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Corrections to Pauling residual entropy and single tetrahedron based approximations
for the pyrochlore lattice Ising antiferromagnet
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We study corrections to single tetrahedron based approximations for the entropy, specific heat, and uniform
susceptibility of the pyrochlore lattice Ising antiferromagnet, by a numerical linked cluster (NLC) expansion. In
a tetrahedron based NLC, the first order gives the Pauling residual entropy of 1

2 ln 3
2 ≈ 0.20273. A 16th order

NLC calculation changes the residual entropy to 0.205507, a correction of 1.37% over the Pauling value. At
high temperatures, the accuracy of the calculations is verified by a high temperature series expansion. We find
the corrections to the single tetrahedron approximations to be at most a few percent for all the thermodynamic
properties.
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The residual entropy of ice was first calculated in a classic
paper by Pauling.1 This entropy arises from the fact that an
oxygen atom in ice is surrounded by four protons. Any two of
them can move in close to it, making up the H2O unit, while
the other two stay away becoming part of the neighboring
water molecules. Extensive ground state entropy is a hallmark
of highly frustrated systems, and is well appreciated in the
context of Ising models, at least since the exact solution of
the triangular-lattice antiferromagnet.2 A direct connection
between the entropy of ice and the ground state entropy of
Ising spin models was first shown by Anderson.3 Accurate
calculations of thermodynamic properties of systems with
extensive ground state degeneracy4–6 remain a challenging
task.

Interest in such systems has grown considerably with
the discovery of spin-ice materials.7 These are pyrochlore
lattice spin systems with strong uniaxial anisotropy. In each
tetrahedron of the lattice, two spins point in and two point
out, providing an exact realization of Anderson’s spin-ice
mapping. In the real materials, the spin-ice states arise from
a combination of nearest-neighbor exchange and long-range
dipolar interactions.7,8 Due to the unusual angles between the
easy-axis directions at neighboring sites, antiferromagnetic
exchange leads to a lower energy for all-in/all-out configu-
rations in a tetrahedron, while ferromagnetic exchange leads
to the two-in/two-out spin-ice configurations. The measured
residual entropy, in these systems, is in good agreement with
the Pauling value.9

In this paper, our focus is the study of an Ising antifer-
romagnet on the pyrochlore lattice, which from a statistical
mechanics point of view is equivalent to a ferromagnetically
exchange coupled spin-ice material. It is defined by the
Hamiltonian

H =
∑

i,j

SiSj . (1)

Here the spins Si take values ±1 and the sum runs over
all nearest-neighbor bonds of the pyrochlore lattice. Single
tetrahedron based approximations for the thermodynamic

properties of this model are common.1,4,5,8,10,11 We note
that the single tetrahedron based approximation for residual
entropy is not the same as the entropy of a single tetrahedron.
Translating Pauling’s argument to the spin language, each spin
has two states, but in each tetrahedron only 6 out of 16 spin
configurations obey the ice-rules. Treating the constraint in
each tetrahedron as independent, a system with N spins has
2N ( 6

16 )Nt ground states, where Nt is number of tetrahedra.
Since, Nt equals N/2, this leads to a ground state entropy per
spin of S = 1

2 ln 3
2 .

Corrections to the Pauling expression for the residual
entropy of ice have been studied before.12 Following earlier
work by Takahashi13 and DiMarzio and Stillinger,14 Nagle
used graphical methods on vertex models12 to study the
ground state residual entropy for cubic ice corresponding to
the pyrochlore lattice as well as the more common ice structure
known as layered hexagonal ice. He found that the difference in
the residual entropy between the two structures was negligible.
The corrections to the Pauling expression were estimated to
be about 1.1%. Comparable corrections (approximately 1.2%)
have been estimated in more recent computational studies.15

Here, we will calculate the thermodynamic properties of the
antiferromagnetic Ising model on the pyrochlore lattice using
series expansion methods.16

In a numerical linked cluster (NLC) expansion,17 an
extensive property P for a large lattice L of N -sites is
expressed as

P (L)/N =
∑

c

L(c)WP (c). (2)

The sum is over distinct clusters of the lattice. L(c) is the lattice
constant of the cluster, given by the number of embeddings of
the cluster in the lattice, per site. The quantity WP (c) is the
weight of the cluster associated with the property P , which is
defined by the subgraph subtraction scheme

WP (c) = P (c) −
∑

s

WP (s), (3)
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where the sum runs over all subclusters of the cluster c. Thus,
to carry out the calculation up to some order, one needs a
count of all the clusters up to some order, and the property
P (c) needs to be calculated for every cluster to high precision
using numerical methods.

