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Effects of ring exchange interaction on the Néel phase of two-dimensional, spatially anisotropic,
frustrated Heisenberg quantum antiferromagnet
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Higher-order quantum effects on the magnetic phase diagram induced by four-spin ring exchange on plaquettes
are investigated for a two-dimensional quantum antiferromagnet with S = 1/2. Spatial anisotropy and frustration
are allowed for. Using a perturbative spin-wave expansion up to second order in 1/S we obtain the spin-wave
energy dispersion, sublattice magnetization, and magnetic phase diagram. We find that for substantial four-spin
ring exchange the quantum fluctuations are stronger than in the standard Heisenberg model. A moderate amount
of four-spin ring exchange couplings stabilizes the ordered antiferromagnetic Néel state while a large amount
renders it unstable. Comparison with inelastic neutron-scattering data for cuprates points toward a moderate ring
exchange coupling of 27 to 29% of the nearest-neighbor exchange coupling.
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I. INTRODUCTION

Despite the intense experimental and theoretical activities
to understand the origin of high-temperature superconductivity
in layered oxide high-temperature superconductors, the under-
lying microscopic mechanism is still unclear.1–9 Very recently
the crucial role of magnetic excitations in these compounds
has been supported by their observation in the whole Brillouin
zone up to high energies and high levels of doping.10

The conventional route to theoretically investigate the
magnetic properties of these undoped compounds is the
two-dimensional antiferromagnetic (AF) spin-1/2 Heisenberg
model with nearest-neighbor (NN) AF coupling J1 and next-
nearest-neighbor (NNN) antiferromagnetic coupling J2.11 For
concreteness, we give the studied Heisenberg Hamiltonian for
a S = 1/2 antiferromagnet on a square lattice:

H = 1

2
J1

∑
i

Si · Si+δx
+ 1

2
J ′

1

∑
i

Si · Si+δy

+ 1

2
J2

∑
i

Si · Si+δx+δy

+ 2K
∑

i

[(Si · Si+δx
)(Si+δy

· Si+δx+δy
)

+ (Si · Si+δy
)(Si+δx

· Si+δx+δy
)

− (Si · Si+δx+δy
)(Si+δy

· Si+δx
)]. (1)

We consider four different exchange couplings: J1 for NNs
along the rows, J ′

1 for NNs along the columns, J2 for
NNNs along the diagonals, and finally the four-spin ring
exchange interaction K . All interactions are assumed to be
antiferromagnetic, i.e., J1,J

′
1,J2,K > 0. Here i runs over N

lattice sites and δx,δy are unit vectors in both directions. In
the present work, we study the parameter region where the
ground state is of the Neél type as shown in Fig. 1. We
take J1 as the fundamental energy scale so that the ground
state and its properties depend on the dimensionless ratio
η := J2/J1 parametrizing the degree of frustration, the ratio

ζ := J ′
1/J1 parametrizing the degree of spatial anisotropy, and

the ratio μ = KS2/J1 parametrizing the relative strength of the
four-spin ring exchange. Note that the full cyclic permutation
around a plaquette comprises also two-point couplings along
the plaquette edges and along the diagonals.12 But they do not
need to be considered separately because they are incorporated
in J1, J ′

1, and J2.
Experimentally the ground-state phase diagram of these

frustrated spin systems can be explored from high values to
low values of η by applying high pressures. For example,
x-ray-diffraction measurements on Li2VOSiO4 show that the
value of η decreases by about 40% with increase in pressure
from 0 to 7.6 G Pa.13

Theoretically, evidence for sizable four-spin ring exchange
K in high-temperature superconductors14–16 was found soon
after the discovery of high-temperature superconductivity.17

Such exchange processes turned out to be the dominant
subleading correction to the NN Heisenberg Hamiltonian
if it is derived from a three-band Hubbard model18–20 or
from a single-band Hubbard model.21–24 Experimental evi-
dence for ring exchange stems from the analysis of infrared
absorption,25 of Raman response,26,27 and of inelastic neutron
scattering.1,2,28,29 The results indicate that the ring exchange
coupling reaches between xring = 2K/J1 = 0.2 and 0.25
relative to the NN coupling. Note that for S = 1/2 one has
xring = 8μ. These findings and the quantitative estimates are
strongly supported by the analysis of two-leg spin ladder
systems such as Sr14Cu24O41, Ca8La6Cu24O41, and (Ca,
La)14Cu24O41.12,27,30–33

The recent discovery of superconductivity in the class
of iron pnictides has ushered in a renewed interest in this
exciting field.34 The parent phases of these materials have been
found to be metallic, but with columnar AF order.35–37 Since
the superconductivity appears in immediate proximity of the
magnetically ordered phase, it is evident that the magnetic ex-
citations play an important role.38–40 Neglecting the metallicity
of the parent phases the magnetic excitations can be described
by frustrated two-dimensional Heisenberg Hamiltonians with
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FIG. 1. Classical antiferromagnetic ground state (Néel state) and
the various couplings: J1, J ′

1 are nearest-neighbor interactions along
the row and column directions, respectively; J2 is the next-nearest-
neighbor interaction along the diagonals; and K is the cyclic four-spin
ring exchange. All couplings are assumed to be antiferromagnetic,
i.e., J1,J

′
1,J2,K > 0.

S > 1/2,41–44 although the three-dimensionality cannot be
neglected.45–48 Ab initio calculations seem to indicate a
strong spatial anisotropy ζ ≈ 0 of the NN couplings49 fitting
to the experimental findings.38–40 But the weak structural
distortion does not explain this strong anisotropy. So either
orbital order50,51 or higher-order magnetic exchange such
as NN biquadratic coupling52–55 may effectively explain the
anisotropy.

Another class of magnetic materials described by the
Hamiltonian in Eq. (1) is that of vanadium phosphates.
Extensive band-structure calculations56 yielded four differ-
ent exchange couplings: J1 and J′

1 between NNs and J2

and J′
2 between NNNs in the compounds Pb2VO(PO4)2,

SrZnVO(PO4)2, BaZnVO(PO4)2, and BaCdVO(PO4)2. For
example ζ ≈ 0.7 and J ′

2/J2 ≈ 0.4 were obtained for
SrZnVO(PO4)2. Also the compound (NO)Cu(NO3)3 possibly
realizes the J1-J ′

1-J2 model.57

The above examples corroborate the relevance of the model
Eq. (1).

