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We study the electronic instabilities of the Hubbard model in the 1/6 hole-doped Kagome lattice using the
variational cluster approach. The 1/6 hole doping is unique in the sense that the Fermi level is at the van Hove
singularity and the Fermi surface has a perfect nesting. In this case, a density wave is usually realized. However,
we demonstrate here that the chiral dx2−y2 + idxy superconducting state is most favorable when a small Hubbard
interaction U (U < 3.0t) is introduced, and a scalar chiral spin order is realized at large U (U > 5.5t). Between
them, a spin-disordered insulating state is proposed.
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The kagome lattice has recently attracted considerable
interest due to its high degree of frustration. Several possible
states have been proposed for the Heisenberg model in this
lattice, including the U (1) algebraic spin liquid (SL),1 the
valance bond solid,2 and the gapped SL.3 Recently, the
numerical study shows that its ground state is a singlet-gapped
SL with signatures of Z2 topological order.4 On the other
hand, the anomalous quantum Hall effect5 and the topological
insulator6 have also been demonstrated to exist when the
electron filling is near the Dirac point at 2/3 electron density.
In view of the rapid developments in the investigation of these
exotic quantum phases, the question arises if other correlation-
driven exotic quantum orders will be realized when the system
is doped away from half-filling. We note that the Fermi level
is at the van Hove singularity and the Fermi surface (FS) has a
perfect nesting at the 1/6 hole doping. By using the variational
cluster approach (VCA) to the Hubbard model in the kagome
lattice, we show that a chiral dx2−y2 + idxy superconducting
(SC) order and a noncoplanar chiral spin-density wave (SDW)
can be realized at the 1/6 hole doping.

Chiral superconductivity and chiral magnetic order are two
distinctive phases of matter. They break both the time-reversal
and the parity symmetries. Their nontrivial topology can result
in a wealth of fascinating properties, such as the spontaneous
quantum Hall effect,7,8 unusual magnetoelectric properties,9

and a quantized boundary current in magnetic field.10 Ex-
perimentally, the spin-triplet p-wave chiral superconductivity
has been found in Sr2RuO4.11 And, the chiral spin order was
proposed to describe the magnetic ordering in Mn monolayers
on Cu(111) surfaces12 and the nuclear spin ground state
of a two-dimensional solid 3He.13 Recently, the chiral spin
order was also proposed in the doped triangular lattice,14 the
pyrochlore lattice,15 and the doped graphene16 based on the
mean-field analysis. In particular, functional renormalization
group calculations17–19 show that the chiral dx2−y2 + idxy

superconductivity is favored in the doped graphene with
a perfect FS nesting. Here, we show that both the chiral
dx2−y2 + idxy superconducting order and a noncoplanar chiral
SDW order can be realized in the 1/6 hole-doped kagome
lattice by tuning the on-site Coulomb interaction U .

The Hubbard model in the kagome lattice is defined as

H = −t
∑

〈ij〉σ
(c†iσ cjσ + H.c.) + U

∑

i

ni↑ni↓, (1)

where c
†
iσ (ciσ ) creates (annihilates) an electron with spin σ

on site i and niσ = c
†
iσ ciσ , 〈· · ·〉 denotes the nearest-neighbor

(NN) bond. Each unit cell of the kagome lattice contains three
sites [labeled as α, β, and γ in Fig. 1(a)]. Except for a flat band
at the top of the energy band, the two dispersive bands are the
same as those in the honeycomb lattice [Fig. 1(b)]. From the
density of states shown in Fig. 1(d), one can see that there
are three van Hove singularities at −2t , 0, and 2t . That at 2t

originates from the flat band, the other two originate from the
saddle points at M point [see Fig. 1(b)]. The Fermi levels at
−2t and 0 correspond to the 1/2 and 1/6 hole doping. In two
cases, the FS forms a hexagon and displays a perfect nesting
[see Fig. 1(c)]. As the correlation effect at 1/2 doping is much
weaker than that at 1/6 doping, we focus our study on the 1/6
hole doping here. We have checked the stability of the results
against a slight deviation from the 1/6 doping, such as at the
1/5 hole doping and found no qualitative changes.