The number of clusters, needed in the study, is significantly
reduced if it can be shown that only star graphs contribute.18

Consider a graph as a collection of sites that are connected
pairwise by the bonds of the graph. A site is a point of
articulation in a graph, if cutting all the bonds incident on
the site makes the rest of the graph disconnected. A star graph
is one that has no such articulation site. Star-graph expansions
have been used to develop high temperature expansions for
various classical spin models.18 But, they can also be used
in a NLC scheme, where no small expansion parameter is
needed.17 Rather, thermodynamic properties of finite clusters
can be calculated at a given temperature and then the principle
of inclusion and exclusion can be used to calculate the
thermodynamic property of the infinite system by summing
up contributions from all allowed clusters.

A star-graph expansion requires that all articulated graphs
have zero weight. This is very simple to see for properties
that can be obtained from the logarithm of the zero-field
partition function. For any articulated graph, one can show that
a partition function, that is normalized to unity in the absence
of interactions, becomes a product of partition functions over
the two subgraphs articulated at a point. Hence ln Z becomes a
sum. Thus for an articulated graph c made up of parts a and b,
which only share a point of articulation, the property satisfies

P (c) = P (a) + P (b). (4)

This is enough to ensure that after subgraph subtraction the
articulated graph has zero weight. It is a little harder to
see how to develop a star-graph expansion for the uniform
susceptibility. One needs to consider the matrix M with
elements19,20

Mij = 〈SiSj 〉, (5)

where i and j are sites of the cluster and angular brackets
denote thermal expectation values. One can show that for
a graph articulated at site k into parts a and b (with spin
normalization 〈S2

k 〉 = 1),

〈SiSj 〉 = 〈SiSk〉a 〈SkSj 〉b, (6)

when i and j belong to a and b, respectively. And within a

and b, the correlations remain the same as in the subcluster.
This can be used to further show that ψ defined by 19,20

ψ =
∑

i,j

M−1
ij , (7)

where M−1 is the inverse of the matrix M , has a star-graph
expansion. Furthermore, for the infinite lattice, this is related
to the inverse of the uniform structure factor, or temperature
times the uniform susceptibility, by the relation,

T χ = 1

N

∑

i,j

〈SiSj 〉 = N

ψ
. (8)

In a lattice of corner-sharing tetrahedra, it is natural to
consider an NLC expansion scheme, in which all interactions

are grouped into tetrahedra. Thus, apart from a single site, all
graphs are made up of complete tetrahedra. This scheme is
particularly useful because the tetrahedra are joined at corners
in the lattice. In a graph with two tetrahedra, the site where they
are joined becomes a point of articulation. Cutting all the bonds
at that site makes the graph disconnected. Thus, in a star-graph
expansion, the two-tetrahedra graph makes no contribution. It
also means that the single tetrahedron approximation becomes
exact on a Husimi tree of tetrahedra,21,22 where there are no
other closed loops of tetrahedra.

The tetrahedra of a pyrochlore lattice are known to
form a diamond lattice. Thus any graph counting problem
involving tetrahedra is equivalent to counting graphs on the
diamond lattice, where sites of the diamond lattice represent
tetrahedra while bonds of the diamond lattice represent shared
sites between neighboring tetrahedra. All star graphs on the
diamond lattice up to 16 bonds have been listed by Sykes
et al..23 We will make use of these to calculate the expansions
to 16th order. One should note that all lattice constants of the
diamond lattice need to be divided by 2, because the number
of tetrahedra is 1

2 the number of sites in the pyrochlore lattice.
We illustrate how the method works by showing the first

two orders of the calculation for the ground state entropy (with
the Boltzmann constant kB = 1). The first two star graphs
with complete tetrahedra are shown in Fig. 1. They have a
lattice constant per site of the pyrochlore lattice of 1

2 and 1,
respectively. One also needs to consider a single site, which
provides all contributions before any interactions are included.
It has a count of unity.

For our illustration, the ground state entropy is the property
P . In zeroth order, the single site has two ground states, giving
an entropy of ln 2. It has no subgraphs. Hence, its weight
is also ln 2. The first star graph, a single tetrahedron, has 6
ground states. Hence the property P for the graph equals ln 6.
To obtain its weight, one must subtract the weights of the four
sites. Thus the weight of the single tetrahedron is

W = ln 6 − 4 ln 2 = ln 3/8.

Thus, to first order the ground state entropy, per site, for the
infinite system is

S = ln 2 + 1
2 ln 3/8 = 1

2 ln 3/2 ≈ 0.20273.