It is now well known that at low temperatures the spin-
1/2 antiferromagnetic J1-J2 model on a square lattice exhibits
new types of magnetic order and novel quantum phases.11

For J2 = 0 and K = 0 the ground state is Néel ordered at
zero temperature. Addition of next-nearest-neighbor (NNN)
interactions induces a strong frustration and breaks the Néel
order at a quantum critical point J2/J1 ≈ 0.4, as found by
1/S expansions,58–60 series expansion about the Ising limit,61

and the coupled-cluster approach.62 We stress that the precise
nature of the phase beyond the Néel phase is still intensely
debated.63–65

A generalization of the frustrated J1-J2 model is the J1-
J ′

1-J2 model where ζ = J ′
1/J1 is the directional anisotropy

parameter.59,60,66 Recently, the role of directional anisotropy
on the magnetic phase diagram has been investigated in detail
using a spin-wave expansion.60

The next generalization consists of the inclusion of the
four-spin ring exchange interaction K , which is the next
important coupling after the NN exchange coupling. Using
linear spin-wave theory (LSWT) its effects on the magnetic
properties of the J1-J2-K model were studied in Ref. 16, where
a quasiclassical phase diagram in O[(1/S)0] was obtained. In
Ref. 28 corrections to the spin-wave spectrum to first order in
1/S were studied for finite K using self-consistent spin-wave
theory. The self-consistent spin-wave theory is a mean-field
approach which captures only a part of the second-order
effects O[(1/S)2] in the phase diagram. In particular, it
does not take virtual excitations of two and four magnons
into account. To consider them a perturbative spin-wave
expansion up to 1/S2 is needed. That is the goal of the present
work.

In the present paper we investigate the higher-order quan-
tum corrections due to the presence of plaquette four-spin ring
interactions on the antiferromagnetic phase diagram of the
J1-J ′

1-J2-K Heisenberg model on a square lattice [see Eq. (1)].
Our calculations use the Dyson-Maleev spin representation,
which facilitates the calculation significantly compared to the
Holstein-Primakov representation. The concomitant formal-
ism is presented in the next section. Results for the spin-wave
energies and the magnetizations of the system are presented
and discussed in Sec. III. A quantitative comparison with
experimental data is also included. Section IV contains a brief
summary of our results.

II. FORMALISM

Quantum fluctuations play a significant role in the magnetic
phase diagram of the system at zero temperature. We will
investigate the role of quantum fluctuations on the stability
of the Néel phase. We first express the fluctuations around
the classical antiferromagnetic ground state in terms of the
boson operators using the Dyson-Maleev representation. The
quadratic term in boson operators corresponds to the linear
spin-wave theory, whereas the higher-order terms represent
spin-wave interactions and virtual processes. We keep terms
up to second order in 1/S. In the next step we calculate
the renormalized magnon Green’s functions and self-energies.
Finally, we calculate the magnon energy dispersion and the
sublattice magnetization up to and including terms of order
1/S2.

For the Néel ordered phase NN couplings interact between
the A and B sublattices while NNN couplings link A and A
sites or B and B sites, respectively. The Hamiltonian in Eq. (1)
takes the form

H = J1

∑
i

SA
i · SB

j + J ′
1

∑
i

SA
i · SB

�

+ 1

2
J2

∑
i

[
SA

i · SA
k + SB

j · SB
�

]

+ 2K
∑

i

[(
SA

i · SB
j

)(
SA

k · SB
�

) + (
SB

j · SA
k

)(
SB

� · SA
i

)

− (
SA

i · SA
k

)(
SB

� · SB
j

)]
, (2)

where j = i + δx, k = i + δx + δy, and� = i + δy as shown
in Fig. 1. Beside the directional anisotropy parameter ζ =
J ′

1/J1, the magnetic frustration between the NN and NNN
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spins η = J2/J1, and the cyclic four-spin exchange interaction
term μ = KS2/J1 we use z = 2 for the coordination number.
This spin Hamiltonian is mapped onto an equivalent Hamil-
tonian of interacting bosons by expressing the spin operators
in terms of bosonic creation and annihilation operators a†,a
for “up” sites on sublattice A and b†,b for “down” sites on
sublattice B using the Dyson-Maleev representation:

S+
Ai =

√
2S

[
ai − a

†
i aiai

(2S)

]
, S−

Ai =
√

2Sa
†
i ,

Sz
Ai = S − a

†
i ai, (3a)

S+
Bj =

√
2S

[
b
†
j − b

†
j b

†
j bj

(2S)

]
, S−

Bj =
√

2Sbj ,

Sz
Bj = −S + b

†
j bj . (3b)

Substituting Eqs. (3) into (2) we expand the Hamiltonian
perturbatively in powers of 1/S as

H = H−1 + H0 + H1 + H2 + · · · , (4)

where Hm is of order 1/Sm−1. Note that H−1 is just a number
representing the classical energy. We do not discuss it further
because it is irrelevant for the quantum fluctuations. Hence
the 1/S expansion will be performed around the unperturbed
Hamiltonian H0, which is the zeroth-order Hamiltonian in
this sense. Relative to H0 the terms H1 and H2 are first- and
second-order terms, respectively.

Next the real space Hamiltonian is Fourier transformed to
momentum space. Then we diagonalize the quadratic part H0

by transforming the operators ak and bk to magnon operators
αk and βk using the usual Bogoliubov (BG) transformations:

a
†
k = lkα

†
k + mkβ−k, b−k = mkα

†
k + lkβ−k. (5)

The coefficients lk and mk are defined as

lk =
[

1 + εk

2εk

]1/2

, mk = −sgn(γk)

[
1 − εk

2εk

]1/2

≡ −xklk,

(6)

xk = sgn(γk)

[
1 − εk

1 + εk

]1/2

,

with γkx = cos(kx), γky = cos(ky), and

εk = (
1 − γ 2

k

)1/2
, (7a)

γk = γ1k

κk
, (7b)

γ1k = (1 − 4μ)γkx + (ζ − 4μ)γky

1 + ζ − 8μ
, (7c)

γ2k = γkxγky, (7d)

κk = 1 − 2(η − 2μ)

1 + ζ − 8μ
(1 − γ2k). (7e)

The function sgn(γk) keeps track of the sign of γk in the first
Brillouin zone (BZ). After these transformations, the quadratic
part of the Hamiltonian takes the form

H0 = J1Sz(1 + ζ − 8μ)
∑

k

κk(εk − 1) + J1Sz(1 + ζ − 8μ)

×
∑

k

κkεk(α†
kαk + β

†
kβk). (8)

The first term is the quantum zero-point energy and the second
term represents the excitation energy of the magnons within
linear spin-wave theory (LSWT).16

The part H1 comprises the 1/S contribution to the Hamil-
tonian. We follow the same procedure as described above. The
resulting expression after transforming the bosonic operators
to magnon operators is

H1 = J1Sz(1 + ζ − 8μ)

2S

∑
k

[Ak(α†
kαk + β

†
kβk) + Bk(α†

kβ
†
−k + β−kαk)] − J1Sz(1 + ζ − 8μ)

2SN

∑
1234

δG(1 + 2 − 3 − 4)l1l2l3l4

× [
V

(1)
12;34α

†
1α

†
2α3α4 + 2V

(2)
12;34α

†
1β−2α3α4 + 2V

(3)
12;34α

†
1α

†
2β

†
−3α4 + 4V

(4)
12;34α

†
1α3β

†
−4β−2

+ 2V
(5)