VCA is a cluster approximation of the self-energy func-
tional approach,20 which uses the rigorous variational principle
δ�(�)/δ� = 0 for the thermodynamic grand potential � to
determine the physical self-energy �. It has been successfully
applied to the problem of competing phases in many strong
correlation systems.21–24 In VCA, the lattice is tiled into
identical clusters, which make up a reference system with the
same two-body interaction as the original system but a different
one-body part (including the added Weiss fields to study the
symmetry-broken phases). Then the exact Green’s function
G′ (and the self-energy �′) for each cluster is calculated by
the exact diagonalization method. So, the short-range static
and dynamical (within each cluster) correlations have been
precisely taken into account. For any �′ parametrized as �′(t′),
where t′ represents the collection of the one-body terms, we
have the grand potential20

�[�′(t′)] = �′(t′) + Tr ln[−G′(t′)] − Tr ln[−G(t′)], (2)

where �′(t′) is the grand potential of the reference system
and G(t′) is the approximate Green’s function of the original
system calculated through the cluster perturbation theory.25

Equation (2) is no longer a functional but an ordinary function
of the variational parameters t′, and the task of VCA is to
find a stationary point of this function, ∂�(t′)/∂t′ = 0. In our
calculation, the 12-site clusters [as enclosed by the dotted lines
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FIG. 1. (Color online) (a) Structure of kagome lattice and the
12-site cluster tiling (enclosed by dotted lines) used in our VCA
calculation. a1 and a2 are the lattice unit vectors. (b) The tight-binding
dispersion along high symmetric directions [as illustrated in (c)]. The
dashed line is the Fermi level corresponding to the 1/6 hole doping.
(c) The Brillouin zone and FS for the 1/6 hole doping. b1 and b2 are
the reciprocal-lattice vectors. The dashed lines denote the FS, and the
vectors Q1,2

a,b,c are the nesting vectors. (d) Density of state. (e) Weights
of the contribution to FS from three inequivalent lattice sites α, β,
and γ as represented by the colors.

in Fig. 1(a)] and the open boundary conditions for the clusters
are used.

Before presenting our numerical results, let us first discuss
the possible SC symmetries at 1/6 hole doping. We note that
at each saddle point M the site contribution to FS comes only
from one of the three inequivalent lattice sties, as shown in
Fig. 1(e). Considering the effect of the van Hove singularity at
the M point, we expect that the favorable Cooper pairings will
be made from two electrons belonging to the same sublattice.
For the kagome lattice, there are six third neighbors for each
lattice site, which are in the same sublattice [see Fig. 1(a)
where the sites in the same sublattice are labeled by the same
color], and they give rise to three different bonds. Considering
that the paring intensities are the same along all bonds, and
the phase differences θ and φ with respect to that along the
a2 direction exist for the other two directions, we will get the
following pairing functions:

(i) �(k) = cos(kx) + eiθ cos(kx/2 + √
3ky/2) + eiφ cos

(kx/2 − √
3ky/2) for the spin-singlet pairing,

(ii) �(k) = sin(kx) + eiθ sin(kx/2 + √
3ky/2) + eiφ sin

(kx/2 − √
3ky/2) for the spin-triplet pairing.

The most natural choices for the phases are (θ,φ) = (0,0)
and (2π/3,−2π/3). So, we have the following:

(i) the dx2−y2 + idxy wave for (θ,φ) = (−2π/3,2π/3),
�d+id (k) = �0[cos(kx) − cos(kx/2) cos(

√
3kx/2) +

i
√

3 sin(kx/2) sin(
√

3kx/2)];
(ii) the extended s wave for (θ,φ) = (0,0), �s(k) =

�0[cos(kx) + 2 cos(kx/2) cos(
√

3kx/2)];
(iii) the px + ipy wave for (θ,φ) = (2π/3,−2π/3),

�p+ip(k) = �0[sin(kx) − sin(kx/2) cos(
√

3kx/2) +
i
√

3 cos(kx/2) sin(
√

3kx/2)];
(iv) the f wave for (θ,φ) = (0,0), �f (k) = �0[sin(kx) +

2 sin(kx/2) cos(
√

3kx/2)].

FIG. 2. (Color online) (a)–(d) Phase (±) of the SC gap functions
for the four possible pairing symmetries. The dotted lines denote the
gap nodes. (e) Scaled grand potential � as a function of Weiss field
� for different U in the dx2−y2 + idxy channel. (f) Scaled � as a
function of � for different pairing symmetries at U = t .

The phases and the gap nodes for the four pairing symme-
tries are shown in Figs. 2(a)–2(d).

