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Exact diagonalization of finite spin-1/2 chains with periodic boundary conditions is applied to the ground state
(GS) of chains with ferromagnetic (F) exchange J1 < 0 between first neighbors, antiferromagnetic (AF) exchange
J2 = αJ1 > 0 between second neighbors, and axial anisotropy 0 � � � 1. In zero field, the GS is in the Sz = 0
sector for the relevant parameters and is doubly degenerate at multiple points γm = (αm,�m) in the α, � plane.
Degeneracy under inversion at sites or spin-parity or both leads, respectively, to a bond order wave (BOW), to
staggered magnetization, or to vector chiral (VC) order. Exact results up to N = 28 spins directly yield order
parameters and spin correlation functions whose weak N dependencies allow inferences about infinite chains. The
high-spin GS at J2 = 0 changes discontinuously at γ1 = (−1/4,1) to a singlet in the isotropic (� = 1) chain. The
transition from high to low spin S(α,�) is continuous for � < �B = 0.95 ± 0.01 on the degeneracy line α1(�).
The GS has staggered magnetization between �A = 0.72 and �B and a BOW for � < �A. When both inversion
and spin-parity are reversed at γm, the correlation functions C(p) for spins separated by p sites are identical.
C(p) minima are shifted by π/2 from the minima of VC order parameters at separation p, consistent with right-
and left-handed helices along the z axis and spins in the xy plane. Degenerate GSs of finite chains are related
to quantum phase diagrams of extended α, � chains, with good agreement for order parameters along the line
α1(�). Degenerate GSs limit a VC phase to intermediate α and � where S(α,�) varies rapidly but continuously,
in contrast to many-body treatments in which VC phases extend over a larger range of parameters.
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I. INTRODUCTION

One-dimensional (1D) spin chains have been extensively
studied over the years both experimentally and theoretically.
Spin chains are good approximations to the magnetism of
diverse inorganic and organic crystals. They are simple many-
body quantum systems, well suited for computational studies,1

with some exactly known properties and rich ground-state
(GS) phase diagrams. Solid-state studies focus broadly on
magnetic properties, instabilities, and phase transitions that
limit 1D behavior at low temperature. Theoretical interest
extends to quantum phases with different GSs in parameter
space. In this paper we consider the GS properties of spin-1/2
chains [Eq. (1) below], with isotropic or axially anisotropic
exchange J1 between nearest neighbors and antiferromagnetic
(AF) exchange J2 > 0 between second neighbors that ensures
frustration for either sign of J1. The spin-Peierls system2

CuGeO3 illustrates spin-1/2 chains of Cu(II) ions with J1 > 0.
The isotropic AF/AF chain is a spin liquid up to3 α = J2/J1 �
0.2411, and its exact GS is a bond order wave (BOW) at
α = 1/2, the Majumdar-Ghosh point.4

Spin-1/2 Cu(II) chains with ferromagnetic (F) J1 < 0 have
recently been identified in cupric oxides5–13 with estimated
α ranging from13 α ≈ 0 in Ba3Cu3In4O12 or Ba3Cu3Sc4O12

to12,14 α ≈ −0.5 in LiCuSbO4, LiCuZrO4, LiCuVO4, and
LiCu2O2. The isotropic F/AF chain has a ferromagnetic GS
for α = J2/J1 � αc = −1/4, a singlet GS for α � αc, and
exact degeneracy at the quantum critical point αc as shown by
Hamada et al.15 Vector chiral (VC) and multipolar phases have
been of special interest.14,16–20 Hikihara et al.19 discuss the
phase diagram of the isotropic F/AF chain in a static magnetic
field. Furukawa et al.17 and Sirker,14 among others,21 have
studied the axially anisotropic F/AF chain in a zero field, the
model considered in this paper. The limit J1 = 0 decouples the

system into two AF chains as sketched in Fig. 1 for a zigzag
chain.

The Hamiltonian of the anisotropic F/AF chain with
periodic boundary conditions (PBCs) and spin-1/2 sites is

H (α,�) = J1

N∑

p=1

(�Sp · �Sp+1 + α �Sp · �Sp+2)

+ (� − 1)
(
Sz

pSz
p+1 + αSz

pSz
p+2

)
, (1)

where J1 = −1 sets the energy scale. The model has two
parameters, the frustration ratio α = J2/J1 < 0 and axial
anisotropy 0 � � � 1. Total spin S is conserved in the
isotropic limit, � = 1, but only Sz is a good quantum number
otherwise. The GS is always in the Sz = 0 sector for the
parameters of interest in this work, and Sz = 0 basis states are
products of N/2 spins α and N/2 spins β. The GS transforms as
P = ±1 under the spin-parity operator P that reverses all spins
and as Ci = ±1 under inversion at sites, which corresponds to
reflection through sites p, p + N/2 in finite systems. H (α,�)
also has CN translational symmetry and inversion symmetry
midway between sites.

