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Thermodynamic properties of quantum sine-Gordon spin chain system KCuGaF6
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We investigated the thermodynamic properties of the spin-1/2 one-dimensional Heisenberg antiferromagnet
KCuGaF6 by measuring the specific heat in magnetic fields. When this compound is subjected to a uniform
magnetic field H , a transverse staggered magnetic field h is induced in this compound owing to the staggered
component of the g tensor and the Dzyaloshinskii-Moriya interaction with an alternating D vector. Consequently,
the quantum sine-Gordon (SG) model is an effective model of this compound in a uniform magnetic field. In
three different field directions, we observed a magnetic-field-induced gap, which increases with H . We analyzed
experimental results using specific heat theory based on quantum SG theory. The thermodynamic property for
H ‖ c is very well described in terms of the elementary excitations characteristic of the quantum SG model, while
for the other field directions significant contributions from other excitation modes beyond the framework of the
quantum SG model were observed. For H ‖ b, a quantum phase transition between gapless and gapped ground
states was observed.
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I. INTRODUCTION

One-dimensional (1D) quantum systems have attracted
considerable attention for a long time because of various phe-
nomena resulting from the strong quantum fluctuations charac-
teristic of the 1D systems. In particular, the S = 1/2 antiferro-
magnetic Heisenberg chain (AFHC) has been closely studied
theoretically. Using the Bethe ansatz, the dispersion relation of
the lowest excitation for the S = 1/2 uniform AFHC, which is
known as the des Cloizeaux and Pearson (dCP) mode, has been
calculated exactly.1,2 The two-spinon contribution to magnetic
excitations has also been calculated.3,4 The energy of the dCP
mode is different from the result obtained by linear spin wave
theory5,6 by a factor of π/2, which was verified by inelastic
neutron scattering measurements.7,8 Accurate calculations9,10

and inelastic neutron scattering measurements11 showed that
low-energy excitations in a magnetic field cannot be described
even qualitatively by linear spin wave theory. The calculated
dispersion relation demonstrated that gapless excitations occur
at incommensurate wave vectors q = ±2πm(H ) ≡ ±q0 and
π ± q0 in addition to at q = 0 and π , where m(H ) is the
magnetization per site in the unit of gμB.

By means of neutron inelastic scattering and spe-
cific heat measurements, Dender et al.12 observed an
unexpected magnetic-field-induced incommensurate gap in
Cu(C6H5COO)2·3H2O, abbreviated to copper benzoate, which
is known as an S = 1/2 1D antiferromagnet with good one-
dimensionality.13–15 This problem was discussed by Oshikawa
and Affleck16–18 on the basis of the effective Hamiltonian
expressed as

H =
∑

i

[
J Si · Si+1 − gμBHSz

i − (−1)igμBhSx
i

]
, (1)

where h is the transverse staggered field induced by the
external field H . The staggered field on the ith site hi

originates from the staggered component of the g tensor
(−1)i gs and the Dzyaloshinskii-Moriya (DM) interaction19

with the alternating Di vector (−1)i D and is expressed as

hi � (−1)i
[

gs

gu
H + H

2J
× D

]
, (2)

where gu is the uniform g factor.17 Because the gs tensor
and D vector are anisotropic, the proportionality coefficient
cs = h/H depends on the field direction.

Using the field-theoretical approach, Oshikawa and
Affleck16,17 demonstrated that the model given by Eq. (1)
can be mapped onto the quantum sine-Gordon (SG) model
with Lagrangian density

L = 1

2

[(
∂φ

∂t

)2

− (vJ )2

(
∂φ

∂x

)2
]

+ hC cos(2πRφ̃), (3)

where φ is the canonical Bose field, φ̃ is the dual field, R

is the compactification radius, v is the dimensionless spin
wave velocity, and C is a coupling constant. The dual field
φ̃ corresponds to the angle between the transverse component
of the spin and the reference direction in a plane perpendicular
to the external magnetic field. Owing to the nonlinear term in
Eq. (3), all the excitations are gapped as illustrated in Fig. 1.

