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In Fe-Pd alloys, the competing geometric (fcc versus bcc) and magnetic tendencies result in rich phase
stability and ordering physics. Here, we study these alloys via a first principles mixed-basis cluster expansion
(CE) approach. Highly accurate fcc and bcc CEs are iteratively and self-consistently constructed using a genetic
algorithm, based on the first principles results for ∼100 ordered structures. The structural and magnetic “filters”
are introduced to determine whether a fully relaxed structure is of fcc/bcc and high-/low-spin types. All structures
satisfying the Lifshitz condition for stability in extended phase diagram regions are included as inputs to our CEs.
We find that in a wide composition range (with more than 1/3 atomic content of Fe), an fcc-constrained alloy has
a single stable ordered compound, L10 FePd. However, L10 is higher in energy than the phase-separated mixture
of bcc Fe and fcc-FePd2 (β2 structure) at low temperatures. In the Pd-rich composition range, we find several fcc
β2-like ground states: FePd2 (β2), Fe3Pd9, Fe2Pd7, FePd5, Fe2Pd13, and FePd8, yet we do not find FePd3 with
the the experimentally observed L12 structure. Fcc Monte Carlo simulations show a transformation from any
of the attempted β2-like ground states directly into a disordered alloy. We suggest that the phonon and/or spin
excitation contributions to the free energy are responsible for the observed stability of L12 at higher temperatures,
and likely lead to a β2 ↔ L12 transition. Finally, we present here a complete characterization of all the fcc and
bcc Lifshitz structures, i.e., the structures with ordering vectors exclusively at high-symmetry k points.
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I. INTRODUCTION

Because of a large uniaxial magnetic anisotropy1 and high
resistance to corrosion, the L10-FePd ferromagnetic com-
pound is interesting as a hard magnetic material for ultrahigh
density magnetic recording media.2 Besides, Fe-Pd appears
to be one of the most promising ferromagnetic shape memory
alloys attractive for such practical multifunctional applications
as rapid magnetic sensors and magneto-thermoelastic actua-
tors due to the huge magnetic-field-induced strains.3 Fe-Pd is
also studied as a good catalytic system.4

Structurally, Fe-Pd is an interesting alloy system. Unlike
the all-paramagnetic all-fcc (e.g., Cu-Au) or the all-bcc (e.g.,
Mo-Ta) alloys, Fe-Pd exhibits (see Fig. 1) a competition
between bcc (Pd-poor and low-temperature) and fcc (Pd-rich
and/or high-temperature) structures as well as an interplay
between paramagnetic (high-temperature) and ferromagnetic
(low-temperature) phases.6 For example, with respect to
magnetic ordering, inspection of Fig. 1 indicates four distinct
regions in the phase diagram (the detailed discussion of
the experimentally observed ordered Fe-Pd structures is
presented in Ref. 7): (i) low-temperature ferromagnetic
(FM) region containing fcc-FM and/or bcc-FM and (ii)–(iv)
high- temperature regions above at least one of the Curie
temperatures, containing the paramagnetic (PM) fcc-PM
phase, either (ii) as the only component, or in equilibrium
with (iii) bcc-FM or (iv) bcc-PM phases.

In our earlier work, see Ref. 7, the absolute (unrestricted) as
well as fcc- and bcc-restricted ground-state structures obtained
from first principles were briefly reported. In the present paper,
we illustrate the diverse, fcc/bcc and high/low spin phase
behavior of Fe-Pd from first principles (see Sec. II). It is shown
that the results of Ref. 7 unambiguously follow from iteratively
constructed first-principles mixed-basis cluster expansions

(see Secs. III and IV). New Fe-Pd ground states, all with Pd
composition larger than equiatomic, are identified (see Fig. 7
and Appendix B). All these T = 0 results belong to region
(i) defined above. A proper analysis of phase equilibria in
regions (ii)–(iv) could potentially require an explicit inclusion
of the changes in the magnetic state that influence the finite
temperature phase stability of Fe-containing systems.59,60 One
methodology previously attempted for such an analysis in
Fe-containing alloys61 involves a “disordered local moment”
formalism. In the present paper, we do not attempt such
an analysis, but instead address a related but more simple
question: what would be the finite temperature ordering and
phase stability in Fe-Pd alloys in the absence of magnetic
excitations? We answer this question by combining our
T = 0 cluster expansion with Monte Carlo simulations, and
comparing the results with experimental data (see Sec. V).
These results give a first approximation for the ordering
temperatures and finite-T short-range signatures of the yet-
unobserved phases predicted here and in Ref. 7. Further,
our finite-temperature analysis demonstrates that the spin
(or vibrational) excitations must be entirely responsible for
the transition between the T = 0 Fe3Pd9 ordered structure
predicted here and the high-temperature L12 ordered FePd3

observed experimentally, and thus a detailed study of these
effects is necessary to establish a true finite-T phase stability
in this system. Finally, we also present here a complete list
of all the fcc and bcc Lifshitz structures, which correspond to
high-symmetry k points (see Appendices C and D).

II. EXISTENCE OF FCC/BCC PHASES
AND HIGH-/LOW-SPIN CONFIGURATIONS

The diverse phase behavior of Fe-Pd is illustrated by first-
principles total energy calculations (see Sec. III E) for iron,
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FIG. 1. (Color online) Measured (see Ref. 5) temperature-
composition phase diagram of Fe-Pd. Four regions of different mag-
netic and structural configurations are marked. PM = paramagnetic
and FM = ferromagnetic.

palladium and their compounds as a function of tetragonality
c/a (see Fig. 2) and (collinear) magnetic moment (see
Fig. 3). (To facilitate a comparison between structures with
unit cells of different size and shape, c and a here refer to the
lattice parameters in z and x,y directions, respectively, for a
uniaxially distorted underlying fcc lattice.)

Figure 2 illustrates that as the palladium composition
increases in Fe-Pd compounds, the position of the deepest
global energy minimum along the Bain path tends to change
from around the bcc (c/a = 1/

√
2) geometry to around the

fcc (c/a = 1) geometry. Secondary minima can coexist with
this global minimum: a secondary fct minimum coexists
with a global bcc/bct minimum in pure Fe, and a secondary
bct minimum coexists with a global fct/fcc minimum in
β1, L10, and pure Pd. (We use “fct” or “bct” to refer
to the tetragonal structures that are “fcc-based” or “bcc-
based” as quantified below in Sec. III C; crystallographically,
both have body-centered tetragonal symmetry.) A secondary
minimum is locally stable only if any symmetry-unconstrained
infinitesimal change in atomic positions increases its energy;
such minima were reported in bcc K, Li, Rb, Sr, and in
B2 CuZn (see Ref. 10). Frequently, a secondary minimum
on a Bain path plot is locally unstable, because there exists
an infinitesimal change in atomic positions (in the direction
orthogonal to the Bain path) that decreases its energy; for
example, such unstable secondary minima were reported
for non-ground-state structure geometries of many elemental
solids.10–13 We find that the secondary (bct) minimum on the
Bain path of Fe2Pd-β1 [see Fig. 2(c)] is locally stable, while
the fct minimum of Fe and the bct minima of Pd and L10

FePd are locally unstable. We further find that the following
fcc superlattices do not have secondary minima along the Bain
path and all relax to bct structures: (001) Fe3Pd (Z1), (011)
Fe3Pd (Y1), (111) Fe3Pd (V1), (201) Fe3Pd (DO22), (110)
Fe2Pd (γ 1), (111) Fe2Pd (α1), and (111) Fe2Pd2 (V2).