Note that the factor of 1
2 in front of ln 3/2 is the count of the

number of tetrahedra per lattice site, which is one-half. This

FIG. 1. (Color online) First two star graphs of the pyrochlore
lattice made up of complete tetrahedra. The first one is a single
tetrahedron. The second is a ring of six tetrahedra that alternately
point in and out of the board (denoted by + and − signs).

144414-2



CORRECTIONS TO PAULING RESIDUAL ENTROPY AND . . . PHYSICAL REVIEW B 85, 144414 (2012)

0 1 2 3 4

T

0

0.1

0.2

0.3

0.4

0.5

0.6

S

NLC-1
NLC-6
NLC-16
Pade’ Approximant

FIG. 2. (Color online) Entropy of the pyrochlore lattice Ising
antiferromagnet as a function of temperature.

is the Pauling answer. The next star graph is a graph of six
tetrahedra (see Fig. 1). It has 730 ground states. It has six
single tetrahedron subgraphs and 18 sites. Thus, its weight is

W = ln 730 − 6 ln 3/8 − 18 ln 2 = ln 730/729.

Thus, to this order, the entropy per site, becomes

S = ln 2 + 1
2 ln 3/8 + ln 730/729 ≈ 0.20410.

These first corrections are analogous to triangle-based NLC
calculations done by Rigol et al. for the kagome lattice.17

In that case, the Pauling expression for the ground state
entropy is 0.50136. Adding the next correction brought the
entropy to 0.50182, much closer to the known exact answer of
approximately 0.50183.24 Because the count of longer loops
increases much more rapidly in a three-dimensional lattice, a
high order calculation is needed to assess the corrections more
accurately. Here we have done only the first corrections for
the uniform susceptibility, but a 16th order correction for the
entropy and specific heat.

High temperature series expansions for this system were
derived some years ago: to order 19 for ln Z (see Ref. 25) and
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FIG. 3. (Color online) Heat capacity of the pyrochlore lattice
Ising antiferromagnet as a function of temperature.
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FIG. 4. (Color online) Uniform susceptibility of the pyrochlore
lattice Ising antiferromagnet as a function of temperature. Note that
NLC-1 and NLC-6 can barely be differentiated in the plot.

to order 16 for χ .26 We have reanalyzed these series using
Padé and d-log Padé approximants to yield the series results
for a comparison at high temperatures.

Figure 2 shows a plot of the entropy. The single tetrahedron
approximation is denoted NLC-1. NLC-6 includes the next
order correction. NLC-16 gives the result up to the 16th order.
Figure 3 shows the corresponding plots of the heat capacity.
Figure 4 shows plots of the uniform susceptibility. The high
temperature expansions converge really well only above a
temperature of 2. Note that the spins are normalized to be
±1. The temperature scale would be four times lower if they
were normalized to ±1/2.

In all cases, the single tetrahedron based approximation is
quite accurate. Let us define the percent correction for the three
quantities a = entropy s, heat capacity c, and susceptibility χ

as

Pa = 100[a(N ) − a(1)]/a(1). (9)
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FIG. 5. (Color online) Percentage correction to the quantities,
entropy Ps , heat capacity Pc, and susceptibility Pχ , after 6th and 16th
order NLC calculations (denoted by the numbers 6 and 16 in the
legends).
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Here a(N ) is the quantity after N th order NLC and a(1) is the
property with only the one tetrahedron cluster. A plot of Pa

with temperature is shown in Fig. 5. The largest corrections
are near T = 0. They are a little over 1% for the entropy and
about 5% for the specific heat.

At T = 0, our graphical scheme reduces to one of counting
ground states on increasingly larger clusters. While this
scheme is not identical to the one used by Nagle,12 it is closely
related. As found by Nagle, the first few orders give the same
answer for the cubic and layered hexagonal structures of ice.
We also find that the first corrections to the Pauling entropy
are identical for the two lattices. Since, our interest is in the
pyrochlore lattice spin model, we have not studied the layered
hexagonal structure in higher orders.

In conclusion, we have used a star-graph expansion scheme
to show that the Pauling approximation for the entropy of ice,
and the calculation of other properties of the pyrochlore lattice
Ising model based on a single tetrahedron, is really a first term

in a NLC scheme. In the corner sharing lattice, this scheme is
highly accurate. We have calculated corrections to the single
tetrahedron approximations and found them to be at most a
few percent for different thermodynamic quantities.

These ideas of star-graph expansions are also valid for
continuous spin models, where also single tetrahedra based
schemes have been used successfully.10 However, it should
be noted that finite-size calculations of properties of the
continuous spin systems can be a nontrivial task. Star-graph
expansions are also valid in the presence of dilution and
quenched disorder.20,27 Star-graph expansions are not valid
for quantum spin models, and hence all connected clusters of
tetrahedra need to be included in these cases.
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