The elementary excitations characteristic of the quantum
SG model are the soliton, antisoliton, and breather excitations.
The soliton excitation corresponds to the excitation at q = ± q0

and π ± q0 and is classically described as the local rotation of
the spin in a plane perpendicular to the magnetic field, and
the antisoliton excitation corresponds to the inverse rotation
of the spin. The breather corresponds to the bound state of the
soliton and the antisoliton as reducing their energies with φ̃ �
0. Oshikawa and Affleck16–18 showed that the magnetic-field-
induced gap corresponding to the soliton energy is proportional
to H 2/3. The field dependence of the gap is in good agreement
with the experimental result observed for copper benzoate.12

On the basis of quantum SG theory,18 they also provided a good
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FIG. 1. (Color online) Schematic view of the lowest-energy
excitations of model (1) in a nonzero magnetic field for h = 0
(dashed lines) and h �= 0 (solid lines). There are two excitation
branches (colored red and blue). Gapless excitations at q = 0 and
at incommensurate waves q = ± q0 for h = 0 have finite gaps for
h �= 0. The maximum excitation energy at q = (π ± q0)/2 decreases
from π/2 with increasing magnetic field and becomes zero at
H = 2J/(gμB).10

description for the resonance field of electron spin resonance
(ESR) obtained by Oshima et al.20

The elementary excitations in copper benzoate were inves-
tigated in detail using high-frequency ESR.21,22 In addition
to copper benzoate, the following substances are known
to be described by the effective model given by Eq. (1):
Yb4As3,23–25 PM·Cu(NO3)2·(H2O)2 (PM, pyrimidine)26–30

and CuCl2·2[(CD3)2SO].31–33 Because the elementary exci-
tations and thermodynamic properties of quantum SG systems
have been of great interest, numerous theoretical investigations
have been published,34–45 and the theoretical results have been
used to analyze experimental results on the above-mentioned
substances. Moreover, new experiments have been proposed
on the basis of theoretical results.28,46–48

KCuGaF6 is an S = 1/2 AFHC system, which is repre-
sented by the effective model given by Eq. (1) in a magnetic
field.49,50 KCuGaF6 is composed of corner-sharing CuF6

octahedra running along the c axis, as shown in Fig. 2.51

The CuF6 octahedra are elongated perpendicular to the chain
direction, which is parallel to the c axis, owing to the Jahn-
Teller effect. Consequently, the hole orbitals of Cu2+ ions
are linked along the chain direction through the p orbitals of
F− ions, which leads to a strong antiferromagnetic exchange
interaction along the c direction of J/kB = 103 K ± 2 K.49,50

The elongated and compressed principal axes of the octahedra
alternate along the chain direction, as shown by the solid
and open bonds in Fig. 2, respectively. This gives rise to the
staggered component of the g tensor and the DM interaction
with the alternating D vector. Because of the c glide plane
at ± b/4, the ac plane component of the Di vector alternates

Ga3+

K+

Cu2+

F-

a

c

b

FIG. 2. (Color online) Crystal structure of KCuGaF6 viewed
along the a axis. Dotted lines denote the chemical unit cell. Solid
and open bonds, respectively, denote the elongated and compressed
axes of CuF6 octahedra.

along the chain direction but the b component does not. Thus,
the Di vector should be expressed as

Di = [
(−1)iDx,Dy,(−1)iDz

]
, (4)

where the x, y, and z axes are chosen to be parallel to the
a∗ (⊥ b,c), b, and c axes, respectively. For these reasons,
the staggered transverse magnetic field hi is induced, when
this compound is subjected to an external magnetic field H .
If the y component Dy is negligible, then the Di vector is
expressed as Di = (−1)i D. The classical spin arrangements
for the staggered and uniform D vectors are the canted Néel
state and the spiral state, respectively.