With these pairing functions, we now introduce the Weiss
fields H ′ = �

∑
〈〈ij〉〉 eiθij �

s/t

ij + H.c., where �
s/t

ij = ci↑cj↓ ∓
ci↓cj↑ for the singlet/triplet pairing, to test the possible pairing
orders. Here, 〈〈· · ·〉〉 denotes the bonds linking the sites in the
same sublattice and θij is given according to the rule discussed
above. Figure 2(e) presents the results of � − �0 as a function
of � for the dx2−y2 + idxy pairing symmetry at various U . �0 is
the grand potential in the zero Weiss field. For 0.4t < U < 3t ,
we find that there is a minimum at finite �, at the same time it
satisfies ∂�(�)/∂� = 0. For U � 0.4t , a monotonic increase
with � occurs. Although there is also a minimum at finite �

for U � 3t , we find that the derivative at this minimum does
not exist, because � is not smooth at the point. Thus, it is
not a stationary point of the self-energy functional, according
to the variational principle of VCA.20 So, the dx2−y2 + idxy

pairing order is realized only in the region 0.4t < U < 3t . We
have also checked the stationarity of the other three SC pairing
orders. The typical results are shown in Fig. 2(f) for U = t .
Except for the dx2−y2 + idxy pairing, all three pairings exhibit
a monotonic decrease with the Weiss field. Therefore, they are
not stable solutions.

In the system with a perfect nesting FS, one will expect
naturally an instability to the density wave which may
compete with the SC order. In the presence of the on-site
Hubbard U , the most likely density wave would be a SDW. A
well-known example is that the staggered SDW order occurs
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for the half-filled Hubbard model with a perfect FS nesting in
the square lattice, where the nesting wave vector (±π,±π )
coincides exactly with the real-space translation symmetry of
two unit distances for the staggered SDW. Considering the
geometry of the kagome lattice and consequently the nesting
property for the 1/6 hole doping as shown in Fig. 1(c), the
staggered SDW will not be favored here. Then, what is the
kagome-lattice counterpart of the staggered SDW occurring
on the half-filled square lattice? At 1/6 hole doping, the
nesting FS has the nesting vectors Q2

a,b,c (or Q1
a,b,c which

connect to Q2
a,b,c via the reciprocal-lattice vectors) as indicated

in Fig. 1(c). With these nesting vectors, two distinct magnetic
orders are expected. One is the noncoplanar chiral spin order
associated with Q1

a,b,c, which is similar to that proposed in
the doped triangle14 and honeycomb16 lattices, where the four
local spins direct along the normals to the faces of a regular
tetrahedron [Fig. 3(a)]. Thus, the spin orientations are eiα =
1/

√
3[ex cos(Q1

a · Ri) + ey cos(Q1
b · Ri) + ez cos(Q1

c · Ri)],
eiβ = 1/

√
3[ex cos(Q1

a · Ri) − ey cos(Q1
b · Ri) − ez cos(Q1

c ·
Ri)], and eiγ = 1/

√
3[−ex cos(Q1

a · Ri) − ey cos(Q1
b · Ri) +

ez cos(Q1
c · Ri)], where Ri denotes the position of the

unit cell i. In this state, the resulting scalar spin chirality,
〈Ks〉 = 〈Sα · (Sβ × Sγ )〉 	= 0 in each triangular plaquette,
breaks both the time-reversal and the parity symmetries.
The other is the coplanar vector chiral spin order associated
with Q2

a,b,c, as shown in Fig. 3(b). In this case, the spins
in each triangular plaquette orient at 120◦ to each other.
The vector chirality for each triangle can be defined as
Kv = (2/3

√
3)(Sα × Sβ + Sβ × Sγ + Sγ × Sα), which is

parallel to the z axis with amplitude +1 or −1. As shown in
Fig. 3(b), the vector chirality arranges as a “stripe” phase, in

FIG. 3. (Color online) (a) Noncoplanar arrangement of spins
(scalar spin chirality). S1→4 indicate the four directions of local
magnetic moments. (b) Coplanar arrangement of spins (vector spin
chirality). The dashed lines with arrow in (a) and (b) are the magnetic
translation vectors. (c) Scaled grand potential � as a function of the
Weiss field h for the spin order shown in (a) at various U . The local
minima are indicated by arrows. (d) Scaled � as a function of h for the
spin order shown in (b). The inset of (d) shows the energy differences
between the two spin-ordered states and the normal phase with a zero
Wiess field, respectively.

which each chirality arranges in a stripe and the two stripes
are staggered with each other. The scalar chiral spin order
and the vector chiral spin order have different translational
symmetries in real space as indicated in Figs. 3(a) and 3(b),
where the magnetic translation vectors are shown as the dotted
lines.