The GS phase diagram of H (α,�) has been studied by
many-body methods1,14,16–23 such a field theory, perturbation
theory, and density matrix renormalization group (DMRG)
that so far agree only in part. Broken symmetry is expected
and found for ranges of α and �, with multiple exotic phases
near the quantum critical point αc = −1/4, � = 1. Excitation
energies are small, of order 1/N for N spins and exceptionally
small according to one field theory.24 One challenge is to
distinguish between strictly degenerate GSs that indicate
broken symmetry and nondegenerate GSs with tiny excitation
energies, as discussed carefully by Affleck and Lieb in 1D spin
chains.25
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FIG. 1. Schematic representation of a spin-1/2 chain with ex-
change J1 and J2 between first and second neighbors.

We adopt a different approach that bears directly on broken
symmetry and order parameters but only indirectly on the
phase diagram. We solve H (α,�) exactly for finite N up
to N = 28. Since exact eigenstates respect all symmetries,
broken symmetry requires degenerate GSs that in turn yield
order parameters. On the other hand, phase boundaries from
finite-size calculations are based on excited-state crossovers, or
degeneracy, as discussed for the BOW phase of the isotropic
AF/AF chain3,26 or of extended Hubbard models.27,28 Order
parameters become nonzero at the boundary and increase in
the broken-symmetry phase. As shown in Sec. II, H (α,�) has
a doubly degenerate GS at multiple parameter values γm =
(αm,�m),m = 1,2, . . . , where the GS symmetry changes.

There are three kinds of GS degeneracy. When γm corre-
sponds to Ci = ±1 or P = ±1, the linear combinations

|γm〉 = (|γm,1〉 ± |γm, − 1〉)/
√

2 (2)

have broken inversion or spin-parity symmetry and different
order parameters. When both Ci and P are reversed at γm,
either (1,1) and (−1, − 1) or (1, − 1) and (−1,1), the linear
combinations in Eq. (2) have CiP = ±1. There are finite-size
gaps to all other eigenstates, sometimes remarkably small gaps.
Broken Ci symmetry leads as usual to a BOW or dimer phase;
broken parity P is associated with staggered magnetization
or Néel order; broken Ci and P symmetry yields VC order.
Dimer, Néel, and VC phases are all possibilities for H (α,�)
in a zero field.14,17,19 Exact diagonalization, albeit limited to
discrete γm, makes it possible to compute order parameters as
well as spin correlations functions or other properties. When
systematic variations with N are found, extrapolation gives
accurate but not exact information about the infinite chain.

Increasing J2 (increasing −α) induces a quantum transition
from a high to low spin. The isotropic chain has a first-order
transition with discontinuous S at γ1 = (−1/4,1). Sz rather
than S is conserved in systems with axial anisotropy � < 1.
The normalized spin per site S(α,�) is the GS expectation
value

2S(α,�) = 2〈α,�|S2|α,�〉1/2

[N (N + 2)]1/2
� 1. (3)

S(α,�) is shown in Sec. III to be discontinuous for small
anisotropy � > �B ≈ 0.95, continuous for � < �B . There
is finite Néel order between �A = 0.75 and �B , finite BOW
or dimer order for � < �A. The spin transition requires exact
GSs and has apparently not been recognized previously in
anisotropic chains. Spin correlation function show spiral order
at γm when Ci symmetry is broken, as in isotropic AF/AF
chains.26,29 We find identical spin correlations functions at
parameter values γm when both Ci and P are broken, and
interpret these results as right- and left-handed helices along

the unique axis with spins in the xy plane. We compare
finite-size results with previous theory and find considerable
agreement as well as occasional disagreement. Our results
limit VC degeneracy to small ranges of parameters α, � in
which S(α,�) varies rapidly but continuously. More extended
VC phases have been inferred by other methods.17,19

II. DEGENERACY AND BROKEN SYMMETRY

We summarize some properties of the anisotropic F/AF
spin chain [Eq. (1)] before presenting numerical results for
even N with PBC. The GS is ferromagnetic at J2 = 0 (α =
0) with magnetization in the xy plane for � < 1. Increasing
J2 > 0 (increasing −α) induces a quantum transition to a low-
spin state. The ferromagnetic and singlet GSs of the isotropic
chain are degenerate at αc = −1/4 with energy per site ε0 =
−3/16. The exact result for the extended system is the first
degeneracy γ1 = (−1/4,1) for finite N , where S changes from
N/2 to 0. Any singlet with Sz = 0 can be represented30 as
linear combinations of N/2 paired spins (αiβj − βiαj )/