KCuGaF6 differs from other quantum SG substances in
its large exchange interaction of J/kB = 103 K and its wide
range of the proportionality coefficient, cs = 0.03–0.18.49,50

Thus, KCuGaF6 is expected to be suitable for obtaining a
comprehensive understanding of the systems described by
model (1). In a previous paper,50 we observed as many as
about ten ESR modes in KCuGaF6 and found that most of the
ESR modes can be very well explained by quantum SG field
theory.17,40 The magnetic-field-induced gap in KCuGaF6 was
also confirmed by NMR measurement and a gap proportional
to H 2/3 was observed for H ‖ c.52

Specific heat measurement is a powerful tool necessary
for obtaining a comprehensive understanding of the excitation
nature. In the present paper, we report the results of specific
heat measurements on KCuGaF6 in three different field
directions. Experimental results are analyzed by performing
calculations based on quantum SG field theory. As shown
below, the specific heat of KCuGaF6 in a magnetic field
can be basically understood in terms of quantum SG field
theory. However, we found that additional excitation modes,
whose origins are not known, make significant contributions
to the specific heat. This paper is organized as follows: in
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Sec. II, we summarize the theory of elementary excitations
and specific heat in the quantum SG model. Experimental
details are reported in Sec. III. The experimental results, their
analyses, and a discussion are given in Sec. IV. Section V is
devoted to a conclusion.

II. ELEMENTARY EXCITATIONS AND SPECIFIC HEAT IN
QUANTUM SG MODEL

The elementary excitations characteristic of quantum SG
model are solitons and antisolitons and their bound states
called breathers.16,17 In field-theoretical language, the exci-
tation energies are expressed as the masses of these quasiparti-
cles. Figure 3 illustrates low-energy excitations around q = 0.
Because of the transverse staggered field h induced by the
external magnetic field, the gapless excitations at q = 0, π ,
± q0, and π± q0 for h = 0 have finite gaps.

The soliton mass Ms was calculated analytically by Essler
et al. 40 as

Ms

J
= 2v√

π

�
(

ξ

2

)
�

( 1 + ξ

2

)
[

�
(

1
1 + ξ

)
�

(
ξ

1 + ξ

) cπgμBH

2vJ
cs

](1 + ξ )/2

, (5)

where �(···) is the � function, v is the dimensionless spin
velocity, ξ is a parameter given by ξ = [2/(πR2) − 1]−1,
and c is a parameter depending on the magnetic field. The
field dependencies of these parameters are given in the
literature;17,40,53 v → π/2, ξ → 1/3, and c → 1/2 for H → 0.
This result is applicable in a wide magnetic field range up to
the saturation field given by Hs = 2J/(gμB).

The breathers Mn (n= 1, 2, . . .) corresponding to the
excitations at q = 0 and π have hierarchical structures labeled
by integer n. The mass of the nth breather is given in terms of

E  
/ J

Ms

Es

M3

M2

M1
SS

_

q0− q0

q
0

FIG. 3. (Color online) Illustration of low-energy excitations of
model (1) around q = 0. The soliton, antisoliton, soliton resonance,
and three breathers are labeled as S, S̄, Es, and Mi (i = 1, 2, and 3),
respectively.

the soliton mass Ms and parameter ξ as

Mn = 2Mssin

(
nπξ

2

)
. (6)

The number of breathers is limited by n� [ξ−1].17 In a low
magnetic field of gμBH/J < 0.5, breathers up to the third
order can exist. The soliton resonance labeled as Es in Fig. 3
corresponds to the q = 0 excitation on the excitation branch
connected to the soliton and antisoliton. Its energy is given by
Es � [Ms

2 + (gμBH )2]1/2.17

The specific heat in SG field theory can be obtained exactly
by taking advantage of its integrability. It has been evaluated by
two approaches: the thermodynamic Bethe ansatz (TBA) 54,55

and quantum transfer matrix (QTM) methods.35,56 In the TBA
method, a set of integral equations is derived from the Bethe
ansatz. The number of integral equations is finite only at special
values of the compactification radius, including the SU(2)
symmetric point R = 1/

√
2π . Thus, the application to the

present problem is practically limited to the SU(2) symmetric
radius, where the first breather mass M1 degenerates with
soliton mass Ms . Precisely speaking, however, the uniform
field H breaks the SU(2) symmetry and thus renormalizes the
compactification radius R. This renormalization effect can be
taken into account by using the QTM method, which allows
the calculation of specific heat for an arbitrary radius. Figure 4
shows the temperature dependence of specific heat of the
quantum SG model calculated by the TBA and QTM methods
for various soliton mass Ms = �.