Even within the same geometry, Fe-Pd alloys may exhibit
multiple minima depending on the total magnetic moment.
Figure 3 shows that iron has a single global minimum
corresponding to a high-spin bcc structure (HS-bcc), while in

FIG. 2. (Color online) The dependence on the tetragonality
(c/a ratio) of the total energy per atom for (a) high-spin (HS) iron,
(b) (100)-fcc superlattice Fe3Pd (Z1), (c) (100)-fcc superlattice Fe2Pd
(β1), (d) (100)-fcc superlattice FePd L10, and (e) high-spin palladium.
The unit cell shape is kept fixed for each c/a value and all others
degrees of freedom are relaxed. Open (red) circles correspond to the
global minima.

the fcc geometry it has two local minima: a higher-energy high-
spin (HS-fcc) minimum and a lower-energy low-spin (LS-fcc)
minimum.14 For pure fcc palladium, our first-principles
calculations predict the energy of the magnetic ground state to
be ∼1 meV/atom lower than that of nonmagnetic state. As we
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FIG. 3. (Color online) The dependence of the total energy on
the (collinear) magnetic moment of the corresponding unit cell in
(a) pure fcc and bcc iron, (b) L10 (FePd), (c) DO22 (Fe3Pd), and
(d) pure fcc palladium. The horizontal dashed line in (a) evaluates
the lowest energy of noncollinear spin configuration of fcc iron
calculated in Ref. 14. “HS” and “LS” denote high- and low-spin
states, respectively. At each fixed magnetic moment, the structures
are fully relaxed keeping the symmetry of unit cell fixed. Open (red)
circles correspond to the global minima.

checked, the denser k mesh and higher energy cutoff do not
change this conclusion. The magnetic ground state of Pd is
not a consequence of pseudopotential usage as the published
all-electron full-potential linearised augmented-plane wave
(FLAPW)-generalized gradient approximation (GGA) results

are the same.15 However, the magnetic versus nonmagnetic
energy difference in Pd is comparable with the accepted
accuracy of density functional theory (DFT) calculations in
this paper thus having a negligible effect on all obtained results.
A deep low-spin minimum exists in Fe3Pd DO22,16 which is
characterized by two Fe spins “up” and one “down” in the unit
cell.

III. METHODOLOGY

A. The cluster expansion strategy for systems exhibiting fcc/bcc
phases and high-/low-spin configurations

Based on the above survey of a few fcc/bcc (see Fig. 2)
and high-/low- spin phases (seee Fig. 3), we conclude to
perform the following distinct cluster expansions: (i) all-fcc
(or fct) high-spin cluster expansion and (ii) all-bcc (or bct)
high-spin cluster expansion. This allows us to describe the
low-temperature ferromagnetic region containing fcc-FM and
bcc-FM, i.e., part (i) of the phase diagram denoted in Sec. I
and in Fig. 1. In both cases, we use only those structures that
are at least locally stable within the corresponding Bravais
lattice. This means that any input structure, or any structure
that is suggested by the cluster expansion to be a candidate
for a ground state, is relaxed without symmetry constrains. We
implement fcc/bcc and HS/LS “filters” identifying the fully re-
laxed structures (see Secs. III C and III D). If a structure relaxes
away from its initial reference lattice type, e.g., fcc, to another
reference lattice type, e.g., bcc, then this structure is removed
from the fcc cluster expansion. Similarly, we include only the
structures in high-spin state as inputs to the cluster expansions.

B. The mixed-basis cluster expansion approach

We use the mixed-basis cluster expansion (MBCE)
approach.17,19–21 The formation energy of each structure σ

based on a given crystal lattice (e.g., fcc or bcc) is mapped
onto an Ising-like Hamiltonian:

�HCE(σ ) = J0 + (2x − 1)J1

+
npairs∑

pairs

DpairJpair�̄pair(σ ) +
NMB∑

f

Df Jf �̄f (σ ), (1)

where A and B type atoms are represented by pseu-
dospins S = −1 and S = +1, respectively, J0, J1, {Jpair}
(npairs members) and {Jf } (NMB members) are the atomic
interaction coefficients, x is a composition, �̄f (σ ) =

1
NDf

∑
(i1,i2,...,im)∼f Si1 (σ )Si2 (σ ) . . . Sim (σ ) are geometric fac-

tors describing configuration σ , Dpair, and Df are the numbers
of symmetrically equivalent pairs and nonpairs corresponding
to a given interaction. The atomic interactions J s are deter-
mined by fitting �HCE(σ ) to the formation energies �HDFT(σ )
obtained from first principles for some finite number of struc-
tures. After the J s are known, the formation energy �HCE(σ )
for any structure σ can be easily obtained by using Eq. (1).

Note that the formation energies that are used for the lattice-
specific cluster expansions (as presented in Appendix B or in
Fig. 8 below), are defined with respect to the pure elements in
the respective geometry, despite the local instability of fcc Fe
and bcc Pd. We find that using fct Fe instead of fcc Fe does not
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FIG. 4. Flowchart of the iterative procedure used to establish the self-consistent cluster expansion, where GA is a genetic algorithm, CE
is a cluster expansion, and SCV is a cross-validation score. The flowchart is modified with respect to the Fig. 3 in Ref. 21 by inclusion of the
fcc/bcc and HS/LS filters for DFT inputs as explained in Secs. III C and III D, respectively.

change the cluster expansion results qualitatively. Whenever
the results of the two cluster expansions are combined to
determine the global ground states (e.g., in Fig. 7), we redefine
the formation energies with respect to bcc Fe and fcc Pd, as
relevant experimentally.

To find the J s, we apply the procedure developed and
described in detail in Ref. 21 (as summarized below). We
further modify this procedure by including fcc/bcc and HS/LS
filters for DFT inputs, as explained in Secs. III C and III D,
respectively. The flowchart of the procedure is presented in
Fig. 4. We start from an initial set of input structures for which

we calculate their formation energies {�HDFT(σ )} and apply
the fcc/bcc and HS/LS filters. The set is divided into two
groups: Nf structures used to extract J s by fitting �HDFT(σ )
to �HCE(σ ) and Nv structures used for testing the cluster
expansion predictions. The “inner” loop searches for J s
corresponding to a fixed set of input structures {�HDFT(σ )}.
This is done by a reciprocal space fit for pair interactions
using a constrained minimization (“t − λ” procedure,17,18 see
further discussion of this procedure applied to Fe-Pd in Sec. IX
of Supplemental Material55). For optimal determination of
nonpair many-body interactions (MBITs), we use a genetic
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algorithm, as described in Refs. 19 and 20. The selection of
pairs and MBITs is judged by a minimization of the prediction
error called “leave-many-out” cross-validation score22 SCV.

