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Equation of state of paramagnetic CrN from ab initio molecular dynamics
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The equation of state for chromium nitride has been debated in the literature in connection with a proposed
collapse of its bulk modulus following the pressure-induced transition from the paramagnetic cubic phase to the
antiferromagnetic orthorhombic phase [F. Rivadulla et al., Nature Mater. 8, 947 (2009); B. Alling et al., ibid. 9, 283
(2010)]. Experimentally the measurements are complicated due to the low transition pressure, while theoretically
the simulation of magnetic disorder represents a major challenge. Here a first-principles method is suggested
for the calculation of thermodynamic properties of magnetic materials in their high-temperature paramagnetic
phase. It is based on ab initio molecular dynamics and simultaneous redistributions of the disordered but finite
local magnetic moments. We apply this disordered local moments molecular dynamics method to the case of CrN
and simulate its equation of state. In particular the debated bulk modulus is calculated in the paramagnetic cubic
phase and is shown to be very similar to that of the antiferromagnetic orthorhombic CrN phase for all considered
temperatures.
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I. INTRODUCTION

Chromium nitride is a material which combines practi-
cal and industrial relevance as a component in protective
coatings1,2 with fascinating fundamental physical phenomena.
The latter include a phase transition with a magnetically
driven lattice distortion3 between an antiferromagnetic or-
thorhombic low-temperature phase and a paramagnetic cubic
high-temperature phase.4 The importance of strong electron
correlations as well as the necessity to model the paramagnetic
state using finite disordered local moments have been recently
shown.5,6 Important issues, such as the impact of the phase
transition on the compressibility of the material7,8 as well as
on the electrical conductivity9,10 are still subjects of an intense
discussion.

The core problem of obtaining a complete understanding
of these phenomena and properties on the most fundamental
level of physics arises from the difficulty of simulating the
paramagnetic high-temperature phase from first principles.
In this work we first discuss the methodologies that have
been used in theoretical treatments of paramagnetism. Then
we present a practical scheme for calculating thermodynamic
properties, in particular the equation of state, of a paramagnetic
material at elevated temperature merging ab initio molecular
dynamics (MD) and the disordered local moments model
(DLM). This DLM-MD technique is then applied to investigate
the influence of temperature and pressure on the compressibil-
ity of CrN. We show that the change of the bulk modulus of
CrN upon the pressure-induced phase transition is minimal,
strengthening conclusions from earlier static calculations6,8

which questioned its reported collapse.7

II. MODELING THE PARAMAGNETIC STATE

A. Background

A theory that describes the finite-temperature aspects of
itinerant electron magnets has to take into account the existence
of local magnetic moments present above the magnetic
transition temperature, the Curie temperature TC or the Néel
temperature TN for a ferromagnetic or an antiferromagnetic

material, respectively.11 At the same time, the majority of
methods used for ab initio electronic structure calculations
nowadays are based on the density functional theory (DFT) in
the local (local spin density, LSDA) or semilocal (generalized
gradient, GGA) approximations. While they are known to
give an accurate description of the ground state properties
of magnetic systems,12 its straightforward generalization to
finite temperatures leads to quantitative as well as qualitative
errors.13 Indeed, TC of transition metals are overestimated by
a factor of five and there are no moments and no Curie-Weiss
law above TC . A solution to this problem should in principle be
sought in the physics of strongly correlated electron systems.
In particular, the dynamical mean-field theory (DMFT),14

combined with LDA band structure calculations, has been used
with success for simulations of finite-temperature magnetism
in Fe and Ni.15 However, its application to the study of the
structural phase transition in Fe16 had to neglect a contribution
from the lattice dynamics, because of prohibitively high com-
putational cost and difficulties in calculating forces between
atoms.17

At the same time, it is realized that LSDA calculations
at zero temperature can provide valuable information for the
description of the finite temperature magnetism. One way
of doing this is to extract magnetic interactions in the form
of exchange constants for a classical Heisenberg model18

or magnetic “forces” (the first variation of the total energy
for a differential rotation of a local moment)19,20 from DFT
calculations and to use them in statistical mechanics21–25 or
in spin dynamics26,27 simulations of magnetic properties at
elevated temperatures.