12;34β
†
−4α3β−2β−1 + 2V

(6)
12;34β

†
−4β

†
−3α

†
2β−1 + V

(7)
12;34α

†
1α

†
2β

†
−3β

†
−4 + V

(8)
12;34β−1β−2α3α4 + V

(9)
12;34β

†
−4β

†
−3β−2β−1

]
. (9)

In the above equation momenta k1,k2,k3, and k4 are abbreviated as 1, 2, 3, and 4. The first term in Eq. (9) is obtained by normal
ordering the products of four boson operators with respect to creation and annihilation in the magnon operators; i.e., magnon
creation operators appear always to the left of magnon annihilation operators. The coefficients Ak and Bk read

Ak = A1
1

κkεk

[
κk − γ 2

1k

] + A2
1

εk
[1 − γ2k] + A3

1

εk
[(1 + γ2k) − γk(γkx + γky)], (10a)

Bk = B1
1

κkεk
γ1k[1 − γ2k] + A3

1

εk
[(γkx + γky) − γk(1 + γ2k)], (10b)

where the shorthands

A1 =
(

2

N

) ∑
p

1

εp
[γpγ1p + εp − 1], (11a)

A2 = 2(η − 4μ)

1 + ζ − 8μ

(
2

N

) ∑
p

1

εp
[1 − εp − γ2p], (11b)

144420-3



MAJUMDAR, FURTON, AND UHRIG PHYSICAL REVIEW B 85, 144420 (2012)

A3 = 4μ

1 + ζ − 8μ

(
2

N

) ∑
p

2

εp
[1 − εp + γ2p − γp(γpx + γpy)], (11c)

B1 = 2(η − 2μ)

1 + ζ − 8μ

(
2

N

) ∑
p

1

εp

[
γ2p − γpγ1p

]
(11d)

are used.
The second term in Eq. (9) represents scattering between spin waves where the delta function δG(1 + 2 − 3 − 4) ensures that

the momentum is conserved within a reciprocal-lattice vector G. Explicit forms of the vertex factors V
i=2,3,5,7,8

1234 are given in
Appendix B.

The second-order term, H2, is composed of six boson operators and is only present when μ �= 0. Before the Fourier and BG
transformations H2 is of the following form:

H2 = − 8μS

(2S)2

∑
i

[
(a†

i ai + b
†
j bj + aibj + a

†
i b

†
j )

(
a
†
kakb

†
�b� + 1

2
a
†
kakakb� + 1

2
a
†
kb

†
�b

†
�b�

)

+ (a†
kak + b

†
j bj + akbj + a

†
kb

†
j )

(
a
†
i aib

†
�b� + 1

2
a
†
i aiaib� + 1

2
a
†
i b

†
�b

†
�b�

)

+
(

a
†
i aib

†
j bj + 1

2
a
†
i aiaibj + 1

2
a
†
i b

†
j b

†
j bj

)
(a†

kak + b
†
�b� + akb� + a

†
kb

†
�)

+
(

a
†
kakb

†
j bj + 1

2
a
†
kakakbj + 1

2
a
†
kb

†
j b

†
j bj

)
(a†

i ai + b
†
�b� + aib� + a

†
i b

†
�)

− (a†
i ai + a

†
kak − aia

†
k − a

†
i ak)

(
b
†
j bj b

†
�b� − 1

2
b
†
j b

†
j bjb� − 1

2
bjb

†
�b

†
�b�

)

−
(

a
†
i aia

†
kak − 1

2
a
†
i aiaia

†
k − 1

2
a
†
i a

†
kakak

)
(b†j bj + b

†
�b� − bjb

†
� − b

†
j b�)

]
. (12)

After Fourier and BG transformations to magnon operators αk,βk the Hamiltonian in normal-ordered form reduces to

H2 = −4μzS

(2S)2

∑
k

[C1k(α†
kαk + β

†
kβk) + C2k(α†

kβ
†
−k + β−kαk) + . . .]. (13)

The dotted terms contribute only to higher than second order corrections and are thus omitted in our calculations. The coefficients
C1k and C2k are given in Appendix C.

The quasiparticle energy ẼAF
k for magnon excitations, measured in units of J1Sz(1 + ζ − 8μ) up to second order in 1/S, is

given as

ẼAF
k = Ek + 1

(2S)
Ak + 1

(2S)2

[
�(2)

αα(k,Ek) − B2
k

2Ek

]
. (14)

Expressions for the magnon Green’s functions and self-energies are given in Appendix A. The dynamic contributions to the
second-order self-energies �(2) are second order in the vertex factors V (j ). These are the contributions which are missed by
self-consistent spin-wave theory.

The sublattice magnetization MAF for the A sublattice can be expressed as

MAF = S − 〈a†
i ai〉 = S − �S + M1

(2S)
+ M2

(2S)2
, (15)

where

�S = 2

N

∑
k

1

2εk
− 1

2
, (16a)

M1 = 2

N

∑
k

lkmkBk

Ek
, (16b)

M2 = 2

N

∑
k

{
− (

l2
k + m2

k

) B2
k

4E2
k

+ lkmk

Ek
�

(2)
αβ (k, − Ek) −

(
2

N

)2 ∑
pq

2l2
kl

2
pl

2
ql

2
k+p−q

[(
l2
k + m2

k

)
V

(7)
k,p,q,[k+p−q]V

(8)
[k+p−q],q,p,k

(Ek + Ep + Eq + Ek+p−q)2

+ 2lkmkV
(7)

k,p,q,[k+p−q]V
(5)

[k+p−q],q,p,k

E2
k − (Ep + Eq + Ek+p−q)2

]}
. (16c)
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The zeroth-order term �S corresponds to the reduction of
magnetization within LSWT, M1 corresponds to the first-order
1/S correction, and M2 is the second-order correction. Again,
the parts which are second order in the vertex factors are not
captured by self-consistent spin-wave theory.

III. RESULTS

1. Spin-wave energy

We obtain the spin-wave energy 2J1S(1 + ζ − 8μ)ẼAF
k for

S = 1/2 as a function of momenta (kx,ky) for several values
of ζ,η, and μ by evaluating Eq. (14) in the first BZ. For the
numerical summation we divide the first BZ in a mesh of N2

L

points with NL = 48 and then the contributions from all the
points are summed up to evaluate the third term in Eq. (14). In
the Dyson-Maleev formalism, no cancellation of divergences
occurs, so the convergence of the numerical results for NL →
∞ is very good. This is a crucial advantage over the use of the
Holstein-Primakov representation. We estimate that the results
for NL = 48 will not change more than in the third digit if NL

is chosen larger.
Figure 2 shows a comparison between the results from

LSWT (long-dashed lines) and first-order (dot-dashed lines)
and second-order corrections (solid lines) to the spin-wave
energy spectrum for isotropic coupling (ζ = 1) for two choices
of frustration and ring exchange. For the moderate value μ =
0.025 corresponding to 2K/J1 = 0.2 the 1/S correction is
substantial while the 1/S2 correction is fairly small. This is
very similar to the corrections for the NN Heisenberg model at
μ = 0.58–60,67–69 The right panel of Fig. 2 tells quite a different
story. For substantial ring exchange the quantum corrections
are very large and cannot be ignored. We point out that this is
not due to the frustration alone, as can be seen by inspecting the
results for substantial values of η, but without ring exchange
μ = 0, in Ref. 60. The 1/S2 corrections for μ = 0 are as small
as they are for the NN Heisenberg model, in contrast to the
result in the right panel of Fig. 2.