The inner loop creates a pool of cluster expansions that have
the lowest cross-validation scores. The ground states of such
cluster expansions are found from Eq. (1) searching all possible
structures (with all possible inequivalent unit cell shapes) with
up to 20 atoms per unit cell,56 i.e., ∼220 structures. These
ground states are statistically ranked by “depth” (relative to the
corresponding convex hulls) and “frequency” of appearance.
Only the “deep” (>1 meV/atom) and “frequent” (>30%)
ground states are chosen for subsequent DFT verification.
Such statistical analysis diminishes the risk of cross-validation
score overoptimization22 while ensuring that only the energy
differences exceeding the accuracy of the first principles
inputs (∼1 meV/atom, cf. Sec. III E below) are given full
attention.

DFT calculation without symmetry constrains is performed
for each of the so-chosen “predicted” ground states. Then, we
check if this prediction is (1) fcc or bcc “locally stable” high-
spin, and (2) “confirmed” or “refuted” by DFT (i.e., whether
it belongs to the DFT convex hull). If we find some “locally
stable” high-spin structure(s) being “confirmed by DFT” we
(3) note if some ground states found at previous iterations are
now “removed from DFT convex hull.” At each outer loop
iteration, we add all of the “new” (comparing to previous
iterations) ground-state predictions, both correct and incorrect
(but locally stable and high-spin), to the DFT input set for the
next iteration, thereby increasing this set.

The outer loop iterations are deemed converged when no
new, high-spin, and locally stable ground states are predicted
by the cluster expansions. Tables I and II illustrate the
convergence of outer loop iterations for fcc and bcc Fe-Pd. For
example, in the fcc case, at the fifth iteration (IT = 5), we have
12 ground-state predictions, of which six are DFT confirmed,
three are DFT refuted, and three are found to be locally
fcc unstable. Among nine fcc locally stable ground-state
predictions, only three are found as “new” comparing to
previous iterations. So for the next iteration (IT = 6), we have
three more DFT inputs.

It has been shown before17,23 that the short-range cluster
expansion can not predict correctly the formation energies of
strained long-period AnBn superlattices. Indeed, the energy
of any such a superlattice in the limit of n → ∞ is the sum
of the energies of strained A + B, and thus depends on the
superlattice orientation Ĝ. However, the atoms separated by
a distance longer than the cluster expansion interaction range
do not interact within such cluster expansion. Therefore a
short-range cluster expansion predicts the n → ∞ energy to be
zero, regardless of the superlattice orientation. For elastically
locally stable systems, the obvious solution is to calculate the
elastic energy ECS(Ĝ) for each orientation Ĝ and subtract
it from ECE(σ ) (for σ having a nonzero structure factor
in direction Ĝ) and then perform the cluster expansion for
energies ECE(σ ) − ECS(Ĝ). The so-obtained cluster expansion
converges well and the subsequent adding of ECS(Ĝ) to
ECE(σ ) guaranties the correct asymptotical behavior of the
total energy. Unfortunately, Fe-Pd is elastically unstable. If we
formally perform calculation of ECS(Ĝ) in Fe-Pd, we obtain
the negative values: for some directions [e.g., (100) and (301)]

at all compositions and for other directions [e.g., (201) and
(311)] at low palladium compositions. The negative values
of constituent strain energies are the consequence of the
well-known dynamical instability of the HS fcc Fe, which can
relax without a barrier into the more energetically favorable
HS bcc Fe, as can be clearly seen from Fig. 2(a). The mismatch
between the smaller HS Fe (a = 3.64 Å) and the larger Pd
(a = 3.96 Å) atoms leads to a decreased c/a and an elastic
energy lowering in (100) fcc superlattices, which in sufficiently
Fe-rich structures could lead to a barrierless transformation
to a bcc-like structure; indeed, our results below confirm such
a prediction. In the present work, we do not add/subtract
ECS(Ĝ) from/to ECE(σ ). This means that we can not use our
cluster expansion for long-period superlattices. In practice,
our cluster expansion works for periods n � 4, as verified by
fits (see Appendix B). The long-period superlattices have not
been observed in Fe-Pd experimentally and, during cluster
expansion iterations, we have not obtained them as ground-
state predictions. The formal inclusion of constituent strain
into a number of cluster expansion iterations did not reveal
new valid ground-state predictions but rather some additional
spurious ones.

C. Determination of the fcc and bcc degrees for structures

In order to determine whether a given relaxed structure is
bcc- or fcc like, we calculate and compare the corresponding
degrees based on the relaxed atomic positions. We define
the degree s(α)(σ ) of proximity of a given structure σ to the
underlying lattice type α (α = fcc, bcc, sc) as

s(α)(σ )−1 =
∑

i=1,...,N

∑

j �=i

[dij (σ ) − dij (α)]2 exp[−ηdij (α)].

(2)
Here, the first sum runs over the atoms i = 1, . . . ,N in the basis
of the structure, the second sum runs over all atoms j in the
lattice (in order to limit this sum to a finite portion of the lattice,
an exponential decay parameter η ∼ 1 is introduced), and dij

is the dimensionless interatomic distance between atoms i

and j normalized by the cube root of the volume per atom.
To determine the correspondence between the interatomic
distances dij (σ ) of the relaxed structure σ and those of a
perfect lattice α, we sort the distances {dij (σ )} in increasing
order (which is done separately for each atom i in the basis) and
then match them to the similarly sorted distances in the perfect
lattice. For example, if α = fcc, then for each i the twelve
shortest dij (σ )’s would be matched to the nearest-neighbor
distance dnn(fcc), while the next six dij (σ )’s would be matched
to the second-nearest-neighbor distance dnnn(fcc), etc. If, for
example, the degree sfcc(σ ) for a given relaxed structure σ is
much larger than alternative sbcc(σ ) and ssc(σ ) degrees, we
conclude that it has relaxed to an fcc-like geometry. In case
when there is no one structural degree s(α)(σ ) clearly prevailing
over the two others, the corresponding structure is not included
into any of the cluster expansions.

Figure 5 illustrates this selection process for (011)
Fe2Pd (γ 1) and (011) Fe2Pd2 (Y2) superlattices. All of the
interatomic distances dij are shown for the relaxed structures
as well as for the perfect reference fcc and bcc lattices. The
correspondence of the interatomic distances of a given relaxed
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TABLE I. Outer-loop iteration history for high-spin fcc Fe-Pd cluster expansion. “DFT convex hull” means the ground states determined
within the set of all those NDFT structures for which DFT formation energies are known at each iteration step. Nmax

mb is the maximum number of
many-body interactions used for evaluation of cluster expansion predictions. The formation energies and description of all considered structures
are presented in Appendices B–D43–47 and in Supplemental Material (see Ref. 55).