Another useful approach is given by the so-called disor-
dered local moment model, introduced by Hubbard28–30 and
Hasegawa31,32 and combined with the LSDA-DFT by Gyorffy
et al.13 Within the DLM picture, the local magnetic moments
exist in the paramagnetic state above the magnetic transition
temperature, but are fully disordered. The magnetically disor-
dered state can be described as a pseudoalloy of equal amounts
of atoms with spin up and spin down orientations of their
magnetic moments, and its electronic structure and the total
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energy can be calculated within the conventional alloy theory
using the coherent potential approximation (CPA)13 or the
supercell technique.6 Still, to the best of our knowledge all
the applications of the DLM model so far have neglected the
effect of lattice vibrations.

On the other hand, the importance of lattice dynamics
for an accurate description of thermodynamic properties
of materials is well recognized by now.33,34 The effect of
lattice vibrations should be included in the description of the
paramagnetic state of magnetic materials, as it occurs only
at elevated temperatures. However, simultaneous treatment of
the magnetic disorder, inherent to the paramagnetic state, and
lattice vibrations represent a truly challenging task.

State-of-the-art treatments of lattice vibrations are based
either on (quasi)harmonic calculations of the phonon dis-
persion relations or on molecular dynamics simulations.35

For magnetically ordered materials these techniques can
be applied straightforwardly. However, in the presence of
magnetic excitations this will not work. In particular, in the
paramagnetic state at high temperatures the relevant magnetic
excitations are associated with spin flips. Their characteristic
time scale can be estimated by the spin decoherence time
tdc. Spin dynamics simulations of the spin autocorrelation
function in bcc Fe above TC

27 show that tdc is of the order
of 20–50 fs. In materials with lower TC it should be larger
by approximately a corresponding factor, because both TC

and the velocity of the propagation of the local moments are
related to the strength of the exchange interactions. At the
same time a typical MD run should be carried out for at least
3–5 ps, as dictated by the inverse of the Debye frequency
(∼10−12 s). This means that magnetic configurations should
change often during the MD run. Simultaneously, a typical
MD time step is of the order of 1 fs, which is still much
smaller than tdc. Thus, the magnetic degree of freedom is slow
on the time scale relevant for the determination of temporal
evolution of a particular atomic configuration, but fast on the
time scale relevant for a proper exploration of the phase space
of atomic configurations. Therefore, the adiabatic decoupling
between magnetic and vibrational degrees of freedom cannot
be applied, and they should be treated within one single
framework. Similar arguments can be used to question the
validity of lattice dynamics studies for paramagnetic materials
based on a quasiharmonic approximation. Perhaps the most
consistent approach to the analysis of spin-lattice interactions
at finite temperature would be to apply a combination of
molecular dynamics with ab initio spin dynamics20 or with
DMFT. However, at present such calculations are hardly
feasible in practice.

Within our approach we describe the paramagnetic state of
a system within the disordered local moment picture. In this
approach, local moments exist at each magnetic site of a system
(in our case, at Cr sites in CrN) and are commonly thought to
fluctuate fairly independently. Thoughtful discussions of the
DLM model can be found in Refs. 13,28,30–32 and 36. In
a previous work,6 we took one step toward the simultaneous
modeling of magnetic and vibrational finite-temperature ef-
fects by suggesting two alternative supercell implementations
of the DLM calculations, the special quasirandom structure
(SQS)37 methodology and a magnetic sampling method
(MSM). In the MSM, the energies of a number of randomly

generated magnetic distributions were calculated and their
running average was taken as the potential energy of the
paramagnetic sample. In Ref. 6 it was shown that the two
approaches give almost identical results.

Unfortunately, if the vibrations of atoms are to be included,
one needs to go beyond the fixed magnetic state described by
the SQS. The reason is that if a magnetic state is fixed in time
one would see artificial static displacements of atoms off their
lattice sites due to forces between the atoms with different
orientations of their local moments and with different local
magnetic environments. In the CrN case those are likely to
be quite large due to the magnetic stress discussed in Ref. 3.
In a real paramagnet, due to the time fluctuations of the local
moments, these effects should be at least partially averaged
out and suppressed depending on the time scales of the spin
fluctuations and atomic motions.