√
2

whose phase is fixed by choosing site i < j . The parity is
P = (−1)N/2 since reversing all spins gives a phase factor of
−1 for every singlet pair. The GS linear combination at αc is
the uniformly distributed resonating valence bond solid.15

The degeneracy γ1 = α1(�) between high and low spin
shifts to α1(�) < αc = −1/4. The unit step function 2S(α,1)
at αc = −1/4 decreases rapidly for � < 1, and 2S(α,�)
is continuous for � < 0.95. In the limit � = 0 of extreme
anisotropy, the crossover to low spin occurs at α1(0) = −1/2
for even N . The degeneracy γ1 = (−1/2,0) is the F/AF
version of the Majumdar-Ghosh point of the isotropic AF/AF
chain.4 Here the exact GS is a product of triplets with Sz = 0,
(αiβj + αiβj )/

√
2, with either i = 2n − 1, j = 2n or i = 2n,

j = 2n + 1. There are N/2 triplets, and Eq. (3) gives

S(−1/2,0) = 1/
√

(N + 2). (4)

The exact result shows that the extended system has S(α,�) =
0 for −α � 1/2 over the entire range of �. The singlet GS at
� = 1 becomes a linear combination of states with S2 ≈ N in
anisotropic chains, and the spin per site goes as N−1/2 on the
low-spin side.

Another relevant limit is J1 = 0, when H (α,�) decouples
into chains with anisotropic J2 > 0 between nearest neighbors
as sketched in Fig. 1. N = 4n systems decouple into 1D chains
of 2n sites that correspond to the XXZ Heisenberg spin-1/2
antiferromagnet. The GS of each chain has Sz = 0, and there
are no correlations between spins in different chains. On the
other hand, N = 4n + 2 systems decouple into two radicals
with Sz = ±1/2 whose GSs remain entangled even at J1 = 0.
We find 4n, 4n + 2 effects in isotropic chains around α ≈
−1/2, but none at γ1 = α1(�).

We obtain the lowest energy of H (α,�) [Eq. (1)] for even N

and PBC in four sectors with Sz = 0, Ci = ±1, and P = ±1.
The absolute GS is degenerate at points γm = (αm,�m) that
are found to two or three significant figures. Preliminary scans
for small N on a rougher grid identifies parameter ranges with
symmetry crossovers. Figure 2 shows the γm in the −α, �

plane for N = 20. Open circles indicate Ci degeneracy, closed
circles P degeneracy, and stars VC degeneracy. The points α1 at
� = 1 and 0 are exact, independent of size, and the line γ1 =
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FIG. 2. Parameter points (α,�) for a doubly degenerate GS of
H (α,�) [Eq. (1)] with N = 20 spins. Open circles indicate inversion
degeneracy Ci = ±1, closed circles indicate spin-parity degeneracy
P = ±1, and stars indicate vector chiral degeneracy CiP = ±1. The
line α1(�) marks degeneracy between high and low spin.

α1(�) hardly depends on N . All degeneracy for � < 0.7 is
associated with inversion symmetry. Staggered magnetization
or VC order is limited to intermediate anisotropy in Fig. 2. The
intermediate region is expanded in Fig. 3 for N = 24.

Table I lists the n − 1 values of (−αm,1), m � 2, for
isotropic N = 4n chains, all with Ci = ±1. Anisotropic N =
4n chains with � < 0.7 also have n degenerate points αm with
Ci = ±1. Broken-symmetry GSs are given by Eq. (2). When
γm corresponds to Ci = ±1, the BOW or dimer amplitude
B(γm) is

B(γm) = 〈γm; −1|(S1 · S2 − S2 · S3)|γm; 1〉/2. (5)

The order parameter is the off-diagonal matrix element,
±B for the two GSs, and we used translational symmetry.
Only BOWs are realized in isotropic (� = 1) systems whose
B(αm,1) are shown in Fig. 4 for both N = 4n and 4n + 2.
B(α,1) has a broad maximum around α ≈ −0.5 and a modest
size dependence. DMRG results in Fig. 4 are based on an
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FIG. 3. Same as Fig. 2 for N = 24 at intermediate anisotropy �

and frustration α.

TABLE I. Degenerate ground states at (−αm,1), m � 2, of
isotropic spin chains [Eq. (1)] with N sites and � = 1.

