.0 and its derivative (blue continuous line). Notice that
the scale is the same for both curves. Red squares denote the results
of computing the right-hand side of Eq. (51) from the discontinuities
of τ and S at the transition point.

representative values of κ as in Fig. 3. As can be observed,
with increasing field value the jump in �S increases.

It is interesting to relate this entropy change characterizing
the toroidocaloric effect with the corresponding changes
giving the magnetocaloric and electrocaloric effects. This can
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FIG. 6. (Color online) Toroidocaloric effect as a function of
temperature and selected values of the applied toroidal field, κ =
0.90,1.0, and 1.05.
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be done using Eqs. (29) and (30); a straightforward calculation
gives

�S(T ,0 → G = EH )

= 1

κχpχm

[�SP (T ,H,0 → E) + �SM (T ,E,0 → H )],

(53)

where �SP and �SM are the entropy changes giving the
electrocaloric and the magnetocaloric effects at constant
magnetic and electric fields, respectively.

To apply our results to a specific material we need to
obtain parameters (e.g., κ) for LiCo(PO4)3 using the data
from second harmonic generation8 and other thermodynamic
measurements, in particular the toroidic susceptibility. The
latter is related to the antisymmetric part of the magnetoelectric
tensor as discussed in Ref. 15 for BiFeO3. It is interesting
to point out that Eq. (53) suggests that if the electric and
magnetic susceptibilities are known, κ could be estimated from
measurements of the entropy changes �S, �SP , and �SM .

V. CONCLUSIONS

With the discovery of the fourth kind of primary ferroic
materials, namely the ferrotoroidics,2,3 it is important to
understand the equilibrium thermodynamic properties of such
materials. We provided a basic framework to calculate the
toroidocaloric effect based on a Landau free energy. Our main
finding is the isothermal change in entropy as a function of the
applied toroidal field for different values of coupling between
toroidization, polarization, and magnetization. The fact that
the application of a toroidal field modifies the order of the
transition from continuous to first order is very informative
regarding caloric effects since larger changes of entropy are
expected to be induced thanks to the large entropy content
associated with the latent heat of a first-order transition.
However, when dealing with real materials, the existence
of energy losses arising from hysteresis and domain wall
effects23,31 (which are intrinsic to first-order transition and
are expected to reduce the caloric efficiency) should be taken
into account. This important aspect has not been considered
in the present paper since strict equilibrium situations are

assumed. In any case, our predictions should be observable
in experiments on materials such as LiCo(Po4)3, Ba2CoGe2O7

(BCG), MnTiO3, MnPS3, and some boracites. Below 21.8 K
neutron diffraction measurements in LiCo(Po4)3 indicate the
simultaneous presence of ferrotoroidic and antiferromagnetic
(AFM) order as a result of Co2+ ion ordering.8

Similarly, in BCG there is a transition at 6.7 K below which
there is a coexistence of ferrotoroidic and AFM order again
resulting from single-ion effects.10 In the ilmenite structure
MnTiO3 there is an antiferromagnetic ordering below 63.5 K.
At cryogenic temperatures it exhibits ferrotoroidic behavior
above 6 T magnetic field due to spin flopping.13 These
results confirm the existence of a ferrotoroidic phase in a
number of materials; however, the measurement of the toroidal
moment as a function of temperature and toroidal field has
not been undertaken. Therefore, at the present stage it is not
possible to contrast our predictions with experimental results.
We expect, however, that our results including the nonlinear
Clausius-Clapeyron relation will be a motivation for experi-
mentalists to undertake experiments aimed at characterizing
the thermodynamic behavior of ferrotoroidic materials in the
vicinity of the phase transition.

Using the Landau free energy we can also obtain the profiles
of ferrotoroidic domain walls by including a symmetry-
allowed gradient term (∇τ )2,19 i.e., the Ginzburg term.
Such domain walls have been observed in LiCo(Po4)3 using
optical second harmonic generation techniques.8 With doping-
induced disorder in such materials we expect that novel phases
such as toroidic tweed and toroidic glass should also exist and
remain to be observed experimentally. With symmetry-allowed
coupling of strain to toroidization, if we apply stress to
such a crystal we expect toroidoelastic effects, i.e., a change
in toroidization with hydrostatic pressure or shear. These
important topics will be explored in the near future.
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