The MSM could in principle be used to obtain the adiabatic
approximation where the magnetic fluctuations are considered
to be instantaneous on the time scales of atomic motions.
This approximation would be obtained if the forces acting on
each atom were averaged over a sufficient number of different
magnetic samples during each time step of a molecular
dynamics simulation. The obvious drawback in this approach
is that a large number of calculations needs to be run in
parallel, probably leading to two orders of magnitude increase
in computational efforts. Furthermore, as stated above it is not
at all clear that this adiabatic approximation is motivated in
any system. However, the MSM gives us a very good starting
point for the implementation of the DLM picture in a MD
framework.

B. Disordered local moments molecular dynamics

In this work we introduce a method for molecular dynamics
simulations of paramagnetic materials within the traditional
ab initio MD framework. Starting from the DLM idea of a
spatial disorder of local moments, we also change the magnetic
state periodically and in a stochastic manner during our MD
simulation. In this way we deal with a magnetic state that does
not show order either on the length scales of our supercell or
the time scale of our simulation. We make an approximation
that the magnetic state of the system is completely randomly
rearranged with a time step given by a spin flip time (�tsf ),
and with a constraint that the net magnetization of the system
should be zero. Hence to simulate a paramagnetic system with
a spin flip time �tsf , we initialize our calculations by setting
up a supercell where collinear local moments are randomly
oriented and the total moment of the supercell is zero, and
run collinear spin-polarized MD for the number of MD time
steps (�tMD) corresponding to the spin flip time, that is, for
�tsf /�tMD time steps. Thereafter the spin state is randomized
again, while the lattice positions and velocities are unchanged,
and the simulation run continues.

Here it is worth pointing out that besides the treatment of
the many-body effects important for the description of the
paramagnetic state at the DLM-LSDA level,36 or as will be
discussed below for the present case DLM-LSDA + U , we
introduce several additional approximations. In particular, we
neglect effects due to noncollinear orientations of the local
magnetic moments. This, however, is justified for the param-
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agnetic state well above the magnetic transition temperature.13

Note also that magnitudes of the local magnetic moments are
allowed to vary as dictated by the self-consistent solution of the
electronic structure problem at each step of the MD simulation.
At the same time, we substitute the true spin dynamics with
instantaneous modification of the sample magnetic structure
with time steps �tsf . Here we follow Ref. 13 and make use
of the physical picture that the simulated system, although
ergodic, does not cover its phase space uniformly in time. In the
DLM model one assumes that it gets stuck for long times, of the
order of �tsf , near points characterized by a finite moment at
every site pointing in more or less random directions and then
moves rapidly (in our case instantly) to another similar point.
The states of temporarily broken ergodicity are characterized
by classical unit vectors ei assigned to each site i and giving the
direction of the magnetization averaged over the spatial extent
of the ith site in the supercell and the time �tsf . The motion
of temporarily broken ergodicity is mainly characterized by
changes in the orientational configuration of the moments.

Note that in Ref. 13 the magnetic degree of freedom was
related to an inverse spin-wave frequency tsw ∼ 1/ωsw ∼
100 fs, which represents the dominating magnetic excitation at
low temperatures. However, in the paramagnetic state at high
temperatures the relevant magnetic excitations are associated
with spin flips rather than with spin waves. Thus the relevant
time scale is better characterized by the spin decoherence time
�tdc rather than by the inverse spin-wave frequency. As we
pointed out above, the latter was estimated to be of the order of
20–50 fs in bcc Fe above TC .27 For CrN, with a TN around room
temperature and probably with weaker exchange interactions,
we expect that tdc could be somewhat larger.