Fe-Pd fcc FM Cluster Expansion: Iteration History (seven final DFT ground states(a))
Input IT = 1 IT = 2 IT = 3 IT = 4 IT = 5 IT = 6 IT = 7 IT = 8 IT = 9

NDFT 29 29 40 49 63 71 75 76 80 83
Nmax

mb 9 10 9 8 8 7 6 8 8
Total ground states 13 13 18 12 12 10 8 9 7
predicted by cluster expansions
Correct (confirmed by DFT) 5(b1) 4(b2) 2(b3) 4(b4) 6(b5) 5(b6) 5(b7) 5(b8) 5(b8)

Incorrect (refuted by DFT) 7(c1) 7(c2) 14(c3) 8(c4) 3(c5) 2(c6) 3(c7) 2(c8) 0
fcc-unstable in DFT 1(d1) 2(d2) 2(d3) 0 3(d5) 3(d6) 0 2(d8) 2(d9)

New fcc locally stable (incl. shallow) 11 9 14 8 3 1 4 3 0
DFT convex hull 4(e0) 6(e1) 6(e2) 6(e2) 6(e2) 6(e2) 6(e2) 7(e7) 7(e7) 7(e7)

Structures removed from 1 2 0 0 0 0 0 0 0
DFT convex hull
Cross-validation score (meV) 2 1.5 3 4 4 4.5 4 5 5

Final DFT ground states:
(a) L10, β2, Fe3Pd9 (ID-4748), Fe2Pd7(ID-580), FePd5 (ID-67), Fe2Pd13 (ID-30073), FePd8 (ID-579)

Correct predictions:
(b1) β2, DO23, FePd5 (ID-67), FePd7 (ID-279), FePd14 (ID-28503)
(b2) β2, Fe2Pd7(ID-580), Fe2Pd13 (ID-30073), FePd8 (ID-579)
(b3) β2, FePd8 (ID-579)
(b4) β2, FePd5 (ID-67), Fe2Pd13 (ID-30073), FePd8 (ID-579)
(b5) L10, β2, Fe2Pd7(ID-580), FePd5 (ID-67), Fe2Pd13 (ID-30073), FePd8 (ID-579)
(b6) L10, β2, FePd5 (ID-67), Fe2Pd13 (ID-30073), FePd8 (ID-579)
(b7) L10, β2, Fe3Pd9 (ID-4748), FePd5 (ID-67), FePd8 (ID-579)
(b8) L10, β2, Fe2Pd7(ID-580), FePd5 (ID-67), FePd8 (ID-579)

Incorrect predictions:
(c1) Fe5Pd4(ID-585), Fe5Pd4(ID-588), Fe4Pd4(ID-289), Fe4Pd5(ID-585), Fe2Pd3(ID-20), Fe3Pd13(ID-64323), FePd7(ID-290)
(c2) Fe4Pd5(ID-588), Fe4Pd5(ID-627), Fe2Pd7(ID-583), Fe2Pd8(ID-1092), Fe3Pd12(ID-30123), FePd7(ID-290), FePd8(ID-502)
(c3) Fe10Pd6(ID-91210), Fe8Pd8(ID-91218), Fe7Pd9(ID-91235), Fe4Pd10(ID-16161), Fe4Pd12(ID-63521), Fe2Pd6(ID-342),

Fe2Pd6(ID-211), Fe2Pd8(ID-1133), FePd4(ID-30), Fe2Pd10(ID-4830), Fe2Pd11(ID-7900), Fe2Pd14(ID-91276),
FePd9(ID-1132), FePd13(ID-15787)

(c4) Fe4Pd4(ID-286), Fe4Pd4(ID-303), Fe4Pd4(ID-307), Fe3Pd4(ID-112), Fe3Pd4(ID-129), Fe4Pd7(ID-1852), Fe2Pd6(ID-300),
Fe2Pd7(ID-541)

(c5) Fe3Pd2(ID-23), Fe4Pd11(ID-36312), Fe2Pd7(ID-541)
(c6) Fe2Pd7(ID-541), Fe3Pd12(ID-28042)
(c7) Fe6Pd6(ID-3258), Fe3Pd13(ID-63086), FePd7(ID-269)
(c8) Fe6Pd2(ID-211), Fe2Pd10(ID-6068)

fcc-unstable predictions:
(d1) Fe7Pd2(ID-580) (d6) Fe6Pd(ID-106), Fe5Pd2(ID-91), Fe5Pd2(ID-107)
(d2) Y1, γ 1 (d8) Fe4Pd2(ID-39), Fe3Pd2(ID-19)
(d3) Fe7Pd(ID-290), Y1 (d9) Fe6Pd2(ID-135), Fe3Pd2(ID-19)
(d5) Fe6Pd(ID-106), Fe5Pd2(ID-91), Fe3Pd2(ID-19)

DFT convex hull:
(e0) L10, β2, DO23, D7
(e1) L10, β2, DO23, FePd5 (ID-67), FePd7 (ID-279), FePd14 (ID-28503)
(e2) L10, β2, Fe2Pd7(ID-580), FePd5 (ID-67), Fe2Pd13 (ID-30073), FePd8 (ID-579)
(e7) L10, β2, Fe3Pd9 (ID-4748), Fe2Pd7(ID-580), FePd5 (ID-67), Fe2Pd13 (ID-30073), FePd8 (ID-579)

structure to those of the perfect lattices are consistent with
the degrees s(α)(σ ) (shown in the insert in the same figure).
Note that because the different sites in the unit cell basis can
be symmetry inequivalent, two or more interatomic distances
(points in Fig. 5) may correspond to the same absolute neighbor
number.

Following the above-described procedure, we find, for
example, that among all 29 fcc compounds from the initial set,
seven superlattices [(001) Fe3Pd (Z1), (011) Fe3Pd (Y1), (111)
Fe3Pd (V1), (201) Fe3Pd (DO22), (110) Fe2Pd (γ 1), (111)
Fe2Pd (α1), and (111) Fe2Pd2 (V2)] have relaxed into bct struc-
tures, and thus are removed from the fcc cluster expansion.
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TABLE II. The same as in Table I but for bcc.