These calculations of the exact specific heat in SG field
theory have been successfully applied in the analysis of the ex-
perimental data on PM·Cu(NO3)2·(H2O)2

26,35 and Yb4As3,24
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FIG. 4. (Color online) The temperature dependence of the spe-
cific heat of the quantum SG model for various soliton mass Ms = �.
Solid and dashed lines denote the specific heat calculated by the
TBA and QTM methods, respectively, with v = π/2. Note that the
dimensionless spin wave velocity v is insensitive to the external
magnetic field for gμBH/J 
 1.
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which exhibit a field-induced gap similar to that in the present
system.

III. EXPERIMENTAL DETAILS

KCuGaF6 single crystals were grown by the horizontal
Bridgman method from the melt of an equimolar mixture of
KF, CuF2, and GaF3 packed into a Pt (platinum) tube of 10 or
15 mm in inner diameter and 100 mm in length. The materials
were dehydrated by heating in vacuum at about 100 ◦C for
3 days. One end of the Pt tube was welded and the other end was
tightly folded with pliers. The temperature at the center of a
furnace was set at 750 ◦C and was decreased at a rate of 1 ◦C/h
to 500 ◦C. Transparent light-pink crystals with a maximum
size of 10 × 15 × 5 mm3 were obtained. These crystals were
identified as KCuGaF6 by x-ray powder diffraction analysis.

The crystallographic a, b, and c axes were determined
by x-ray single-crystal diffraction. KCuGaF6 crystals are
cleaved along the (1, 1, 0) plane. The magnetic susceptibilities
χa , χb, and χc are anisotropic below 50 K because of
the DM interaction.50 The magnitudes of the susceptibilities
below 50 K decrease in the order χc > χb > χa . Thus, the
crystallographic axes can be identified from the susceptibility
measurements. Specific heat measurements were carried out
down to 0.35 K in a magnetic field of up to 9 T using a
Physical Property Measurement System (Quantum Design,
PPMS). Magnetic fields were applied along the a, b, and c

axes. The error is 5% in the absolute value and less than 1% in
the relative value in the temperature variation. The error in the
absolute value mainly arises from the error in measurement
of the sample mass. Then, we obtained Ctotal at zero magnetic
field by averaging results on several different samples. The
sets of data at finite magnetic fields for three different field
directions were calibrated using the Ctotal at zero magnetic
field.

IV. RESULTS AND DISCUSSION

Figure 5 shows the low-temperature total specific heat
Ctotal measured at zero magnetic field. No magnetic ordering
was observed down to 0.35 K, which verifies the good
one-dimensionality of the present system. Ctotal is almost pro-
portional to temperature below 4 K, which is a characteristic
of the S = 1/2 AFHC.57,58 To evaluate the lattice contribution,
we used the theoretical specific heat of the S = 1/2 AFHC.57,58

For kBT/J < 0.1, the specific heat of the S = 1/2 AFHC is
approximately expressed as

CAFHC = 2R0kBT

3J
, (7)

where R0 is the gas constant and the spin state is equivalent to
the Tomonaga-Luttinger liquid (TLL). Ctotal is the total of the
magnetic Cmag and lattice Clattice contributions. The solid line in
Fig. 5 indicates the theoretical specific heat CAFHC calculated
with J/kB = 103 K. The lattice contribution Clattice shown by
the dashed line in Fig. 5 was obtained by subtracting CAFHC

from Ctotal. The magnetic specific heat in a finite magnetic
field was obtained by subtracting the lattice Clattice from the
total specific heat Ctotal.
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FIG. 5. (Color online) Low-temperature total specific heat Ctotal

measured at zero magnetic field. Specific heat data are plotted as open
circles. CAFHC is the theoretical low-temperature specific heat given
by Eq. (7) with J/kB = 103 K, and Clattice is the lattice contribution
estimated by subtracting CAFHC from Ctotal.