N −α2 −α3 −α4 −α5 −α6 −α7

8 0.342
12 0.276 0.401
16 0.260 0.318 0.439
20 0.254 0.279 0.352 0.467
24 0.254 0.265 0.299 0.378 0.488
28 0.251 0.259 0.288 0.338 0.381 0.510

algorithm31 that adds four spins per step, as needed for
accuracy at −α > 0.5, and gives fragments with an even
number of sites at each step. The AF/AF chain has a broad
maximum28 B(0.4,1) = 0.40 that is 10-fold larger. The z and
transverse parts of B(αm) are found separately in anisotropic
systems with � < 1. Most γm in Figs. 2 and 3 refer to
degeneracy under inversion, and B(−1/2,0) = 1/8 is exact.

When γm corresponds to P = ±1, the amplitude Mst(γm) >

0 of the staggered magnetization is

Mst(γm) = 1
2 〈γm; −1|(Sz

1 − Sz
2

)|γm; 1|〉. (6)

Similarly, when both Ci and P are reversed at γm, the VC order
parameters ±κz(p; γm) for spins p sites apart are

κz(p,γm) = 〈γm; −1, − 1|(�S1 × �S1+p)z|γm; 1,1〉
= i

2
〈γm; −1, − 1|(S+

1 S−
1+p − S−

1 S+
1+p)|γm; 1,1〉.

(7)

The z component of the vector product is finite for axial
anisotropy, and Eq. (7) is for degeneracy between (1,1) and
(−1, − 1). The matrix element has (−1,1) and (1, − 1) for the
other way of reversing both Ci and P . We paid close attention
to degenerate points γm and found only twofold degeneracy. In
a few cases, the gap to the first excited state is tiny, of the order
of 10−5, far less than 1/N . Double degeneracy implies one
broken symmetry in finite chains for any (α,�) in the range
−α > 1/4, 0 � � � 1.
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FIG. 4. (Color online) Discrete order parameter B(αm) [Eq. (5)]
as a function of frustration α in isotropic (� = 1) chains of N sites;
continuous B(α) from DMRG.
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FIG. 5. (Color online) Order parameters along the degeneracy
line α1(�) between high and low spin. B and B⊥ are Eq. (5) and its
transverse part, and Mst is Eq. (6). The spin transition of the infinite
chain is first order for � � �B and has vanishing order parameters.

The order parameters B(γ1), its transverse part B⊥, and
Mst (γ1) are shown in Fig. 5 as a function of anisotropy along
γ1 = α1(�). The size dependence is negligible, and � = 0 is
exact, with B = 1/8, B⊥ = 1/4. As mentioned above, finite
B(γ1) or Mst (γ1) implies that the phase boundary where the
order parameter becomes nonzero is on the high-spin side of
γ1, but deviations from γ1 are significant only for large order
parameters. The largest difference occurs at � = 0, where
α1 = −0.50 and excited-state crossovers give α = −0.325.
The dimer/Néel boundary in Fig. 5 is �A(N ) = 0.722 with
αA = −0.317 for N = 18, 20, and 22, while the Néel/first-
order boundary is �B(N ) = 0.941 with αB = −0.2674. The
staggered magnetization increases with anisotropy in the Néel
phase to 0.050 at �A. B(α1) is small (<0.03) and decreases
with N near �B in the first-order region where we expect B =
0 in the extended system. For comparison, the infinite time-
evolving block decimation (iTEBD) algorithm17 gives �A =
0.72, αA = −0.320 and �B = 0.93, αB = −0.272 in Fig. 4
of Ref. 17(a); the maximum Néel amplitude is 0.055 and 2B⊥
(called D

xy

123) = 0.35 at � = 0.65 where we find 2B⊥ = 0.309
at N = 16 and 0.307 at N = 22. There is remarkably close
agreement between two completely different calculations. We
disagree near � = 1 where iTEBD returns small finite B rather
than B = 0.

III. SPIN TRANSITION AND CORRELATION FUNCTIONS

We evaluate the spin per site 2S(α,�) [Eq. (3)] for
slightly anisotropic systems along the degeneracy γ1 = α1(�)
between high (S+) and low spin (S−). The size dependence
of S+(�) − S−(�) is shown in Fig. 6 up to N = 28. The step
function of isotropic chains is quickly lost with increasing
N . Although 1/N behavior is approximate at best, the gap
has vanished by � = 0.94, and the extended system has a
continuous transition for � < �B = 0.95 ± 0.01. The S(α,�)
discontinuity at α1(�) clearly decreases very rapidly with
anisotropy. The precise value of �B is less important than
recognizing a first-order quantum transition for � > �B .
Orthogonality in S then ensures vanishing order parameters
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       0.97
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FIG. 6. (Color online) Discontinuity in S(α,�) [Eq. (3)] at the
degeneracy α1(�) between high and low spin in system of N spins
with axial anisotropy � up to N = 28.

for an infinite chain with a first-order transition in Fig. 5. As an
indication of internal consistency, we note that almost identical
values of �B are inferred from closing the S+(�) − S−(�)
discontinuity and from the Néel/first-order boundary.