In the panels of Fig. 3 the evolution of the spin-wave
energy spectrum including corrections up to second order
for various values of ζ,η, and μ are shown. The spin-wave
dispersions for the couplings ζ = 1 and 0.4 at μ = 0 were
reported earlier using the Holstein-Primakov representation.60

The results from the Dyson-Maleev and Holstein-Primakov
representations coincide, as it has to be for physically observ-
able results of a systematic expansion in a small parameter.

For μ = 0 and η = 0, the energy at (π/2,π/2) is larger
than the energy at (π,0) (see the upper left panel in Fig. 3).
This dip of the dispersion at (π,0) was first computed by
high-order series expansion (HSE) around the Ising limit70,71

and was confirmed by quantum Monte Carlo calculation
(QMC).72 HSE and QMC find that the dip is about 9% deep,
i.e., {E[(π/2,π/2)] − E[(π,0)]}/E[(π/2,π/2)] ≈ 0.09. Ex-
perimentally, the dip is found to be about 7% in compounds
in which no couplings beyond J1 are thought to play a role, in
reasonable agreement with HSE and QMC.4,5

In contrast, LSWT and order 1/S do not find a dip at all.
In order 1/S2, it is present but as small as 1.4%, and in order
1/S3 it takes the value of 3.2%.69 Thus one must be aware that

the data in Fig. 3 do not capture all aspects of the dispersion
between (π,0) and (π/2,π/2). But in the remaining BZ the
significance of corrections of third order and higher is rather
small and the agreement with the series-expansion results is
very good.

Having the above minor caveat in mind, we discuss the
much stronger influence of frustration and of ring exchange in
the following. Increasing the value of μ to positive values the
energy at (π/2,π/2) decreases more strongly than the one at
(π,0) (see the left panels in Fig. 3). Hence, beyond some finite
value of four-spin ring exchange there is a dip from (π,0)
to (π/2,π/2). This agrees qualitatively with experimental
findings,1,2 which see a 13% dip, and with an analysis based
on self-consistent spin-wave theory.28 Even larger values of
μ will lead to a complete softening of the magnon mode at
(π/2,π/2). This indicates a competition between an ordered
orthogonal state at modulation (π/2,π/2) and the ordered Néel
state at (π,π ) upon increasing μ.

Another important issue is the effect of finite frustration
η > 0, which has been investigated before without ring
exchange.59,60 Indeed, finite frustration induces a signifi-
cant dip at (π,0) relative to (π/2,π/2), i.e., E[(π,0)] <

E[(π/2,π/2)], so that frustration pushes the system into the
opposite direction as does the ring exchange. But in the
presence of substantial ring exchange the effect is reversed:
Comparing the upper and lower left panels in Fig. 3 and
inspecting Fig. 4 we see that increasing frustration supports
the tendency to soften the mode at (π/2,π/2), which will
eventually destabilize the Néel order.

Spatial anisotropy (see the right panel in Fig. 3) does
not alter this picture qualitatively. A strong anisotropy ζ < 1
seems to support the tendency to mode softening and the
concomitant destabilization of the Néel order.

2. Quantitative analysis of inelastic neutron-scattering data

We use our model to quantitatively analyze the experi-
mental data obtained in Ref. 2 by inelastic neutron scattering
for La2CuO4. We disregard any spatial anisotropy because
La2CuO4 is tetragonal, so we set ζ = 1. The experimental
data display a significant dip at (π/2,π/2) relative to the
energy at (π,0). This points toward a sizable four-spin ring
exchange.1,28

Our findings are shown in Fig. 5. They strikingly confirm
that substantial values of μ are needed to explain the observed
energy dip at (π/2,π/2). For instance, for η = 0 one needs
μ = 0.034, and J1 = 143 meV; for η = 0.01, μ = 0.036, and
J1 = 146 meV; for η = 0.02, μ = 0.0375, and J1 = 148 meV
(not shown). Even for η = 0.10 the parameters μ = 0.046
and J1 = 174 meV yield a theoretical dispersion which is
indistinguishable from those displayed in Fig. 5. Note that the
agreement of the steeply rising parts of the dispersion is not
completely perfect because the theoretical curves remain a bit
below the experimental data points.

We conclude that from the experimental data for the
spin-wave energies the relative frustration and the relative ring
exchange cannot both be determined independently. Based on
the results of systematic derivations of extended Heisenberg
models for the cuprates starting from microscopic Hubbard
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FIG. 2. (Color online) Spin-wave energy EAF
k /J1 obtained from LSWT (long-dashed lines), with 1/S (dot-dashed lines) and with 1/S2

corrections (solid lines) for the Néel ordered phase. We have chosen spatially isotropic coupling ζ = 1. In the left panel we show the corrections
for relative frustration η = 0 and ring exchange μ = 0.025; in the right panel we show them for frustration η = 0.2 and ring exchange μ = 0.12.
In the latter case, the 1/S2 terms in the Hamiltonian provide significant corrections to both the LSWT and 1/S results.

models19,23,24 we stick to small values of frustration η ≈ 0.01.
According to our fits this implies xring = 2K/J1 = 8μ = 0.29.
This relative four-spin ring exchange is slightly larger than we
would expect from the systematic derivations.19,23,24 It is also
slightly larger than the value 0.24 found in the analysis by
self-consistent spin-wave theory.28

On the one hand, the agreement is good in view of the
remaining uncertainty in the description of the spin-wave
energies at the zone boundary (see our discussion above). On

the other hand, a further improved theoretical treatment of spin
waves is desirable.

3. Sublattice magnetization and phase diagram

We calculate the sublattice magnetization MAF from
Eq. (15) by numerically evaluating Eqs. (16a)–(16c) with
ζ = 1 and 0.8 and for μ = 0,0.12, and 0.22. Especially to
obtain the second-order correction term M2 we sum up the
values of N2
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FIG. 3. (Color online) The effect of μ on the spin-wave energy EAF
k /J1 for the Néel ordered phase with 1/S2 corrections shown for two

values of η = 0,0.2 and ζ = 1.
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FIG. 4. (Color online) Spin-wave energy EAF
k /J1 including 1/S2

corrections for ζ = 1,μ = 0.12 for various values of η.

points of p and q in the first BZ, with NL = 36 sites along one
axis.