Fe-Pd bcc FM Cluster Expansion: Iteration History (two final DFT ground states(a))
Input IT = 1 IT = 2 IT = 3 IT = 4 IT = 5

NDFT 23 23 28 30 31 32
Nmax

mb 8 8 7 7 8
Total ground states predicted by cluster expansions 10 7 10 11 12
Correct (confirmed by DFT) 2(b1) 0 2(b1) 1(b4) 2(b1)

Incorrect (refuted by DFT) 4(c1) 2(c2) 1(c3) 1(c4) 0
bcc-unstable in DFT 4(d1) 5(d2) 7(d3) 9(d4) 10(d5)

New predictions that are bcc locally stable (including shallow) 5 2 1 1 0
DFT convex hull 1(e0) 2(e1) 2(e1) 2(e1) 2(e1) 2(e1)

Structures removed from DFT convex hull 0 0 0 0 0
Cross-validation score (meV) 3 3.5 6 7.5 6.5

Final DFT ground states:
(a) C11b, FePd8(ID-619)

Correct predictions:
(b1) C11b, FePd8(ID-619) (b4) C11b

Incorrect predictions:
(c1) Fe4Pd4(ID-246), Fe2Pd7(ID-578), FePd4(ID-29), FePd5(ID-77) (c3) Fe2Pd7(ID-622)
(c2) Fe2Pd14(ID-90944), FePd15(ID-90943) (c4) Fe5Pd4(ID-520)

Bcc-unstable predictions:
(d1) B11, Fe2Pd4(ID-48), Fe2Pd7(ID-569), FePd4(ID-24)
(d2) Fe4Pd8(ID-3264), Fe4Pd8(ID-3239), Fe2Pd6(ID-269), Fe2Pd6(ID-240), FePd4(ID-27)
(d3) Fe7Pd8(ID-36367), Fe2Pd4(ID-48), FePd4(ID-24), FePd4(ID-27), FePd5(ID-67), FePd8(ID-563), FePd9(ID-963)
(d4) Fe2Pd4(ID-53), Fe2Pd4(ID-48), Fe2Pd7(ID-525), FePd4(ID-24), FePd4(ID-27), FePd8(ID-542), FePd8(ID-521),

FePd8(ID-490), FePd9(ID-963)
(d5) Fe5Pd4(ID-517), Fe5Pd4(ID-501), Fe4Pd4(ID-256), Fe2Pd6(ID-269), Fe2Pd7(ID-525), FePd4(ID-27),

FePd5(ID-72), Fe2Pd14(ID-91778), FePd8(ID-542), FePd8(ID-563)

DFT convex hull:
(e0) C11b (e1) C11b, FePd8(ID-619)

D. Filtering of the high- and low-spin phases

Before the bulk of our study, we perform a number of
test calculations including those shown in Fig. 3, so as to
later be able to judge the magnetic state of any given relaxed
structure. First, we analyze the correlation between the total
magnetic moment μ and composition xPd for a large number
of key compounds. Second, for each of a smaller number of

FIG. 5. (Color online) Interatomic distance analysis for (a) (110)
Fe2Pd superlattice γ 1 and (b) (110) Fe2Pd2 superlattice Y2 (dots)
with respect to those distances in the perfect fcc (solid lines) and bcc
(dashed lines) lattices. The “fcc/bcc/sc scores” are the corresponding
values of the degree s(α)(σ ) defined in Eq. (2).

compounds, we perform a series of fixed moment calculations
(μ scans). From both sets of tests, we conclude that the total
moments of the HS phases (excluding the pure elements) are
well approximated linearly as μ ∼ (2.65xFe + 0.5xPd)N ± 0.3
(where N is the total number of atoms). Thus it can be
partitioned into individual contributions of roughly μFe ∼ 2.65
and μPt ∼ 0.5. Due to much more limited occurrence of LS
minima (in particular, LS was not observed in compounds with
xPd > 0.5), the magnetic moments of the LS compounds could
not be partitioned with a similar certainty, but are consistent
with μFe < 1.3 and μPt ∼ 0.5. Note that, as Figs. 3(a) and 3(d)
illustrate, the LS and HS states are typically well separated
whenever the LS state is clearly discernible.

For other structures in our HS cluster expansion study,
we use these results as a benchmark. We check the total
magnetization μ of a relaxed structure and label the structure
as being in a given spin state if μ agrees well with the expected
value of that spin state. Such a strategy proves its effectiveness
for all the considered structures. We find that the HS magnetic
state has a very robust value across all the CE inputs, as
illustrated in Ref. 55.

E. Calculation of formation energies

We calculate the formation energies of Fe-Pd compounds
using the pseudopotential momentum-space total energy and
force formalism within the plane-augmented-wave (PAW)
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method in DFT-GGA approximation of Perdew and Wang25

with parametrization of Vosko, Wilk, and Nusair26 as imple-
mented by the VASP program package.27 3p electrons are con-
sidered as valence for Fe. All calculations are spin polarized.
The effect of lattice vibrations is omitted. All structures are
completely relaxed including shape and volume relaxation of
the unit cell as well as the individual displacements of atoms
within the unit cell. The relaxation is symmetry unconstrained.
The accuracy of relaxation is estimated at 1 meV/atom in terms
of the total energy per atom for each compound.

In Supplemental Material,55 we demonstrate the conver-
gence of the calculated formation energies with respect to the k

mesh and energy cutoff parameters. Based on the results of this
test, we use the energy cutoff as 400 eV and k mesh equivalent
to at least 16 × 16 × 16 divisions of the fcc and 20 × 20 × 20
divisions of the bcc cubic unit cells. In Appendix A, we
compare our pseudopotential data with all-electron linearised
augmented-plane wave (LAPW) and experimental data28–42

for pure iron and palladium as well as for some of their
compounds.

The results of our first-principles calculations of the for-
mation energies �H of fcc and bcc compounds are presented
in Appendix B. The energies of all locally stable inequivalent
structures with four or less atoms per unit cell are included
into the first input set. Additionally, all fcc and bcc Lifshitz
structures, which correspond to high-symmetry k points, are
considered. Since such Lifshitz structures have never been

compiled together,43–47 we list them in Appendices C and D.
For fcc cluster expansion, we also use the energy of D023

structures because it has very low �H . Thus the total number
of the initial DFT inputs consists of 30 fcc and 23 bcc energies
(including pure iron and palladium). The total pool of the DFT
inputs, including the initial set and the structures added during
the iterations of the cluster expansion, consists of 83 fcc and
32 bcc energies.

IV. RESULTS OF THE CLUSTER EXPANSIONS

A. Interaction energies in fcc and bcc Fe-Pd

Figure 6 shows the interaction energies that characterize
the calculated fcc and bcc cluster expansions. The fcc cluster
expansion yields two strong and 12 weaker pair interactions,
whereas the bcc cluster expansion yields five strong and
six weaker pair interactions. The strong pair interactions are
ordering-like (positive) in fcc but in bcc they are ordering-like
(positive) for 1st, 3rd, and 5th pair and phase-separating
(negative) for 2nd and 4th pairs. The same tendency is observed
among the many-body interactions. Namely, in fcc, all of them,
except 4B3-2 are ordering like, whereas in bcc, they are both
ordering like and phase separating.