We define GS correlation functions for spins p sites apart
using the translational symmetry of H (α,�)

C(p,γ ) = 〈γ |( �S1 · �S1+p)|γ |〉
= Cz(p,γ ) + C⊥(p,γ ). (8)

The z and transverse components are computed separately
and are not simply related in anisotropic systems. For S = 1/2
chains, we have

〈γ |S2
z |γ 〉/N = 1

4
+

N−1∑

p=1

Cz(p,γ ),

(9)

〈γ |S2
⊥|γ 〉/N = 1

2
+

N−1∑

p=1

C⊥(p,γ ).

Since the GS is in the Sz = 0 sector, finite S(α,�) is due
to transverse components. The high-spin regime with −γ �
α1(�) has C(p) > 0 for all p, or simply C(p) = 1/4 at � = 1.
The low-spin regime necessarily has C(p) < 0 for some p, and
PBC implies an even number of sign changes as a function of
p.

The upper panel of Fig. 7 shows C(p,α2) in isotropic
chains up to N = 28 as a function of θ = 2πp/N with p =
1,2, . . . ,N − 1. At � = 1, there are two sign changes in the
interval [−1/4,α2] and four sign changes in [α2,α3]. C(p,α2)
is double valued. The systematic size dependence allows
inferences about the extended system. The line in Fig. 7(a) has
small deviations from sinusoidal due to C(0) = 3/4, whose
contribution decreases as 1/N . C(p,γ ) changes sign 2n times
for −γ > γn, as shown in Fig. 7 for N = 20, lower panel, for
isotropic chains at γ5 = α5(1). For comparison, we include the
limit J1 = 0, when C(p) = 0 for odd p and has alternating
sign for even p. The J1 = 0 calculation is for a longer
chain that shows decreasing AF correlation with increasing
p. Although αn(1) ≈ −1/2 in Table I is far from the J1 = 0
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FIG. 7. (Color online) Spin correlation functions C(θ ) [Eq. (8)]
with θ = 2πp/N , of isotropic chains H (α,1) [Eq. (1)]. Upper panel:
α2 up to N = 28 with 2r changes of sign; the r = 1 and 2 lines
have B = 0.276, A = −0.0426. Lower panel: Closed symbols, α5

for N = 20 with 10 sign changes; open symbols, decoupled chains
with J1 = 0 and C(p) = 0 for odd p.

limit (α → −∞) of decoupled AF chains, the spin correlation
functions are already similar. They change sign at most 2n

times and account fully for the GS degeneracy of isotropic
N = 4n chains. Isotropic chains, either F/AF or AF/AF, are
limited to BOW or dimer phases, in clear disagreement with
the VC phase in zero field in Fig. 1(a) of Ref. 19 or, in a smaller
range, in Fig. 2(b) of Ref. 17(b).

C(p; γm) of anisotropic chains are not sinusoidal but still
have 2m − 2 and 2m sign changes when γm marks broken
Ci or P symmetry. The C(p,γ2) in Fig. 8 are for Néel
order and N = 24. There are two and four sign changes as
expected. N = 4n chains have n points γm with broken Ci or
P symmetry. Additional degeneracy, if any, is exclusively due
to the broken Ci and P symmetry that indicates VC order.
Returning to Figs. 2 and 3, we see that lines γm = αm(�)
through the mth degeneracy, either Ci or P , of finite systems
partition parameter space into regions in which C(p) changes
sign 2m − 2 and 2m times.
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FIG. 8. (Color online) Spin correlation functions C(p) of a 24-site
chain with spin-parity degeneracy at α2 = −0.312, � = 0.83.
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FIG. 9. (Color online) Spin correlation functions C(p) and order
parameters κz(p) [Eq. (7)] of a 20-site chain with VC degeneracies at
� = 0.75 and α = −0.338 and −0.357.

The GS energy per site, ε0(α,�), is related to spin
correlation functions of first and second neighbors

ε0(α,�) = −C⊥(1) − �Cz(1) + αC⊥(2) + α�Cz(2). (10)

Degenerate ε0(α,�) at γm = αm(�) is achieved with unequal
C(1; γm),C(2; γm) in Figs. 7 and 8. Finite-size effects generate
small discontinuities in S(α,�) at all γm with unequal
C(p; γm). It is straightforward to count the number of Ci or P

degeneracies in finite systems. We cannot predict the number
of VC degeneracy, the stars in Fig. 2 and 3, and a finer grid
may reveal additional GS degeneracy leading to VC order.