To test the favorable SDW, we introduce the following
Weiss field: H ′ = h

∑
iη eiη · Siη, where eiη is the orientation

of the magnetic moment and Siη = ∑
σσ ′ c

†
iησ τ σσ ′ciησ ′ with

τ the Pauli matrices, i the unit cell index, and η the site
index. Figures 3(c) and 3(d) show the results for � − �0 as a
function of the Weiss field h for the scalar chiral spin order and
the vector chiral spin order, respectively. We find that a local
minimum exists only for U > 5.5t in both cases. Therefore, in
the region 0.4t < U < 3t , no SDW state will compete with the
chiral dx2−y2 + idxy pairing state. Figures 3(c) and 3(d) show
that both spin-ordering states are more favorable compared to
the spin-disordered state. So, we need to compare their energy
gain which is given by the energy difference between the
ordered solution and the normal solution found by suppressing
the Weiss fields. The energy density E = � + μn as a function
of electron density n can be obtained for a solution with the
functional �. The calculation of the energy gain is performed
for several values of the chemical potential μ until the density
n is close enough to 1/6 doping, and the cluster’s chemical
potential μ′ is also used as a variational parameter to guarantee
the thermodynamic consistency.22 The inset of Fig. 3(d) shows
the energy gain for the two spin-ordered solutions as a function
of U . It shows that the scalar chiral spin-order state is more
favorable than the vector chiral spin-order state for U > 5.5t .
With decreasing U , the difference of the energy gain between
the two spin-ordered states decreases. Near the threshold U

for the occurrence of the spin-order states, the two states are
nearly degenerate.

To check the possible existence of the charge-density
wave (CDW) in this system, H ′ = λ

∑
i[fαniα cos(Q1

b · Ri) +
fβniβ cos(Q1

c · Ri) + fγ niγ cos(Q1
a · Ri)] is used, with i the

unit cell index and (fα,fβ,fγ ) = (1,0,−1). The dependence
of � − �0 on the Weiss field λ is presented in Fig. 4(a). We

FIG. 4. (Color online) (a) Scaled grand potential � as a function
of Weiss field λ for the conventional CDW order (see text) at various
U . (b) Spectral functions for U = 4t along the high symmetric
directions [see Fig. 1(c)]. (c) Qualitative phase diagram of the
Hubbard model in the kagome lattice for the 1/6 hole doping.
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find that � − �0 decreases monotonously with λ for various
U from U = 2 ∼ 6t . Therefore, the CDW does not exist in
this region. Thus, in the region 0.4t < U < 3t , the only stable
state we found is the chiral dx2−y2 + idxy pairing state. While
for U > 5.5t the most favorable state is the noncoplanar
scalar chiral SDW, though the coplanar vector chiral SDW
degenerates nearly with it near the threshold U ∼ 5.5t . In
the region between them, we do not find evidence of the SC
state, spin-order state, and the CDW state. From the spectral
function of single-particle excitations, we find that a gap
occurs at the Fermi level as presented in Fig. 4(b) for U = 4t

(a nonvanishing spectral weight can be seen in the gapped
region because a finite Lorentzian broadening is used in the
numerical calculations). So, the system is in fact an insulator.
We suggest that it is a magnetic disordered insulator (MDI).
The possible candidates may be the spin liquid, the spin glass,
or the valence-bond solid, but the method used here cannot
identify or distinguish them.

Finally, we summarize the results obtained above in the
phase diagram shown in Fig. 4(c). We note that the spin-
1/2 kagome lattice has been realized in Herbertsmithite

ZnCu3(OH)6Cl226,27 and its isostructural Mg-based para-
catamite MgCu3(OH)6Cl2.28 Also, the kagome lattice has
been simulated experimentally in ultracold atoms.29 So, we
suggest that the theoretical predictions presented here can
be tested experimentally by doping these compounds or by
implementing an optical lattice in ultracold atoms where the
Hubbard interaction U can be tuned continuously.

In summary, we have studied the Hubbard model in the
1/6 hole-doped kagome lattice using the variational cluster
approach. We find that the chiral dx2−y2 + idxy superconduct-
ing state is most favorable at a small Hubbard interaction U

(0.4t < U < 3t), and the scalar chiral spin order is realized at
a large U (U > 5.5t). Between them, a magnetic disordered
insulating state is proposed.
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