Figure 6 shows the low-temperature magnetic specific heat
Cmag obtained at various magnetic fields parallel to the c

axis. For this field direction, the proportionality coefficient
cs = h/H is the largest among the three directions and
cs = 0.178 ± 0.002. In a finite magnetic field, Cmag increases
exponentially with increasing temperature, which indicates
the emergence of a magnetic-field-induced gap. With further
increasing temperature, Cmag exhibits a rounded shoulder and
increases linearly. The shoulder shifts to a higher temperature
and becomes broader as the magnetic field increases. This
shows that the gap increases with the magnetic field.

We analyzed the experimental results using the exact
specific heat in SG field theory. To verify the accuracy of
the calculation and to determine the effect of the field renor-
malization of the compactification radius R, we compared the
experimental data with the theoretical specific heats obtained
by the TBA and QTM methods. In the TBA calculation, R

is fixed to the SU(2) symmetric radius as discussed above.
In the QTM calculation, R is obtained as a function of H

using the exact Bethe ansatz solution of the Heisenberg chain
without the staggered field.36 Thus, the only adjustable fitting
parameter is the soliton mass Ms = � in both calculations.

The solid lines in Fig. 6 show the fits by CTBA(�) with the
soliton mass shown in Fig. 7. On the whole, the experimental
specific heat for H ‖ c is well described by the theory based
on quantum SG field theory, although some discrepancy is
observed. The following three factors may have led to the
discrepancy between the experimental and the theoretical
results: the breaking of the SU(2) symmetry, the error in the
estimation of the lattice contribution Clattice, and the effect
of unknown excitation modes observed in previous ESR
measurements.50

The effect of breaking the SU(2) symmetry is determined
by comparing the TBA calculation with R fixed at 1/

√
2π

and the QTM calculation with the renormalized R. Figure 8
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FIG. 6. (Color online) Temperature dependence of magnetic
specific heat Cmag measured at H = 1, 3, 6, and 9 T for H ‖ c. Each
set of data is shifted upward by a multiple of 0.25 J/(K mol). Open
circles indicate experimental data and solid lines are the theoretical
specific heat CTBA(�) based on quantum SG field theory fitted with
the soliton mass � shown in Fig. 7.

shows a comparison between the results of analyses based
on the TBA and QTM methods. As shown in Figs. 7 and
8, the temperature dependencies of the specific heat and the
soliton masses obtained from both methods are similar. This
means that, in the present magnetic field range, the effect
of the renormalization of R is not important and the system
can be well approximated by the SU(2) symmetric radius
R = 1/

√
2π . In fact, in the present material, the exchange

interaction J/kB = 103 K is dominant over the magnetic field
used in the experiments.49,50 In addition, the specific heat is
not very sensitive to a small change in R.

The soliton masses � for H ‖ c evaluated from the analyses
using the TBA and QTM methods are shown in Fig. 7 as
a function of H 2/3. It is clear that � is proportional to H 2/3.
This relation can be derived by setting ξ = 1/3 in Eq. (5). Note
that in the linear spin wave theory, the energy gap exhibits the
field dependence of �∝ H 1/2. Therefore, the field dependence
of the soliton mass for H ‖ c agrees well with that in quantum
SG field theory.

The dashed line in Fig. 7 indicates the soliton mass �

obtained from previous ESR measurements.50 The soliton
mass obtained from the specific heat measurements is 1.2
times as large as that obtained from the ESR measurements.
The overestimation of the soliton mass is attributed to the
unknown higher-energy excitation modes U2 and U3 observed
in ESR measurements.50 In another quantum SG system
PM·Cu(NO3)2·(H2O)2, the ratio of the gap obtained from
specific heat measurements26 to that obtained from ESR
measurements27 is similar to that observed for KCuGaF6.
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543210
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Δ = AH2/3

TBA (A = 5.48 ± 0.14)
QTM (A = 5.76 ± 0.15) 
ESR

FIG. 7. (Color online) Soliton mass � (≡ Ms) for H ‖ c as a
function of H 2/3 obtained from the fits of the theoretical specific
heat calculated using the TBA (solid circles) and QTM (open circles)
methods. The dashed line shows Ms in Eq. (5) with J/kB = 103 K
and the proportionality coefficient obtained by ESR measurements as
cs = 0.178.