In contrast to P or Ci degeneracy, degenerate ε0(α,�)
under reversal of both Ci and P lead to equal spin correlation
functions as shown in Fig. 9, upper panel, for N = 20,
� = 0.75, α = −0.338 and −0.356. The first point has four
sign changes, in accord with two P degeneracies at smaller
−α. There is a Ci degeneracy between the two VC points,
which accounts for six sign changes at −α = 0.356. We
always find equal C(p; γm) at VC degeneracies within our
3–4 digit numerical accuracy, except for N = 4n + 2 systems
with −α > 0.5, where equality is limited to two digits and
there are pronounced 4n, 4n + 2 effects. Equal C(p; γm) for
all p implies equal S(γm) according to Eq. (9). The VC order
parameters κz(p; γm) [Eq. (6)]) in the lower panel of Fig. 9 has
the same periodicity, but they vanish at points that are shifted
by π/2. It follows from Eqs. (7) and (8) that when γm refers
to VC degeneracy:

〈S+
1 S−

1+p〉 = −C⊥(p,γm) − iκz(p,γm). (11)

VC order parameters are closely related to transverse spin
correlation functions in chains with axial anisotropy.

A simple classical picture captures the principal features of
quantum spins with VC order ±κz(p). Right- and left-handed
helices are doubly degeneracy with equal energy ε0(γm) and
spin S(γm). H (α,�) has axial symmetry in spin space and
spins in the xy plane for � < 1. We picture the two helices
as (xn, ± yn) = (cos nφ, ± sin nφ) with pitch angle φ that
generates a specified number of sign changes between n = 1
and N . Inversion gives n → −n and interchanges the helices.
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Spin parity reverses the z and y components of spin,
but not sx = (s+ + s−)/2, and also interchanges the helices.
Equal C(p,γm) follow from projecting the helices on a
plane that includes the z axis, as illustrated by 2〈xnxn+p〉n =
2〈ynyn+p〉n = cos pφ where 〈· · ·〉n indicates an average over
n. The VC order parameters κz(p,γm) go as ±2〈xnyn+p〉n =
± sin pφ, shifted by π/2.

When H (α,�) in Eq. (1) has classical spins, the GS is easily
shown by energy minimization to be a spiral with pitch angle
ϕ that depends only on α:

cos ϕ = −J1/4J2 = −1/4α. (12)

A finite chain with PBC has Nϕ = 2πm. The critical point
−4α = 1 corresponds to ϕ = 0, the ferromagnetic GS. Finite
N = 4n limits the remaining angles to n − 1 values 0 < ϕ <

π/2. Spiral spin correlation functions appear automatically in
DMRG treatments29,31 of isotropic spin-1/2 AF/AF chains.
This follows directly from a singlet GS and Eq. (8) with
2Cz(p) = C⊥(p), although DMRG is not accurate for the sum
over all spin correlation functions. A spiral interpretation of
C(p,γm) holds in finite F/AF chains at any γm or, indeed, at any
(α,�). There are crucial differences, however, between helices
and spirals. Left- and right-handed helices are degenerate at
γm with reversed Ci and P symmetry. Spirals are associated
with Ci = ±1 and BOW phases but are not degenerate in ±ϕ in
Eq. (12). The pitch angle ϕ = φ of spiral or helices of classical
spins follows immediately from PBC. Table I lists degenerate
γm at � = 1 for quantum spins that can be converted to angles
ϕm using Eq. (12). The proper number of γm is found for each
N , but the actual values differ considerably for −α > 0.4.
Moreover, the points γm = αm(�) vary substantially with
anisotropy.

IV. DISCUSSION

Quite unusually for model Hamiltonians, finite spin-1/2
chains with H (α,�) in Eq. (1), periodic boundary conditions,
and frustrated exchanges J1 < 0 and J2 = αJ1 > 0 have a
doubly degenerate ground state (GS) at many parameter values
γm = (αm,�m). There are three kinds of GS degeneracy: in-
version symmetry Ci = ±1 or spin-parity P = ±1 or reversal
of both Ci and P . We have exploited degeneracy for finite
N using exact diagonalization to construct broken-symmetry
GSs according to Eq. (2). Exact GSs make it possible
to compute order parameters for broken symmetry, spin
correlation functions C(p,γm) in Eq. (8), and the normalized
expectation value S(α,�) of the total spin in Eq. (3). Access
to exact GS properties compensates to some extent for the
inherent limitations of finite-size approaches to infinite chains.