However, our procedure makes it possible to model a
paramagnetic system for any particular time scale of the spin
dynamics. In fact one can span the whole range between
the static and adiabatic approximations: from the frozen
magnetic structure to magnetic configurations that rearrange
instantaneously on the time scales of each atomic motion
during the MD run. Of course, the appropriate value of
this parameter needs to be found with real spin dynamics
calculations or taken from experiments. In this paper, we study
a range of different spin flip times and their consequences for
the obtained structural and thermodynamic properties of CrN.

C. Calculational details

All our first-principles calculations in this work are
performed using the projector augmented wave (PAW)
method38 as implemented in the Vienna Ab initio Simula-
tion Package (VASP).39–41 The extended Lagrangian Born-
Oppenheimer molecular dynamics method42 and conventional
Born-Oppenheimer molecular dynamics are used for simu-
lations of the orthorhombic magnetically ordered and cubic
magnetically disordered phases of CrN, respectively. The
nitrogen 2s and 2p and Cr 4s and 3d states are treated as
valence in the PAW pseudopotential. The electronic exchange-
correlation effects are modeled using a combination of the
local density approximation43 with a Hubbard Coloumb term
(LDA + U )44 using the double-counting correction scheme
suggested by Dudarev et al.45 The value of the effective U

(U eff = U − J ) applied only to the Cr 3d orbitals is taken

as 3 eV, found to be optimal from a comparison with several
experimentally measured structural and electronic properties
of CrN in Ref. 6.

Our simulation box, both for the cubic and orthorhombic
phases, contains 32 Cr and 32 N atoms arranged in a supercell
of 2×2×2 conventional unit cells. As demonstrated in Ref. 6,
this supercell size is sufficient for an adequate description
of the magnetic disorder in CrN. In the orthorhombic case,
the primitive vectors of the supercell are tilted and scaled
in line with the results of a structural optimization of this
low-temperature antiferromagnetic phase.

The plane wave energy cutoff is set to 400 eV. We use a
Monkhorst-Pack scheme46 for sampling of the Brillouin zone
using a grid of 2×2×2 k points. To check the accuracy of the
potential energies and pressures a selection of configurations
is chosen out of the MD simulation run and recalculated
with a higher accuracy. The error arising from the k-point
sampling is relatively constant with a shift of about 35 meV
and a standard deviation of less then 2 meV. Hence the
relative potential energies that are calculated have a high
accuracy. The pressures also have a small constant shift of
about 0.2 GPa with a standard deviation less then 0.1 GPa
when the electronic structure calculations are converged with
respect to the k-points mesh.

The simulations are carried out using a canonical ensemble
(NVT) in order to control the temperature of the simulation,
avoid artificial energy drift, and minimize the influence of the
particular choice of initial magnetic and lattice configurations
in the simulations. We use the standard Nose thermostat47

implemented in VASP, with the default Nose mass set by VASP.
The values of the bulk modulus K0 have been determined by
fitting our calculated pressure and volume data to the Birch-
Murnaghan equation of state:48,49

P = 3K0fE(1 + 2fE)5/2[1 + 2/3(K ′
0 − 4)fE], (1)

where K0 is the bulk modulus at ambient pressure and K ′
0

is its derivative with respect to pressure. The Eulerian strain
fE is defined as fE = 1/2[(V0/V )2/3 − 1], where V and V0

are the volume and equilibrium volume, respectively, at the
corresponding temperature.

III. APPLICATION TO CrN

A. The potential energy

From the MD calculation we extract the potential energies
of CrN, essentially the total energy with the kinetic energy
of the ions subtracted. As can be seen in Fig. 1, the potential
energy of the system is well conserved. To investigate the
influence of the spin flip time, the potential energy of CrN is
calculated for several �tsf . The results are shown in Fig. 1.

In Fig. 2 these potential energies are collected and shown
relative to the potential energy of the calculations with shortest
�tsf , 5 fs. There is a clear shift in potential energy of about
10 meV from the simulations with the shortest spin flip times
of 5 fs to the longest of 100 fs. This can be compared with
the total energy reduction due to static relaxations of 15 meV
that we get by using the SQS approach treating the magnetic
state as frozen in time. We note that for the lower values of
�tsf , corresponding to fast spin decoherence, there is a plateau
where the potential energy is only weakly influenced by �tsf .
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FIG. 1. (Color online) Potential energy of cubic paramagnetic
CrN as a function of simulation time calculated at 300 K using DLM-
MD method. Shown are the results obtained with a spin flip time of
10 fs and 100 fs, as well as with a frozen magnetic state. Results for
conventional MD simulations carried out for CrN in the orthorhombic
antiferromagnetic ground state are also shown for comparison. The
potential energy is stable and well converged as can be seen by the
included running averages (thick lines).