While the small disagreement in the soliton mass is found,
the experimental Cmag for H ‖ c is well described within the
framework of quantum SG field theory, as shown in Figs. 6
and 8.

Next, we show in Fig. 9 the low-temperature magnetic
specific heat Cmag obtained at various magnetic fields for
H ‖ a. For this field direction, the proportionality coefficient
is the smallest and cs = 0.031 ± 0.001.50 From the exponential
increase in Cmag, we see that the gap opens in a magnetic field.
However, because of the small proportionality coefficient cs,
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FIG. 8. (Color online) Analyses of the specific heat obtained
using the TBA and QTM methods based on quantum SG field theory.
Circles show the magnetic specific heat measured at H = 6 T for
H ‖ c. Dashed and solid lines indicate the theoretical specific heat
calculated using the TBA and QTM methods, respectively.
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FIG. 9. (Color online) Magnetic specific heat Cmag measured for
H ‖ a. Each set of data is shifted upward by a multiple of 0.25 J/(K
mol). Dashed lines denote fits by CTBA(�) with a single soliton mass
�, while solid lines indicate fits using Eq. (8) with the two gaps �1

and �2 shown in Fig. 10.

the magnitude of the gap is much smaller than that for H ‖ c at
the same magnetic field. First, we fitted the theoretical specific
heat CTBA(�) to the experimental data. The soliton mass �

obtained is plotted in Fig. 10 as a function of H 2/3. As shown
by the dashed lines in Fig. 9, some discrepancy was observed
between the experimental and theoretical results. A similar
discrepancy was also observed in copper benzoate when an
external field was applied along the a′′ direction, for which the
gap becomes smallest.35 Although � is proportional to H 2/3,
as predicted by quantum field theory, its magnitude is 1.5
times as large as that obtained from the ESR measurements. It
is considered that this discrepancy for KCuGaF6 arises from
the higher-energy unknown mode U1 and multiple excitation
modes Cn, which cannot be explained within the framework
of quantum SG field theory.50

The energy of the U1 mode observed for H ‖ a is larger
than the mass of the first breather and is comparable to that
of the second and third breathers. The Cn modes are multiple
excitations of the Es and the breathers, whose energies are
given by Es + Mn. Note that these modes were also observed
in ESR measurements on PM·Cu(NO3)2·(H2O)2.27 These
excitations can contribute to the magnetic specific heat because
they are excitations from the ground state. Then, assuming
that the contribution of these higher-energy excitations is
effectively represented as CTBA(�2) with the secondary gap
�2, we express the theoretical specific heat as

Ceff
mag = 1

2 [CTBA(�1) + CTBA(�2)]. (8)

The first term expresses the contribution of the excitations of
the quantum SG model, while the second term expresses the
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FIG. 10. (Color online) Soliton mass � (≡ Ms) for H ‖ a as a
function of H 2/3 obtained from fits of the theoretical specific heat
CTBA(�) (squares). Closed and open circles indicate the gaps �1 and
�2 obtained by fits using Eq. (8), respectively. Solid line indicates
Ms in Eq. (5) with J/kB = 103 K and the proportionality coefficient
obtained by ESR measurements as cs = 0.031.

contribution of other higher-energy excitations. The primary
gap �1 corresponds to the true soliton mass. The solid lines in
Fig. 9 show fits using Eq. (8). The experimental specific heat
in various magnetic fields for H ‖ a ia well described by Ceff

mag.
The two gaps, �1 and �2, obtained from the fits are plotted
as functions of H 2/3 in Fig. 10 together with the soliton mass
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FIG. 11. (Color online) Comparison between total specific heat
Ctotal for H ‖ b and H ‖ c measured at various magnetic fields. Each
set of data is shifted upward by a multiple of 0.5 J/(mol K).
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estimated from the ESR measurements.50 Both energy gaps
are proportional to H 2/3 for H � 3 T. The primary gap �1

coincides with the soliton mass estimated from the previous
ESR measurements. This means that the lower excitations for
H ‖ a can be understood within the framework of quantum SG
field theory.