Figure 6 shows the sublattice magnetization with increase
in the frustration parameter η = J2/J1 for the isotropic case
ζ = J ′

1/J1 = 1 for three different values of plaquette ring
exchange coupling μ = KS2/J1 = 0,0.12, and 0.22. For each
case, three different curves are plotted: The long-dashed lines
represent the LSWT prediction, the dotted lines include the
first-order (1/S) correction to the LSWT results, and the solid
lines include corrections up to second order (1/S2). Upon
increasing frustration the dotted curves of the first-order cor-
rections diverge. However, 1/S2 corrections (M2) significantly
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FIG. 5. (Color online) Comparison of the measured spin-wave
energy EAF

k as obtained by inelastic neutron scattering in La2CuO4

with the theoretical results including 1/S2 corrections for the spatially
isotropic model (ζ = 1) for NL = 24. For given moderate values η

of relative frustration a value μ of the four-spin ring exchange can be
found such that the dispersions match the experimental data.
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FIG. 6. (Color online) The sublattice magnetization MAF plotted
for ζ = 1 and for three different values of μ = 0 (black), 0.12
(blue/dark gray), and 0.22 (orange/light gray) as a function of the
relative magnetic frustration η. For all three cases, results from linear
spin-wave theory (dashed lines) with 1/S (dot-dashed lines) and with
1/S2 corrections (solid lines) are shown. Magnetization curves with
1/S corrections alone diverge in all cases. However, 1/S2 corrections
compensate the divergence, and the magnetization curves steadily
decrease to zero at critical values ηc. We find ηc = 0.411 (μ = 0),
0.423 (μ = 0.12), and 0.399 (μ = 0.22).

increase with frustration and stabilize the apparent divergence
of the magnetization. We find that the magnetization with
second-order corrections decreases steadily at first with in-
crease in η and then sharply drops to zero at a critical value
of η = ηc. Assuming that the Néel phase loses its stability
continuously, ηc marks the quantum critical point at which the
AF order is destroyed and the system enters into another state
characterized by other types of order. The precise order of the
phase transition and the nature of the subsequent phase are still
matters of intense debate.63–65

Without four-spin ring exchange, i.e., μ = 0, MAF with
second-order corrections begins from 0.307 at η = 0 and
decreases upon rising frustration until η ≈ 0.32. Finally it
vanishes at ηc1 ≈ 0.411. For this case, we reproduce the
magnetization plot obtained in Ref. 60 using a similar
perturbative 1/S expansion based on the Holstein-Primakov
representation. The LSWT prediction for the critical point is
lower at ≈0.38. With increase in the four-spin ring exchange μ

the values of the magnetization at η = 0 increase. For example,
we find MAF(η = 0,μ = 0.12) ≈ 0.458 and MAF(η = 0,μ =
0.22) ≈ 0.524. These numbers are significantly larger than
the predictions from LSWT, which are 0.381 and 0.466,
respectively. We conclude that without NNN frustration (η =
0) the pure four-spin coupling μ favors the Néel order. This is in
qualitative accord with the observation that the spin gap of the
disordered paramagnetic phase of spin ladders is reduced on
increasing four-spin coupling μ.12,30,32,33 Thus finite four-spin
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FIG. 7. ηc-μ phase diagram for ζ = 1. With increase in μ, ηc

increases up to a maximum value 0.423 at μ = μt ≈ 0.12 and then
sharply decreases. This shows that the ring exchange coupling μ

initially favors the Néel ordering of the NN spins until the turning
value μt is reached. For μ > μt , the four-spin coupling enhancement
destabilizes the Néel order.

coupling pushes spin ladders closer to a gapless phase which
is likely to display quasi-long-range order with power-law
correlations.

We observe that first- and second-order corrections provide
significant contributions to the entire magnetization curves.
For small μ, the corrections M2 start from a small positive
value and then switch sign and become negative with increase
in η. However, for large μ, say μ = 0.22 M2, corrections are
negative throughout.

Another interesting feature portrayed in Fig. 6 is the change
in the critical value of η with μ. For μ = 0 the magnetization
vanishes at the critical value of frustration ηc ≈ 0.411. With
increase in μ, the value of ηc increases initially until a turning
value of μ = μt ≈ 0.12 is reached beyond which ηc decreases
again. For example, ηc ≈ 0.423 for μ = 0.12, but ηc ≈ 0.399
for μ = 0.22. This implies that the four-spin ring exchange
interaction favors the Néel order and thus extends the AF
region only for small values. Beyond the turning value μ = μt ,
the ring exchange coupling destabilizes the Néel phase. This
is shown in the ηc-μ phase diagram in Fig. 7.

Next we study the influence of directional anisotropy
between the horizontal and vertical NN couplings implying
ζ < 1. This spatial anisotropy does not lead to frustration, but
it weakens the NN coupling because the vertical NN coupling
is lowered. Hence we expect a qualitatively similar behavior
as before, but at lower values of η and μ. This expectation is
confirmed by the following results.

Figure 8 shows the magnetization upon increasing η for
the spatially anisotropic case. We choose ζ = 0.4 with the
three values of ring exchange coupling μ = 0,0.08, and
0.13. Here the values of the magnetization without NNN
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FIG. 8. (Color online) Sublattice magnetization MAF with spatial
anisotropy ζ = 0.4 between the vertical and the horizontal NN
couplings for three values of μ = 0 (black), 0.08 (blue/dark gray),
and 0.13 (orange/light gray) as a function of frustration η. For all three
cases, results from LSWT (dashed lines) with 1/S (dot-dashed lines)
and with 1/S2 corrections (solid lines) are shown. MAF with 1/S

corrections alone diverge for μ = 0 and 0.08, but not for μ = 0.13
where it converges.

frustration are MAF(η = 0,μ = 0.08) ≈ 0.40 and MAF(η =
0,μ = 0.13) ≈ 0.438. Again these numbers are larger than
the LSWT values, which are 0.350 and 0.406, respectively.

It is interesting to observe that with increase in η the
magnetizations with just 1/S corrections (dotted curves)
diverge except for the case when μ = 0.13. We find that
this divergence ceases to occur for μ � 0.10. As before, 1/S2

corrections significantly modify the magnetization curves. The
critical values of η at which the Néel phase is unstable are
0.176, 0.191, and 0.15 for μ = 0,0.08, and 0.13, respectively.
The LSWT predictions for these three cases are 0.172, 0.188,
and 0.194, respectively. Notice that the LSWT prediction
ηc = 0.194 for μ = 0.13 is larger than the value ηc = 0.15
obtained including first- and second-order corrections.