However, between spin flip times of 15 and 50 fs, there is a
considerable change in potential energy. Of course, the energy
scale should be material specific.

We suggest, as a quick test of how important to consider this
effect, a calculation of relaxation energies of a paramagnetic
system using the SQS approach6 with a fixed magnetic
state through the relaxation. The obtained relaxation energy
should correspond to an upper limit on the potential energy
dependence on �tsf .

B. Magnetic moments

In Fig. 3 we analyze the evolution of the magnetic structure
during the DLM-MD simulations of the cubic phases of CrN
at 300 K, and compare it with conventional MD simulations
of magnetically ordered orthorhombic phase. It is seen that
during all the simulations the magnetic moments propagate
in a controlled manner. The magnitude of Cr local magnetic

FIG. 2. (Color online) Potential energy shift calculated for para-
magnetic CrN as a function of the spin flip time �tsf . The shortest
spin flip time of 5 fs is taken as reference.
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FIG. 3. (Color online) Evolution of the net magnetic moment
averaged per supercell and local moment of one Cr atom for the
orthorhombic and cubic phases at 300 K during the first 400 fs of
the simulation. For the cubic phase the DLM spin configuration is
changed every 10 fs. The behavior shown here is typical for the entire
simulation, as well as for other simulated temperatures and spin flip
times. The inset demonstrates small fluctuations of the net magnetic
moment during the entire simulation.

moments is stable in all our calculations. The total magnetic
moment per supercell is practically conserved and fluctuates
about zero during the whole simulation run for both AFM-
orthorhombic CrN and DLM-MD simulations of paramagnetic
cubic CrN. The inset in Fig. 3 magnifies the fluctuations
and confirms that we obtain a rather accurate description of
the magnetically disordered state with nearly vanishing net
magnetic moment during the whole simulation run. In addition,
we show in Fig. 3 time evolution of a magnetic moment
on one arbitrary chosen Cr atom during the first 400 fs in
a DLM-MD with �tsf = 10 fs, as well as in the orthorhombic
AFM structure. There are almost no changes in the amplitude
of the moment, indicating that we are dealing with a very
good Heisenberg system. Moreover, the moment does not flip
during time �tsf between the deliberate rearrangements of the
supercell magnetic structure in our DLM-MD simulations.

C. Pair distances

In order to analyze the difference between the proposed
DLM-MD simulations and magnetostatic MD in more details,
an investigation of the local environment of the different atoms
is carried out, especially the Cr-Cr metal nearest neighbor
distances. In Fig. 4 histograms are shown of all the Cr-Cr
nearest neighbor distances. These are also separated into
↑↑ , ↓↓ and ↑↓ , ↓↑ pairs. Hence we can see the effect of
the magnetic state on the distribution of pair distances. In
Fig. 4(a) the �tsf is very short, 10 fs; hence the atoms do not
have time to adjust their positions for the current orientation
of local magnetic moments and we do not see any difference
in distances between the ↑↑ , ↓↓ and the ↑↓ , ↓↑ pairs. In
Fig. 4(b), the spin flip time is increased to 100 fs and now the
atoms have had sufficient time to move toward the energetically
preferential positions. Consequently, a shift in pair distances
between ↑↑ , ↓↓ and ↑↓ , ↓↑ is evident. Fig. 4(c) is obtained
with the same orientation of local moments during the whole
MD run. Here we also see a splitting in the pair distances
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(a)

(c)

(b)

(d)