Figure 11 shows the temperature dependencies of the
total specific heat Ctotal for H ‖ b and H ‖ c, for which the
proportionality coefficients are cs = 0.160 ± 0.002 and 0.178
± 0.002, respectively.50 The values of magnetic specific heat
for these two field directions were expected to be similar,
because the proportionality coefficients are close to each other.
However, the values of specific heats are clearly different, as
shown in Fig. 11. It is apparent that the magnetic-field-induced
gap for H ‖ b is much smaller than that for H ‖ c. A notable
feature is that the specific heat for H ‖ b is almost linear
in temperature for H � 2 T. This indicates that the ground
state is gapless at low magnetic fields. The low-magnetic-field
specific heat does not exhibit an anomaly indicative of 3D
ordering down to 0.35 K, although the ground state appears
gapless. These observations appear to be consistent with
the result of previous ESR measurements for H ‖ b, where
we observed an intense unknown U4 mode with resonance
frequency proportional to H − Hc with Hc � 2.5 T.50

Figure 12 shows the magnetic specific heat measured at
various magnetic fields for H ‖ b. Fitting of the theoretical
specific heat CTBA(�) to the experimental data was not
successful, as shown by the dashed lines in Fig. 12, and
contrary to the case of H ‖ a, we obtained a soliton mass �

considerably smaller than that estimated from ESR measure-
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FIG. 12. (Color online) Magnetic specific heat Cmag measured for
H ‖ b. Each set of data is shifted upward by a multiple of 0.25 J/(mol
K). Dashed lines show fits by the theoretical specific heat CTBA(�),
while solid lines indicate fits using Eq. (8).
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FIG. 13. (Color online) Soliton mass � (≡Ms) for H ‖ b as a
function of H 2/3 obtained from the fits of the theoretical specific heat
CTBA(�) (solid squares). Solid and open circles indicate the gaps �1

and �2 obtained by fits using Eq. (8), respectively. The solid line
indicates Ms in Eq. (5) with J/kB = 103 K and the proportionality
coefficient obtained by ESR measurements as cs = 0.16.

ments (see Fig. 13). The soliton mass � is not proportional
to H 2/3 but can be expressed as �= A{H 2/3 − Hc(0)2/3}
with A= 4.33 ± 0.33 and Hc(0) = 1.51 ± 0.05 T. In previous
ESR measurements, we observed three unknown modes, U1,
U2, and U3, whose excitation energies are close to or lower
than the first breather mass added to in the U4 mode.50 The
unexpectedly small soliton mass obtained from the present
specific heat measurements should be due to these low-energy
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FIG. 14. (Color online) Low-temperature total specific heat Ctotal

measured at various magnetic fields for H ‖ b. Open circles indicate
Ctotal at zero field. Solid symbols indicate Ctotal in nonzero magnetic
fields.
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unknown modes. Then, assuming that the contribution of
these unknown modes is effectively expressed in terms of the
secondary gap �2, which is much smaller than the soliton mass
�1, we describe the magnetic specific heat by Eq. (8), as in the
case of H ‖ a. The solid lines in Fig. 12 indicate the fits using
Eq. (8) with the two gaps shown in Fig. 13. The experimental
value of Cmag for H ‖ b is effectively described by Eq. (8).
Similar to the soliton gap � obtained from the fit by CTBA(�),
both the primary gap �1 and the secondary gap �2 obtained for
H � 3 T are expressed as �i =A{H 2/3 − Hc(i)2/3} (i = 1 and
2) with Hc(1) = 0.82 ± 0.13 T and Hc(2) = 2.06 ± 0.01 T.
This value of Hc(2) is close to the critical field Hc � 2.5 T
observed in ESR measurements for H ‖ b.50 The values of A