B. Convergence of the cluster expansion iterations

Tables I and II show the iterative convergence of the fcc
and bcc cluster expansions toward self-consistency. In case of

Values of cluster expansion interactions: Fe-Pd high-spin
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FIG. 6. Values of pair and many-body (MBIT) interaction parameters defining our final fcc and bcc Fe-Pd cluster expansions. The
corresponding MBITs clusters are also shown. The MBIT code identifies the corresponding number of vertices and largest separation between
those vertices.
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fcc cluster expansion, the number of new fcc locally stable
predictions declines to zero after nine iterations, requiring a
total of 83 input structures. In case of bcc cluster expansion,
the required total numbers of iterations and input structures
are five and 32, respectively.

From Table I it follows that, had we not used the “outer
loop iterations” (see Fig. 4) and instead used just the results of
the first iteration, we would have found 13 predicted ground
states. However, 7 of the 13 predicted ground states are
refuted by DFT and one additional structure is not locally
stable in fcc. Even if we had examined the results of the
first iteration by DFT and identified the seven incorrect
predictions, among the remaining 13 − 7 − 1 = 5 ground
states [listed under (b1) in Table I] only two (β2 and FePd5)
are among the final DFT ground states [item (a) = (e7) in
Table I] and the other three (D023, FePd7, and FePd14)
are false ground-state predictions, removed by subsequent
iterations.

Within our methodology, the “ground-state predictions” are
those structures (among all ∼220 checked) that are predicted as
energetically sufficiently deep and statistically frequent ground
states by a number of the best (with highest cross-validation
scores) cluster expansions generated at each iteration step.21

Such statistical procedure allows one to efficiently search
for new ground states. However, the ground-state predictions
may be different from DFT ground states even at the last
iteration step. According to our criteria, such a disagreement
is acceptable if it has been tested and is numerically negligible.
Namely, in fcc case, two structures (Fe3Pd9 and Fe2Pd13)
from the “DFT convex hull” [item (a) = (e7) in Table I] are
not present in the list of correct predictions at iteration step
IT = 8 [item (b8) in Table I]. This is because the Fe3Pd9

structure is not predicted to be a ground state by any of
the considered (twelve) cluster expansions. Nevertheless, its
formation energy is predicted by all cluster expansions to
be less than 1 meV/atom above the final DFT convex hull.
Another structure Fe2Pd13 is predicted to be a ground state
by eleven of twelve considered cluster expansions, but in all
cases, its depth with respect to the DFT final convex hull is
less than 1 meV/atom. Thus, according to our criteria, it is
not considered as a correct prediction for a subsequent DFT
verification.

In the bcc case, one structure (FePd8) from the “DFT
convex hull” [item (a) = (e1) in Table II] is not included in
the list of correct predictions at iteration step IT = 4 [item
(b4) in Table II]. This is because the FePd8 structure is
predicted to be a ground state only by four of the considered
(seventeen) cluster expansions (thus according to our criteria
it is not considered as a correct prediction for a subsequent
DFT verification). Nevertheless, even in those unfavorable
thirteen cases its formation energy is predicted to be less than
1 meV/atom above the DFT final convex hull. Note that many
bcc structures in the Pd-rich regions decayed into fcc ones,
leaving only a small number of candidate structures to do bcc
cluster expansion.

The obtained results are consistent with the predictive
accuracy of fcc and bcc cluster expansions as estimated by
the cross-validation scores (5 and 6.5 meV, respectively, at
final iteration steps). The difference between the ground-state
predictions and the DFT ground states is not crucial as we keep

and update the DFT convex hull between the iteration steps
(see Tables I and II).

Note that both fcc and bcc cases follow exactly the same
approach. The smaller number of inputs used for the final
bcc CE is mostly due to a higher instability ratio in the bcc
case. The resulting accuracies of the bcc and fcc CEs are very
similar.

C. DFT convex hull

The DFT convex hull57,58 is composed by the structures
identified among the ∼100 structures by DFT during all the
outer loop iterations as confirmed ground-state predictions,
which we identify as the DFT ground-state structures. These
structures are presented in Fig. 7 as well as in Table I
[(e7) = (a), fcc case] and in Table II [(e1) = (a), bcc case].
We distinguish four regimes summarized in Table III.

1. Fcc constrained ground states
(in the absence of bcc competition)

Fcc Fe and FePd (L10) are the ground states only
if we neglect the bcc competition. Otherwise, fcc Fe is
151.4 meV/atom less stable than bcc Fe, and FePd L10 is
25.4 meV/atom less stable than the phase separated mixture of
bcc Fe and fcc- FePd2 (β2) at equiatomic composition (dashed
line in Fig. 7). This means that at T = 0, L10 structure is only
a constrained ground state in Fe-Pd and may be observed
at low temperatures only if the phase separation of fcc L10

into the incoherent bcc-Fe + fcc-FePd2 mixture is kinetically
frozen. At higher temperatures, L10 can be stabilized by the
vibrational and spin excitation contributions: indeed, these
contributions decrease the free energy of fcc Fe relative to
that of bcc Fe, eventually reversing the fcc Fe versus bcc Fe
stability; it appears likely that the energy of a general Fe-based
fcc alloy would be similarly decreased relative to the bcc Fe.
The absence of other fcc-restricted ground states at xPd < 0.5 is
due to a predicted martensitic fcc→bcc instabilities: all the fcc
structures in this composition range that are predicted by the
fcc cluster expansion to have low formation enthalpies relax
without a barrier to bcc-like configurations. (Nevertheless, they
do not produce bcc-restricted ground states upon relaxation,
see below.)

2. Absolute fcc ground states (including bcc competition)

Figure 7 reveals the following absolute fcc ground states:
FePd2 (β2), Fe3Pd9, Fe2Pd7, FePd5, Fe2Pd13, and FePd8.
These structures are the ground states regardless of whether
the bcc competition is considered. In fact, all these structures
can be considered derivatives of FePd2 (β2) obtained by
substitution of some iron atoms by palladium as required
by stoichiometry, and are formed by repeating a three-layer
unit with two (100) layers of pure Pd followed by a single
(100) mixed Fe-Pd layer. Of all these structures, only FePd8

has a relatively commonly observed experimental prototype,
Pt8Ti. Remarkably, the bcc-restricted ground state FePd2 C11b
(discussed in the next subsection) is also crystallographically
equivalent (differing only by the value of the c/a ratio) to fcc
FePd2 (β2). Another unexpected finding is that at 75 at.% Pd,
it is not the experimentally observed L12 that is stablest at
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FIG. 7. (Color online) DFT convex hull of fcc (black lines and dots) and bcc (red lines and squares). The values of formation energies
are calculated using bcc-Fe and fcc-Pd as reference states: �H = E(σ ) − xFeE[Fe,bcc] − xPdE[Pd,fcc]. The dashed blue line shows the
decomposition into bcc Fe and fcc β2. The smallest rectangular unit cell (same as the conventional cell for high-symmetry structures) is
presented for all the ground states except bcc (124) FePd8 ordered superlattice (ID-619), for which such a unit cell is too large (9 × 9 × 9 bcc
cubes); see Supplemental Material55 for explicit data involving all the ground states. For comparison, we also presented the formation energies
of fcc and bcc random alloys [“random (CE)”] obtained by using the final cluster expansions.