FIG. 4. (Color online) Histogram of the Cr-Cr nearest neighbor
distances for Cr atoms with parallel (solid line) and antiparallel
(dashed line) orientations of local magnetic moments obtained from
DLM-MD simulation for the cubic paramagnetic phase at 300 K.
(a) �tsf =10 fs. (b) �tsf =100 fs. (c) Static magnetic state. (d)
The orthorhombic antiferromagnetic phase of CrN calculated with
conventional ab initio MD for comparison.

between the ↑↑ , ↓↓ and the ↑↓ , ↓↑ pairs, which is of the
same order as in the previous case. Hence, 100 fs between the
rearrangement of magnetic configurations is long enough for
the atomic nuclei to adjust considerably their positions in the
supercell to the given magnetic configuration. In the last figure,
Fig. 4(d), the pair distances are shown for the low-temperature
antiferromagnetic orthorhombic ground state for comparison.
Here the ↑↑ , ↓↓ and ↑↓ , ↓↑ pairs of magnetic moments are
arranged in an ordered way—see, e.g., Fig. 4 in Ref. 6—that
allows for maximal relaxation of atomic coordinates in com-
bination with a structural relaxation of the unit cell, giving rise
to a large separation between the two different kinds of pairs.

A possibility of statistical correlations between the atomic
distances and the orientation of atomic moments also in
a dynamically changing paramagnetic phase is indeed an
intriguing thought experiment. Although we cannot rule out
its existence from principal considerations, to the best of
our knowledge it has never been reported in experiments.
However, we note that our two main approximations in the
present DLM-MD, the usage of collinear moments and the
temporarily broken ergodicity of the DLM approach, are likely
to introduce inaccuracies that exaggerate those local spin-
lattice correlations when a slow spin dynamics is modeled.
Therefore, when the here suggested method is used, a smaller
value of �tsf , corresponding to the absence of differences in
distances between atoms with parallel and antiparallel local
moments, like in Fig. 4(a), should be recommended. The
presence of an energy plateau in Fig. 2 seems to indicate that
this should be a reasonable approach.

D. Equation of state of CrN

Our main goal with this work is to study the equation of
states, and in particular the bulk modulus of paramagnetic CrN
which has recently been discussed in the literature.7,8 Using
our DLM-MD approach we are able to calculate volume as a
function of temperature and pressure for both the paramagnetic
cubic and the antiferromagnetic orthorhombic phases. In the

FIG. 5. (Color online) Volume as a function of pressure for the
cubic and orthorhombic phase from MD simulations at 300 K. The
equation of state for the cubic phase is calculated using a spin flip time
of 10 fs. The calculated volumes are normalized with the calculated
equilibrium volume (17.42 Å3/f.u.) of the cubic phase, and the
experimental points (Ref. 7) with the measured equilibrium volume
(17.84 Å3/f.u.) of the cubic phase. The inset shows the dependence
on spin flip time for the calculated equation of state.

former case we also investigate whether there is an impact of
the value of the spin flip time parameter on the equation of
state. Thus we are able to investigate how both the dynamical
change of magnetic configurations in the paramagnetic state
and the lattice vibrations, neglected in previous theoretical
works but of course present in the experiments, impact on the
compressibility. Figure 5 shows the calculated volume as a
function of pressure for the two phases at 300 K and compares
them to the experimental measurements by Rivadulla et al.7

One sees very good agreement between theoretical and
experimental equations of state. In particular the relative shift
in volumes between the two phases is reproduced within the
measured error bars. The calculated slope of the orthorhombic
phase agrees well with the measured values for this phase
where the measurement is done over a large pressure range.
The inset in Fig. 5 shows the influence of the spin flip time on
the volume versus pressure curves in paramagnetic cubic CrN.
A change in �tsf introduces a small shift of the volumes, but
does not influence the slope of the curves.