We have focused on GS degeneracy to construct and
characterized broken-symmetry states. The quantum phase
diagram derived from finite systems invoke excited-state
degeneracy.3,27 Our finite-size results are summarized in
Fig. 10. The indicated phase boundary is based on the
excited-state degeneracy between first excited state in Sz = 0
and the Sz = ±1 GS up to N = 28, as discussed in related
1D systems2,27–29 that conserve S. The N dependence of the
excited-state degeneracy is comparably weak and independent
of �. The order parameter becomes nonzero and an energy
gap opens very slowly3,28 at a Kosterlitz-Thouless transition.
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FIG. 10. (Color online) Approximate GS phase diagram of the
anisotropic F/AF chain H (α,�) [Eq. (1)]. The phase boundary
between high and low spin is an excited-state crossover discussed
in the text. The degeneracy line α1(�) has Néel order between �A

and �B , dimer order for � < �A. Dashed lines enclose regions with
multiple degeneracies (inversion, spin-parity, both) where phases are
not assigned.

The high-spin phase17 is a ferromagnet or a Tomonaga-
Luttinger liquid (TLL). We find the transition between high
and low spin to be first order for �B > 0.95, continuous for
� < �B . Degeneracy along γ1 = α1(�) is exact at � = 1
or 0 and depends very weakly on N in between; as seen in
Fig. 5, there is Néel order along along the line between �A and
�B , dimer or BOW order for � < �A. An almost identical
boundary is shown in Fig. 4 of Ref. 17(a) or Fig. 2(b) of
Ref. 17(b), based on α = J2/|J1| as a perturbation to an exact
field theory at � = 0. As noted in connection with Fig. 5, the
order parameters of the dimer and Néel phases also agree well.

Multiple degeneracy is limited to intermediate anisotropy
� and frustration ratio α close to α1(�). The dashed lines
in Fig. 10 enclose the parameter space in which we find
all three kinds of GS degeneracy. We cannot assign phases
in this region. The degeneracies in Figs. 2 and 3 do not
evolve systematically with N . Finite-size results merely place
restrictions on phase boundaries. The isotropic (� = 1) chain
is limited to a BOW or dimer phase for −α < 1/4, consistent
with exclusively Ci degeneracy in Table I.

Broken Ci symmetry leading to a dimer or BOW phase
dominates on the low-spin side. We find Bz(γm), the z part of
the order parameter in Eq. (5), to change sign with decreasing
�, from singlet-type pairing at � = 1 where the GS is a
singlet to triplet-type pairing that is exact at � = 0, α = −1/2.
A dimer triplet phase appears for small � in Fig. 2(b) of
Ref. 17(b), separated by a VC phase from a dimer singlet
phase. We do not find evidence for VC order outside the dashed
lines in Fig. 10 and consider the sign of Bz(γm) to be incidental
in the dimer phase. The small region of multiple degeneracies
in Fig. 10 is the major difference with the extensive VC
regions in some17,19,20,22 zero-field phase diagrams, but not
in others.14,23
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Finite-size results complement approximate treatment of
extended systems. DMRG grows a discrete extended chain,
while field theory deals with a continuum version of the chain.
DMRG29,31 results for F/AF or for AF/AF spin-1/2 chains are
for open boundary conditions and even N that increases by two
or four sites per step. Even chains have inversion symmetry at
the center of the middle bond, but not Ci at any site, and Ci

is relevant for GS degeneracy. Exact treatment of a half-filled
band of N free electrons with open boundary conidtions leads
to a nondegenerate GS28,31 with a BOW whose amplitude B

decreases as 1/N and excitation energies of order 1/N . DMRG
works well for model parameters leading to substantial B >

0.01 such as the broad peak around α ≈ −0.4 for isotropic
F/AF chains in Fig. 4. But DMRG fails in extended 1D systems
where, as discussed by Affleck and Lieb,25 the distinction
between GS degeneracy and 1/N excitation energies has to be
considered.

Turning to field theory, we note that a continuum model is
an approximation, that additional approximations are typically
needed, and that different field theories are possible for
H (α,�). Two field theories24,29 for isotropic AF/AF chains
are not limited to J1 > 0. The anisotropic F/AF chain has
been treated with first-order corrections in J2/J1 starting17

with exact field theory at J2 = 0 and also as bosonization19

in the opposite limit of |J1| 
 J2. The merits of field
theory are beyond the scope of this paper. A continuum
models suppresses the important distinction between inversion
symmetry at sites and at the centers of bonds.