It is worth exploring the influence of the spatial anisotropy
ζ on the ηc-μ phase diagram. This is done in the panels of
Fig. 9 for ζ = 0.4 and 0.2. The results are qualitatively similar
to those for ζ = 1 in Fig. 7, but at lower values of η and μ

as we expected. The Néel phase is stabilized by small values
of μ. But beyond the turning values μt the four-spin ring
exchange starts to reduce the parameter region of the Néel
phase.

IV. CONCLUSIONS

For the S = 1/2 Heisenberg model the four-spin ring ex-
change coupling on plaquettes is the next important interaction
after the nearest-neighbor exchange. In this work we have
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FIG. 9. ηc-μ phase diagram for ζ = 0.4 (left panel) and 0.2 (right panel), to be compared with the phase diagram for the spatially isotropic
case ζ = 1 in Fig. 7.

investigated its influence on the zero-temperature magnetic
phase diagram of a spatially anisotropic and frustrated Heisen-
berg antiferromagnet on the square lattice.

In particular, we studied higher-order quantum effects
in a systematic perturbative spin-wave expansion in the
inverse spin S. We have calculated the spin-wave energy
and the magnetization up to and including the second-order
corrections. They contribute significantly to the shape of
the magnetic phase diagram, especially as the frustration
between the next-nearest-neighbor spins increases. The ob-
tained magnetic phase diagram shows that the four-spin
ring exchange coupling initially favors the Néel order until
a specific turning value is reached. Beyond this values a
further increase in the ring exchange coupling increases
the frustration in the system and reduces the parameter
region in which the Néel order represents the stable ground
state.

Moreover, we analyzed the available neutron-scattering
data for La2CuO4 and found that a ring exchange coupling
2K of about 27 to 29% of the nearest-neighbor exchange
is required to explain the data. The additional determination
of the relative frustration in a three-parameter fit is not
possible because the dispersions for various triples of nearest-
neighbor exchange, frustration, and four-spin ring exchange
are indistinguishable if the energies at (π,0) and (π/2,π/2)
are matched.
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APPENDIX A: GREEN’S FUNCTIONS AND
SELF-ENERGIES

The time-ordered magnon Green’s functions are defined as

Gαα(k,t) = −i〈T [αk(t)α†
k(0)]〉,

(A1a)
Gββ(k,t) = −i〈T [β†

−k(t)β−k(0)]〉,
Gαβ(k,t) = −i〈T [αk(t)β−k(0)]〉,

(A1b)
Gβα(k,t) = −i〈T [β†

−k(t)α†
k(0)]〉.
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FIG. 10. (a) The solid and the dashed lines corresponding to the
α and β propagators. Second-order diagrams for the self-energies
�(2)

αα(k,ω) and �
(2)
αβ (k,ω) are shown in (b) and (c). The diagrams in (d)

contribute only to �(2)
αα(k,ω). V (2),V (3),V (5),V (7),V (8) are the vertex

factors. Note that at each vertex two arrows enter the vertex and two
leave it, which reflects the conservation of the total Sz component.
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Considering H0 as the unperturbed Hamiltonian the Fourier-transformed unperturbed propagators are

G0
αα(k,ω) = 1

ω − Ek + iδ
, G0

ββ(k,ω) = 1

−ω − Ek + iδ
, (A2a)

G0
αβ(k,ω) = G0

βα(k,ω) = 0, (A2b)

with δ → 0+. The spin-wave energy Ek = κkεk is measured in units of J1Sz(1 + ζ − 8μ). The graphical representations of the
Green’s functions are shown in Fig. 10(a). Note the differing convention for the arrows which help to represent the conservation
of the total Sz component in the diagrams efficiently (see Fig. 10).

The full propagators Gij (k,ω) satisfy the matrix Dyson equation

Gij (k,ω) = G0
ij (k,ω) +

∑
mn

G0
im(k,ω)�mn(k,ω)Gnj (k,ω), (A3)

where the self-energy �ij (k) can be expressed in powers of 1/(2S) as

�ij (k,ω) = 1

(2S)
�

(1)
ij (k,ω) + 1

(2S)2
�

(2)
ij (k,ω) + . . . . (A4)

The first-order self-energy terms read

�(1)
αα(k,ω) = �

(1)
ββ (k,ω) = Ak, (A5a)

�
(1)
αβ (k,ω) = �

(1)
βα(k,ω) = Bk. (A5b)

The second-order self-energy terms originate from the Feynman diagrams in Figs. 10(b)–10(d). The coefficients C1k and C2k
stem from the normal ordering of H2. The complete expressions read

�(2)
αα(k,ω) = �

(2)
ββ (k,ω) = C1k +

(
2

N

) ∑
p

(�k�p)2
Bp

[
V

(2)
k,p,p,k + V

(3)
k,p,p,k

]
2Ep

+
(

2

N

)2 ∑
pq

2(�p�q�k�[k+p−q])
2

×
{

V
(2)

k,p,q,[k+p−q]V
(3)

[k+p−q],q,p,k

ω − Ep − Eq − E[k+p−q] + iδ
− V

(7)
k,p,q,[k+p−q]V

(8)
[k+p−q],q,p,k

ω + Ep + Eq + E[k+p−q] − iδ

}
, (A6a)

�
(2)
αβ (k,ω) = �

(2)
βα(k,ω) = C2k +

(
2

N

)2 ∑
pq

2(�p�q�k�[k+p−q])
2

×
{

V
(2)

k,p,q,[k+p−q]V
(7)

[k+p−q],q,p,k

ω − Ep − Eq − E[k+p−q] + iδ
− V

(7)
k,p,q,[k+p−q]V

(5)
[k+p−q],q,p,k

ω + Ep + Eq + E[k+p−q] − iδ

}
, (A6b)

where [k + p − q] is meant to be mapped to (k + p − q) in the first BZ by an appropriate reciprocal vector G. In deriving
Eqs. (A6a) and (A6b) we have used the symmetry properties of the vertices [see Eq. (B2)].