T = 0, but one of these β2-based structures, which can also
be described as a superlattice formed by the Fe3Pd9 sequence
of (430)-oriented layers of pure Fe and Pd. This structure

has a formation energy 4.9 meV/atom lower than L12. Even
D023 structure is lower in energy than L12 by 4.0 meV/atom.
We confirmed that spin-orbit coupling does not change this

TABLE III. Fe-Pd DFT ground states and the structures observed experimentally5 (at 600 K). “fcc (bcc) constrained” means that the
corresponding fcc (bcc) structures are the ground states only if the fcc (bcc) structures are taking into account. “fcc (bcc) absolute” means that
the corresponding fcc (bcc) structures are ground states if both fcc and bcc structures are taking into account. For the DFT energies, please
refer to the Tables VI–VIII in the appendixes.

fcc fcc bcc bcc Exp.
xPd constrained absolute constrained absolute 600 K

0.00 Fe,fcc Fe,bcc Fe,bcc
0.50 L10 L10

2/3 β2 C11b L12

0.75 Fe3Pd9 L12

0.7(7) Fe2Pd7 L12

0.8(3) FePd5 L12

0.8(6) Fe2Pd13 Disorder
0.8(8) FePd5 FePd8 Disorder
1.00 Pd,fcc Pd,bcc Pd,fcc
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hierarchy leaving FePd3 (L12) still 3.0 meV/atom higher in
energy than Fe2Pd6 (DO23). We also checked (see EPAPS55)
that the use of different pseudopotentials does not change the
energy hierarchy of L12, DO23, and Fe3Pd9 (ID-4748).

3. Bcc ground states (in the absence of fcc competition)

FePd2 C11b and (124) superlattice bcc-FePd8 are the
ground states only if we neglect fcc competition at T = 0.
These structures are hardly of any practical interest, since
raising the temperature should only further destabilize the
bcc-based structures (by analogy with pure iron). Notably,
there are no bcc ground states in the Fe-rich part of the
diagram. Figure 7 shows the energies of fcc and bcc random
alloys obtained from the cluster expansions. The random alloy
approximates the expected behavior of the Fe-Pd system at
high temperatures (cf. Sec. V A). We see that for the bcc alloy,
this energy is positive and has a negative second derivative in
the Fe-rich region, indicating that the existence of such alloy
is thermodynamically unstable and would undergo a spinodal
decomposition. Together with the above-mentioned marten-
sitic instability of the fcc-based alloy at this composition, this
indicates that it should not be possible to obtain any form of
Fe-rich Fe-Pd alloy, in agreement with experiment.

4. Absolute bcc ground states (including fcc competition)

Bcc Fe is the only bcc structure that is the ground state
regardless of whether fcc competition is considered.

D. Final cluster expansions

In Fig. 8, we present the formation energies of all the
∼220 structures (enumerated with the method of Ref. 56)
as predicted by the final cluster expansions in fcc and bcc
Fe-Pd. The fcc ground-state structures may be classified as

FIG. 8. (Color online) DFT formation energies of all input
structures as well as the formation energies of all possible structures
with less or equal 20 (fcc) and 16 (bcc) atoms per unit cell generated
by the corresponding final cluster expansions (CE) in (a) fcc and
(b) bcc Fe-Pd. Based on the cluster expansions the corresponding
convex hulls are built. The formation energies of random alloys are
also shown. Note that in contrast to Fig. 7, both reference states (pure
iron and palladium) for calculation of �H are chosen to be (a) fcc
and (b) bcc. Only the sufficiently deep ground states (deeper than
1 meV/atom) are labeled.

following. Four structures FePd (L10), FePd2 (β2), FePd5,
and FePd8 found on the DFT convex hull [listings (a) = (e7)
in Table I] are deep ground states. Those structures are labeled
in Fig. 8(a). Two structures (Fe2Pd7 and Fe2Pd13) found on
the DFT convex hull are shallower than 1 meV/atom ground
states. One structure (Fe3Pd9) found on the DFT convex hull
is not predicted as a ground state by the cluster expansion,
but its formation energy is less than 1 meV/atom higher than
that of the predicted ground state at this composition. Seven
additional structures (not present on the DFT convex hull) are
predicted to be shallower than 1 meV/atom ground states.

The bcc ground-state structures may be classified as
following. One structure FePd2 (C11b) found on the DFT
convex hull [listings (a) = (e1) in Table II] is a deep ground
state. This is one of the two structures labeled in Fig. 8(b). The
other structure FePd8 found on the DFT convex hull is not a
ground state in cluster expansion, but its formation energy is
less than 1 meV/atom higher than that of the predicted ground
state at this composition.

One structure FePd4 is predicted to be a deep ground state.
However, it is not present on the DFT convex hull because
it is found to be bcc locally unstable [see listings (d2)–(d5)
in Table II]. This structure is also labeled in Fig. 8(b). Two
additional structures (not present on the DFT convex hull) are
predicted as ground states shallower than 1 meV/atom.

All these minor conflicts between the DFT and the cluster
expansion arise due to the finite (albeit small) cross-validation
score of the chosen final cluster expansions, which becomes
important due to the adaptive character52 of all the obtained
global ground states except FePd2 (β2).

E. Comparison with previous Fe-Pd cluster expansions

In a series of papers Mohri et al.31 derived a number of
fcc-HS Fe-Pd cluster expansions based on different sets of
first-principles formation energies. The largest set consists
of L10, L11, L12, and D023. The largest cluster expansion
includes two-, three-, and four-body nearest neighbors, pair
next nearest neighbor as well as irregular triangle and irregular

FIG. 9. (Color online) Formation enthalpies �H (with fcc-Fe
and fcc-Pd as reference states) calculated by the use of fcc-HS cluster
expansion in case of completely random phase and by Monte Carlo
simulation at T = 1100 K (see Fig. 10) and obtained experimentally
for disordered paramagnetic state at T = 1125 K (see Ref. 48) and
1565 K (see Ref. 49).
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tetrahedron cluster interactions. The formation energies of
all the ordered structures considered by Mohri et al. are
calculated as functions of volume neglecting cell-internal
and cell-shape relaxations. At any given volume, the cluster
interactions are calculated using the formation energies of all
considered structures at the same volume, thus making the
cluster interactions to be functions of volume. At any value
of composition and temperature, the functional of free energy

(containing those cluster interactions and considered within
the cluster-variation method) was minimized with respect to
volume. Using such a functional of free energy, the transition
temperatures for L10-disorder transition are obtained to be
1080, 1505, and 1760 K for three considered sets of cluster
interactions, respectively. The phase transition temperature
was considerably decreased toward the experimental value
by the use of Debye-Grüneisen model for vibrational free

xPd ΔH(T ) Short-Range Order in (100) plane

0.50 T=100K (L10) T=400K (L10) T=500 K T=1000 K

0.60 T=200K (β2+L10) T=450K (β2+L10) T=550K (β2) T=700 K

0.66 T=200K (β2) T=800K (β2) T=850 K T=1000 K

0.75 T=40K (ID-4748) T=700K (ID-4748 or β2) T=800 K T=1000 K

0.8889 T=40K (ID-579) T=480K (ID-579) T=580 K T=1000 K

FIG. 10. (Color online) Fcc Monte Carlo simulation of formation energy �H and short-range order in (100) plane as function of temperature
and composition. The corners of each square correspond to 
 points, whereas the center of the square as well as the center of each edge correspond
to X = {1,0,0} points. Note that different simulation temperatures are selected for different compositions within the same figure column.
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energy. It was argued that such vibrational contribution partly
describes the local relaxations of atoms.