In Table I we summarize calculated ground state pa-
rameters, equilibrium volumes V0 and bulk moduli K0,
obtained in our MD simulations for paramagnetic cubic and
antiferromagnetic orthorhombic phases of CrN. They are also
compared to our static calculations at zero temperature, as
well as with theoretical calculations and experiment from the
literature. Our calculated equilibrium volumes increase with
temperature, indicating that the effect of thermal expansion is
included in our simulations self-consistently. For both phases
they agree well with experiment, within 2.5%, which is typical
accuracy for first-principles simulations. We note in passing
that slightly different values between V0 obtained in this work
and in Ref. 8 are due to different values of parameter U ,
3 eV and 4 eV, respectively. Though the latter gives better
agreement with experiment for V0, and consequently for K0,
the former gives more consistent description of all structural
and electronic properties of CrN,6 and we prefer to use it here.
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TABLE I. Calculated equilibrium volume V0 (Å3/f.u.) and bulk modulus K0 (GPa) of CrN in the orthorhombic antiferromagnetic and the
cubic paramagnetic phases obtained at ambient pressure and at temperatures 0, 300, and 1000 K, respectively.

Orthorhombic AFM Cubic PM

Method Structure V0 K0 V0 K0

Theory This work LDA + U U = 3 eV Static, 0 K 17.21 290 17.39 299
DLM-MD 300 K 17.29 286 17.42 290
DLM-MD 1000 K 17.50 261 17.59 269

Theory Ref. 8 Static, 0 K GGA 17.56 255 17.85 252
Static, 0 K LDA + U U = 4 eV 17.78 272 17.96 277

Theory Ref. 7 Static, 0 K GGA 255 340a

Static, 0 K LDA 260 430a

Exp. Ref. 7 300 K 17.75 243–260 17.84

aNonmagnetic calculation.

However, the choice of U does not affect a comparison between
ground state parameters of two phases of CrN. In particular,
the volume difference between the cubic and orthorhombic
structures is very well reproduced in our simulations.

Our results confirm the possibility of a pressure-induced
phase transition from the cubic paramagnetic to the orthorhom-
bic antiferromagnetic phase due to the slightly smaller volume
of the latter, in line with previous investigations. Importantly,
as can be seen in Table I and from the slopes of the curves in
Fig. 5, the bulk modulus is found to be very similar between
the two phases. This is the case both at 300 K, 1000 K, and
in the static 0 K calculations yielding small differences as
seen in previous work.8 The calculations of the orthorhombic
low-temperature phase at 1000 K is of course not of relevance
for any comparison with experiments, but is included to show
with certainty that temperature-induced vibrations are not
influencing the difference in bulk modulus between the phases.
At T = 300 K and P = 0 GPa we find K

para
0 = 290 GPa while

KAFM
0 = 286 GPa. This gives an insignificant difference of

4 GPa, far from the collapse of 25% or 85 GPa suggested
in Ref. 7 to follow the transition from cubic to orthorhombic
structures. A variation of the time between the rearrangement
of the magnetic configurations does not influence the value
of the bulk modulus in any appreciable way. Thus, explicit
considerations of temperature-induced magnetic fluctuations
and lattice vibrations do not change the main conclusions from
previous works:6,8 There is no theoretical support for a collapse
of the bulk modulus of CrN upon the pressure-induced phase
transition.

IV. SUMMARY

We present a method for calculation of thermodynamic
properties of magnetic materials in their high-temperature

paramagnetic state. We use ab initio molecular dynamics and
simulate the paramagnetic state with disordered nonvanishing
local magnetic moments. Random configurations of the local
moments in the simulation cell are switched at predetermined
time intervals. Hence we can capture the influence of the
dynamically disordered magnetic state on the lattice dynamics
as it develops during the simulation. We apply this method to
CrN which is known to have a strong interaction between the
magnetic state and the lattice. We find that there is a connection
between how fast the local moments are allowed to flip and the
calculated potential energy. If the spin flip time is short, ∼10 fs,
the lattice does not have time to respond, but if the spin flip
time is increased to about 100 fs then the atomic positions start
to show clear relaxation effects. We apply this disordered local
moments molecular dynamics method to the calculation of the
equation of state of paramagnetic cubic CrN and compare with
calculations for the orthorhombic antiferromagnetic phase and
with experiments. In particular we calculate the debated bulk
modulus and find that there is only a very small difference,
and definitely no collapse, in K0 between the orthorhom-
bic antiferromagnetic phase and the cubic paramagnetic
phase.
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