APPENDIX B: VERTEX FACTORS

The expressions for the vertex factors are very lengthy. It is convenient to first define the following functions:

J1 = γ2(1 − 4) + γ2(2 − 4) + γ2(1 − 3) + γ2(2 − 3) − γ2(1) − γ2(2) − γ2(1 − 3 − 4) − γ2(2 − 3 − 4),

J2 = γ2(1 − 4) + γ2(2 − 4) + γ2(1 − 3) + γ2(2 − 3),

S1 = γx(4)γy(2 − 4) + γx(1 + 2 − 4)γy(1 − 4) + γx(1 − 3)γy(1 + 2 − 3) + γx(2 − 3)γy(3)

+ γx(3)γy(2 − 3) + γx(1 + 2 − 3)γy(1 − 3) + γx(1 − 4)γy(1 + 2 − 4) + γx(2 − 4)γy(4),

S2 = γx(4)γy(1 − 4) + γx(1 + 2 − 4)γy(2 − 4) + γx(2 − 3)γy(1 + 2 − 3) + γx(1 − 3)γy(3)

+ γx(3)γy(1 − 3) + γx(1 + 2 − 3)γy(2 − 3) + γx(2 − 4)γy(1 + 2 − 4) + γx(1 − 4)γy(4),

S3 = γx(1 − 3 − 4)γy(2 − 4) + γx(1)γy(2 − 3) + γx(1 − 4)γy(2 − 3 − 4) + γx(1 − 3)γy(2)

+ γx(2 − 3 − 4)γy(1 − 4) + γx(2)γy(1 − 3) + γx(2 − 4)γy(1 − 3 − 4) + γx(2 − 3)γy(1),

S4 = γx(1 − 3 − 4)γy(2 − 3) + γx(1)γy(2 − 4) + γx(1 − 3)γy(2 − 3 − 4) + γx(1 − 4)γy(2)

+ γx(2 − 3 − 4)γy(1 − 3) + γx(2)γy(1 − 4) + γx(2 − 3)γy(1 − 3 − 4) + γx(2 − 4)γy(1),

S5 = γx(2)γy(2 − 3) + γx(2 − 3 − 4)γy(2 − 4) + γx(1 − 4)γy(1 − 3 − 4) + γx(1 − 3)γy(1)

+ γx(1)γy(1 − 3) + γx(1 − 3 − 4)γy(1 − 4) + γx(2 − 4)γy(2 − 3 − 4) + γx(2 − 3)γy(2),
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S6 = γx(2)γy(2 − 4) + γx(2 − 3 − 4)γy(2 − 3) + γx(1 − 3)γy(1 − 3 − 4) + γx(1 − 4)γy(1)

+ γx(1)γy(1 − 4) + γx(1 − 3 − 4)γy(1 − 3) + γx(2 − 3)γy(2 − 3 − 4) + γx(2 − 4)γy(2),

S7 = γx(1 + 2 − 3)γy(1 − 4) + γx(3)γy(2 − 4) + γx(1 − 3)γy(1 + 2 − 4) + γx(2 − 3)γy(4)

+ γx(1 + 2 − 4)γy(1 − 3) + γx(4)γy(2 − 3) + γx(1 − 4)γy(1 + 2 − 3) + γx(2 − 4)γy(3),

S8 = γx(1 + 2 − 3)γy(2 − 4) + γx(3)γy(1 − 4) + γx(2 − 3)γy(1 + 2 − 4) + γx(1 − 3)γy(4)

+ γx(1 + 2 − 4)γy(2 − 3) + γx(4)γy(1 − 3) + γx(2 − 4)γy(1 + 2 − 3) + γx(1 − 4)γy(3),

S9 = γx(1 − 4)γy(2 − 4) + γx(1 − 3)γy(2 − 3) + γx(2 − 4)γy(1 − 4) + γx(2 − 3)γy(1 − 3),

S10 = γx(2 − 3)γy(2 − 4) + γx(1 − 3)γy(1 − 4) + γx(2 − 4)γy(2 − 3) + γx(1 − 4)γy(1 − 3),

S11 = γx(2)γy(4) + γx(4)γy(2) + γx(1 + 2 − 3)γy(1 − 3 − 4) + γx(1 − 3 − 4)γy(1 + 2 − 3)

+ γx(1 + 2 − 4)γy(1) + γx(1)γy(1 + 2 − 4) + γx(2 − 3 − 4)γy(3) + γx(3)γy(2 − 3 − 4),

S12 = γx(2)γy(3) + γx(3)γy(2) + γx(1 + 2 − 4)γy(1 − 3 − 4) + γx(1 − 3 − 4)γy(1 + 2 − 4)

+ γx(1 + 2 − 3)γy(1) + γx(1)γy(1 + 2 − 3) + γx(2 − 3 − 4)γy(4) + γx(4)γy(2 − 3 − 4),

S13 = γx(1)γy(4) + γx(4)γy(1) + γx(1 + 2 − 3)γy(2 − 3 − 4) + γx(2 − 3 − 4)γy(1 + 2 − 3)

+ γx(1 + 2 − 4)γy(2) + γx(2)γy(1 + 2 − 4) + γx(1 − 3 − 4)γy(3) + γx(3)γy(1 − 3 − 4),

S14 = γx(1)γy(3) + γx(3)γy(1) + γx(1 + 2 − 4)γy(2 − 3 − 4) + γx(2 − 3 − 4)γy(1 + 2 − 4)

+ γx(1 + 2 − 3)γy(2) + γx(2)γy(1 + 2 − 3) + γx(1 − 3 − 4)γy(4) + γx(4)γy(1 − 3 − 4).

The vertex factors required for our calculations are

V
(2)

12;34 = [−x3γ1(2 − 3) − x4γ1(2 − 4) − x1x2x3γ1(1 − 3) − x1x2x4γ1(1 − 4)

+ x1x2γ1(1) + γ1(2) + x1x2x3x4γ1(1 − 3 − 4) + x3x4γ1(2 − 3 − 4)]

+
(

η − 2μ

1 + ζ − 8μ

)
[x2 + �Gx1x3x4]J1 −

(
4μ

1 + ζ − 8μ

)[
− (x2 + �Gx3x4)J2 + 1

2
(S1 + x1x2S2 + x1x3S3 + x1x4S4

+ x2x3S5 + x2x4S6 + x3x4S7 + x1x2x3x4S8 − 2x1S9 − 2x2x3x4S10 − x4S11 − x3S12 − x1x2x4S13 − x1x2x3S14)

]
,

(B1a)

V
(3)

12;34 = [−x1γ1(1 − 3) − x2γ1(2 − 3) − x1x3x4γ1(1 − 4) − x2x3x4γ1(2 − 4)

+ x1x3γ1(1) + x2x3γ1(2) + x1x4γ1(1 − 3 − 4) + x2x4γ1(2 − 3 − 4)] +
(

η − 2μ

1 + ζ − 8μ

)
[x3 + �Gx1x2x4]J1

−
(

4μ

1 + ζ − 8μ

)[
− (x3 + �Gx1x2x4)J2 + 1

2
(x2x3S1 + x1x3S2 + x1x2S3 + x1x2x3x4S4

+S5 + x3x4S6 + x2x4S7 + x1x4S8 − 2x1x2x3S9 − 2x4S10 − x2x3x4S11 − x2S12 − x1x3x4S13 − x1S14)

]
,

(B1b)

V
(5)

12;34 = [−x2x3x4γ1(1 − 3) − x1x3x4γ1(2 − 3) − x1γ1(2 − 4) − x2γ1(1 − 4)