We have discussed frustrated chains with axial anisotropy
for parameters leading to GSs in the Sz = 0 sector. The energy
spectrum of isotropic (� = 1) chains in a magnetic field h =
gμBH that defines the z axis is simply the zero-field energy
plus the Zeeman energy hm, with m = ±1, ± 2, . . . , ± S for
states with spin S. The system has axial symmetry for h > 0,
but spin-parity is no longer conserved. In strong fields, the GS

has multipolar phases near the boundary between high and low
spin.19 The general problem of H (α,�) plus a static field is
considerably more complicated because Sz is conserved only
when h is along the unique axis. Otherwise, the GS has to be
found by separately as a function of h.

In summary, finite F/AF models H (α,�) [Eq. (1)] with
frustration ratio α = J2/J1 and axial anisotropy 0 � � �
1 have a doubly degenerate GS at multiple points γm =
(αm,�m), all in the Sz = 0 sector. Exact GSs make it possible
to compute order parameters at γm, spin correlation functions
and the spin per site, S(α,�). The transition from high to
low spin with increasing −α is first order for � > 0.95,
continuous for � < 0.95, with staggered magnetization or
Néel order for 0.72 < � < 0.95 and dimer order for stronger
anisotropy � < 0.72. When both Ci and P symmetry are
broken, VC order leads to identical spin correlation functions
and S(α,�) that is interpreted as right- and left-handed helices
along the unique axis with spins in the xy plane. Finite-size
effects are typically quite small, small enough to discuss
infinite chains. Exact finite-size results are consistent with
with many-body treatments aside from limiting a possible VC
phase to intermediate α and � where S(α,�) varies rapidly
but continuously.
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B. Wolter, B. Büchner, and A. N. Vasiliev, e-print arXiv:1111.1186.

12S. E. Dutton, M. Kumar, M. Mourigal, Z. G. Soos, J.-J. Wen, C. L.
Broholm, N. H. Andersen, Q. Huang, M. Zbiri, R. Toft-Petersen,
R. J. Cava, Phys. Rev. Lett. (in press), e-print arXiv:1109.4061.

13S. E. Dutton, M. Kumar, J. Crawford, Z. G. Soos, C. L. Broholm,
and R. J. Cava, J. Phys.: Condens. Matter 24, 166001 (2012).

14J. Sirker, Phys. Rev. B 81, 014419 (2010).
15T. Hamada, J. Kane, S. Nakagawa, and Y. Natusume, J. Phys. Soc.

Jpn. 57, 1891 (1988).
16S. W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
17S. Furukawa, M. Sato, and A. Furusaki, Phys. Rev. B 81, 094430

(2010); S. Furukawa, M. Sato, and S. Onoda, Phys. Rev. Lett. 105,
257205 (2010).

18D. V. Dmitriev and V. Ya. Krivnov, Phys. Rev. B 77, 024401 (2008).
19T. Hikihara, L. Kecke, T. Momoi, and A. Furusaki, Phys. Rev. B

78, 144404 (2008).

144415-7

http://dx.doi.org/10.1063/1.3518900
http://dx.doi.org/10.1103/PhysRevLett.70.3651
http://dx.doi.org/10.1103/PhysRevLett.70.3651
http://dx.doi.org/10.1016/0375-9601(92)90823-5
http://dx.doi.org/10.1063/1.1664979
http://dx.doi.org/10.1063/1.1664979
http://dx.doi.org/10.1103/PhysRevB.70.104426
http://dx.doi.org/10.1103/PhysRevB.74.134425
http://dx.doi.org/10.1103/PhysRevB.74.134425
http://dx.doi.org/10.1103/PhysRevLett.92.177201
http://dx.doi.org/10.1103/PhysRevB.66.064424
http://dx.doi.org/10.1103/PhysRevB.57.5326
http://dx.doi.org/10.1016/S0010-4655(02)00382-X
http://dx.doi.org/10.1016/S0010-4655(02)00382-X
http://dx.doi.org/10.1103/PhysRevLett.98.077202
http://arXiv.org/abs/arXiv:1111.1186
http://arXiv.org/abs/arXiv:1109.4061
http://dx.doi.org/10.1088/0953-8984/24/16/166001
http://dx.doi.org/10.1103/PhysRevB.81.014419
http://dx.doi.org/10.1143/JPSJ.57.1891
http://dx.doi.org/10.1143/JPSJ.57.1891
http://dx.doi.org/10.1038/nmat1804
http://dx.doi.org/10.1103/PhysRevB.81.094430
http://dx.doi.org/10.1103/PhysRevB.81.094430
http://dx.doi.org/10.1103/PhysRevLett.105.257205
http://dx.doi.org/10.1103/PhysRevLett.105.257205
http://dx.doi.org/10.1103/PhysRevB.77.024401
http://dx.doi.org/10.1103/PhysRevB.78.144404
http://dx.doi.org/10.1103/PhysRevB.78.144404
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