are 4.95 ± 0.40 and 3.36 ± 0.09, respectively.
In Fig. 14, we show the total specific heat Ctotal measured

below 1 K at various magnetic fields. In this temperature range,
the lattice contribution Clattice is negligible. Ctotal appears to be
linear in temperature for H � 3 T, while for H � 5 T, Ctotal

exhibits exponential temperature dependence. This indicates
that the gapless ground state changes into a gapped state
between 3 and 5 T. To confirm the magnetic-field-induced
quantum phase transition, we performed a field scan of specific
heat at T = 0.4 K. The result is shown in Fig. 15 with the
sum of Cmag and Clattice calculated using the TBA results
shown in Fig. 4 with the gap �ESR obtained from the ESR
measurements. The total specific heat Ctotal has a peak at
H = 0.6 T and shoulders at H = 1.8 and 3 T. No such behavior
was observed for H ‖ a and H ‖ c. In these field directions,
Ctotal at finite magnetic field is always smaller than Ctotal at zero
magnetic field at low temperatures, because the magnitude of
the field-induced gap increases with increasing magnetic field.
With further increasing magnetic field, Ctotal decreases rapidly
and becomes almost zero at H = 5.5 T. Unlike this result, the

FIG. 15. (Color online) Magnetic field dependence of total
specific heat Ctotal measured at T = 0.4 K for H ‖ b. The quantum
phase transition where a gapless ground state changes into a gapped
state is observed. Open circles indicate the sum of Clattice and Cmag

calculated using the TBA calculations shown in Fig. 4 with the gap
�ESR.

calculation shows that Cmag monotonously decreases as the
magnetic field increases. From these observations, we can
deduce that the gapless ground state for H ‖ b becomes a
gapped state in between 3 and 5.5 T. The critical field Hc

is larger than Hc � 2.5 T observed in ESR measurements.50

At present, the origins of the low-field gapless state for H ‖ b

and the unknown ESR modes that make a large contribution to
the specific heat are not clear. The uniform b axis component
of the D vector, which gives rise to a helical spin structure or
a soliton lattice in a magnetic field,59 may be responsible for
these effects.

V. CONCLUSION

We have presented results for the specific heat of KCuGaF6

in magnetic fields. It was clearly observed that an excitation
gap opens in a magnetic field and increases with increasing
magnetic field. Specific heat data were analyzed using two
theoretical values of specific heat calculated by the TBA and
QTM methods, both of which are based on the quantum SG
model. In the TBA method, the SU(2) symmetry is assumed,
while in the QTM method, the breaking of the SU(2) symmetry
owing to the external magnetic field is taken into account.
The specific heat for H ‖ c is well reproduced by these two
calculations with the soliton mass close to that obtained
from previous ESR measurements. The soliton mass was
found to be proportional to H 2/3. These results indicate that
the thermodynamic properties for H ‖ c are well described
by quantum SG field theory and that the breaking of the
SU(2) symmetry is negligible in our experimental magnetic
field range because of the large exchange interaction of
J/kB = 103 K.

In the cases of H ‖ a and H ‖ b, we found a significant
contribution of additional excitations that cannot be explained
in the framework of quantum SG field theory. For these
field directions, we analyzed the specific heat data using
Eq. (8), in which the contribution of the unknown excitations
is effectively taken into account by assuming a secondary gap
�2. For H ‖ a, the primary gap �1 agrees with the soliton
mass �ESR obtained from the ESR measurements, while for
H ‖ b, �1 does not agree with �ESR. We found that, for H ‖ b,
the ground state is gapless at low magnetic fields and that with
increasing magnetic field a quantum phase transition occurs
between gapless and gapped ground states.
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57A. Klümper, Eur. Phys. J. B 5, 677 (1998).
58D. C. Johnston, R. K. Kremer, M. Troyer, X. Wang, A. Klümper,
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