+ x1x4γ1(2) + x2x4γ1(1) + x1x3γ1(2 − 3 − 4) + x2x3γ1(1 − 3 − 4)] +
(

η − 2μ

1 + ζ − 8μ

)
[x1x2x4 + �Gx3]J1

−
(

4μ

1 + ζ − 8μ

)[
− (x1x2x4 + �Gx3)J2 + 1

2
(x1x4S1 + x2x4S2 + x3x4S3 + S4 + x1x2x3x4S5

+ x1x2S6 + x1x3S7 + x2x3S8 − 2x4S9 − 2x1x2x3S10 − x1S11 − x1x3x4S12 − x2S13 − x2x3x4S14)

]
, (B1c)

V
(7)

12;34 = [x1x4γ1(1 − 3) + x1x3γ1(1 − 4) + x2x3γ1(2 − 4) + x2x4γ1(2 − 3)

− x1x3x4γ1(1) − x2x3x4γ1(2) − x1γ1(1 − 3 − 4) − x2γ1(2 − 3 − 4)] +
(

η − 2μ

1 + ζ − 8μ

)
[−x3x4 − �Gx1x2]J1

−
(

4μ

1 + ζ − 8μ

)[
(x3x4 + �Gx1x2)J2 + 1

2
(−x2x3x4S1 − x1x3x4S2 − x1x2x4S3 − x1x2x3S4 − x4S5 − x3S6

− x2S7 − x1S8 + 2x1x2x3x4S9 + 2S10 + x2x3S11 + x2x4S12 + x1x3S13 + x1x4S14)

]
, (B1d)
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V
(8)

12;34 = [x1x4γ1(2 − 4) + x2x4γ1(1 − 4) + x1x3γ1(2 − 3) + x2x3γ1(1 − 3)

− x1γ1(2) − x2γ1(1) − x1x3x4γ1(2 − 3 − 4) − x2x3x4γ1(1 − 3 − 4)] +
(

η − 2μ

1 + ζ − 8μ

)
[−x1x2 − �Gx3x4]J1

−
(

4μ

1 + ζ − 8μ

)[
(x1x2 + �Gx3x4)J 2 + 1

2
(−x1S1 − x2S2 − x3S3 − x4S4 − x1x2x3S5 − x1x2x4S6

− x1x3x4S7 − x2x3x4S8 + 2S9 + 2x1x2x3x4S10 + x1x4S11 + x1x3S12 + x2x4S13 + x2x3S14)

]
, (B1e)

where �G = exp(iGx), Gx being the x component of the reciprocal-lattice vector G appearing in the momentum-conserving
delta function in Eq. (9). These vertex factors fulfill the following symmetry relations:

V
(2)

12;34 = V
(2)

12;43; V
(3)

12;34 = V
(3)

21;34; V
(5)

12;34 = V
(5)

21;34, (B2a)

V
(7)

12;34 = V
(7)

21;34 = V
(7)

12;43; V
(8)

12;34 = V
(8)

21;34 = V
(8)

12;43. (B2b)

If no reciprocal-lattice vector is involved in the momentum conservation, i.e., G = 0, there are some additional symmetries:

V
(3)

12;34 = V
(5)

12;34; V
(7)

12;34 = V
(8)

12;34. (B2c)

APPENDIX C: COEFFICIENTS C1k AND C2k

We define the functions Pk and Qk

Pk =
(

2

N

)2 ∑
12

2�2
1�

2
2

{
x2

1x
2
2 [6 + 6γ2(k) + 6γ2(2) + 2γ2(k − 2) + γx(1 − 2)γy(1 + 2)

+ γx(k − 1 − 2)γy(k − 1 + 2)] + x2
1 [2γ2(k − 2) + 6γ2(2) + γx(k + 1 − 2)γy(k − 1 − 2)

+ γx(k − 1 − 2)γy(k + 1 − 2) + γx(k − 1 + 2)γy(k − 1 − 2) + γx(k − 1 + 2)γy(k + 1 − 2)]

+ x1x2[4γx(k − 1)γy(k − 2) + 4γx(k − 2)γy(k − 1) + 4γx(1)γy(2) + 4γx(2)γy(1)

+ 6γx(1 − 2) + 6γy(1 − 2) + 4γx(k)γy(k − 1 − 2) + 4γx(k − 1 − 2)γy(k)]

− x2
1x2[8γx(k)γy(k − 2) + 8γx(k − 2)γy(k) + 12γx(2) + 12γy(2) + 4γx(1)γy(1 − 2) +

+ 4γx(1 − 2)γy(1) + 2γx(k − 1)γy(k − 1 − 2) + 2γx(k − 1 − 2)γy(k − 1)

+ 2γx(k + 1 − 2)γy(k − 1) + 2γx(k − 1)γy(k + 1 − 2)]

− x1[4γx(2)γy(1 − 2) + 4γx(1 − 2)γy(2) + 2γx(k − 2)γy(k − 1 + 2)

+ 2γx(k − 1 + 2)γy(k − 2) + 2γx(k + 1 − 2)γy(k − 2) + 2γx(k − 2)γy(k + 1 − 2)]

+ [γx(1 − 2)γy(1 + 2) + γx(k − 1 − 2)γy(k + 1 − 2)]
}
, (C1a)

Qk =
(

2

N

)2 ∑
12

2�2
1�

2
2

{
x2

1x
2
2 [6γx(k) + 6γy(k) + 4γx(2)γy(k − 2) + 4γx(k − 2)γy(2)

+ γx(k − 1 − 2)γy(1 − 2) + γx(1 − 2)γy(k − 1 − 2)]

+ x2
1 [4γx(2)γy(k − 2) + 4γx(k − 2)γy(2) + γx(k + 1 − 2)γy(1 − 2)

+ γx(1 − 2)γy(k + 1 − 2) + γx(k − 1 + 2)γy(1 − 2) + γx(1 − 2)γy(k − 1 + 2)]

+ x1x2[8γx(2)γy(k − 1) + 8γx(k − 1)γy(2) + 6γx(k − 1 + 2) + 6γy(k − 1 + 2)

+ 4γx(k)γy(1 − 2) + 4γx(1 − 2)γy(k)]

− x2
1x2[8γx(k)γy(2) + 8γx(2)γy(k) + 12γx(k − 2) + 12γy(k − 2) + 4γx(k − 1)γy(1 − 2) +

+ 4γx(1 − 2)γy(k − 1) + 4γx(k − 1 − 2)γy(1) + 4γx(1)γy(k − 1 − 2)]

− x1[4γx(k − 2)γy(1 − 2) + 4γx(1 − 2)γy(k − 2) + 4γx(2)γy(k − 1 − 2)

+ 4γx(k − 1 − 2)γy(2)] + [γx(1 − 2)γy(k − 1 − 2) + γx(k − 1 − 2)γy(1 − 2)]
}
. (C1b)

Then, the static second-order corrections are given by

C1k = (
�2

k + m2
k

)
Qk + 2�kmkPk, (C2a)

C2k = (
�2

k + m2
k

)
Pk + 2�kmkQk. (C2b)
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