The detailed comparison and discussion of formation
energies obtained in Ref. 31 and in the present study is done
in Appendix A. The only common feature of the cluster
interactions obtained in the present paper and in Ref. 31 is
the large positive value of the nearest neighbor interaction.
We attribute the difference in cluster expansions to the much
larger structure pull (83 structures built iteratively) used in the
present study.

V. PHASE STABILITY AT FINITE TEMPERATURES

The obtained cluster expansions are targeted to correctly
reproduce the corresponding ground states. Nevertheless, the
structures far from convex hulls are also included into the
cluster expansion fits. So we expect that the calculated cluster
expansions give a reasonable error in the description of high-
energy structures as well, thus allowing one to evaluate the
configurational high-temperature properties. Such theoretical
predictions may be directly compared with experimental data,
which are usually obtained at finite (usually high enough)
temperatures. In this section, such high-temperature properties
as the atomic short-range order and the heat of formation of
the disordered phase are calculated on the basis of the cluster
expansion for a wide compositional range.

A. Mixing enthalpies

In Fig. 9, we present a comparison of the mixing enthalpies
calculated from our fcc high-spin cluster expansion for random
(completely disordered) alloy, for disordered alloy at T =
1100 K (by Monte Carlo simulations, see Fig. 10) and obtained
experimentally48,49 for disordered paramagnetic state at differ-
ent temperatures and compositions. Figure 9 demonstrates that
the random alloy gives a good approximation for the Fe-Pd for-
mation energy at sufficiently high temperatures. The high-spin
cluster expansion does not include the phonon contribution
that may be responsible for part of the difference between the
experimental (at lowest available temperature) and theoretical
data. The possible importance of the phonon contribution is
manifested by a large difference between the two experimental
curves corresponding to different temperatures (1123 and
1565 K).

The other possible reason of the difference between
experimental (1123 K) and theoretical curve is that the used
cluster expansion is based on ferromagnetic high-spin states
whereas the measured states are paramagnetic. Nevertheless,
the calculated results are noticeably within the experimental
error of T = 1123 K measurements.

B. Short-range order and transition temperatures

We can now use the final fcc-HS cluster expansion to
perform canonical Monte Carlo simulations24 of the fcc alloy,
allowing us to study the temperature (T ) dependence of the
formation energies �H and short-range order in (100) fcc
reciprocal plane for a number of compositions (see Fig. 10).
At each temperature, we use 1000 and 100 flips/site to achieve
equilibrium and average the energy, respectively. In order to
reduce the risk of poor convergence at low temperatures, we

FIG. 11. (Color online) Fe-Pd fcc phase diagram extrapo-
lated from Monte Carlo simulation, compared to that measured
experimentally5,8,9 (FM is ferromagnetic, PM is paramagnetic).
The solid lines sketch possible phase boundaries, including those
of hypothetical phases corresponding to the T = 0 ground state
structures. (This sketch does not reflect the possibility of peritectoid
and most other phase-segregating transitions, even when strictly
speaking such transitions are required thermodynamically.)

use progressively smaller temperature steps with temperature
decrease. The sample sizes used for Monte Carlo simulation
are indicated in the �H (T ) plots. The purpose of using the
large sample sizes is to avoid the finite-size effects on order-
disorder transition. The abrupt change in �H (T ) corresponds
to a phase transition. From Fig. 10 we obtain the following
results, which are extrapolated into a tentative fcc-restricted
phase-composition phase diagram shown in Fig. 11.

At compositions xPd = 0.50, the peaks at k = {1,0,0}
points are obtained, reflecting the expected L10 ordering
below the order-disorder transition temperature Tord = 450 K.
Similarly, the ordering evidenced at xPd = 0.66 by the peaks
at k = {1/3,0,0} is β2, predicted by the cluster expansion
at that composition, with Tord = 832 K. At an intermediate
composition xPd = 0.60, the order-disorder phase transition
to β2 structure is observed at Tord = 645 K, evidenced by
the well defined k = {1/3,0,0} peaks below Tord. However,
below 505 K, additional k = {1,0,0} peaks appear, which

FIG. 12. (Color online) Simulated diffractograms for the ab initio
fully relaxed FePd3 (L12) and Fe3Pd9 (ID-4748) structures.
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we interpret as a possible indication of a phase separation
separation into L10 and β2 structures below 505 K.

At compositions xPd = 0.75 and xPd = 0.89, the phase
transitions into Fe3Pd9 (ID-4748) and FePd8 (ID-579) struc-
tures are observed at 784 and 510 K, respectively. In both
cases the dominant peak at (1/3,0,0) reflects the β2-like
nature of both structures. At xPd = 0.75, the diffuse peaks at
T > Tord merge somewhat compared to the perfect (1/3,0,0)
positions at T < Tord, and may look more like split (100)

TABLE IV. Theoretical and experimental data for magnetic
moment μ, lattice parameter a, and energy E (with respect to the
energy of bcc Fe) of iron in bcc, fcc-LS, and fcc-HS configurations
as well as of palladium in fcc configuration.

SYSTEM METHOD μ (μB) a (Å) E (meV/atom)

Fe, bcc PAW-GGAa 2.21 2.84
FLAPW-GGAb 2.83
FLAPW-GGAc 2.17 2.84
FLAPW-GGAd 2.84 0
FLAPW-GGAe 2.17 2.83

Exp.f 2.22
Exp.(298 K)g 2.87

Fe, fcc LS PAW-GGAa 0.70 3.47 139.4
FLAPW-GGAc 1.02 3.49 126.6
FLAPW-GGAd 1.05 3.49 136.1
FLAPW-GGAh 1.04 3.54 138.9
FLAPW-GGAe 1.34 3.48 129.0

Exp.i 0.72-0.74
Fe, fcc HS PAW-GGAa 2.59 3.64 151.4

FLAPW-GGAc 2.57 3.64 153.3
FLAPW-GGAh 2.56 3.64 147.9
Exp.(1193 K)g 3.65

Pd, fcc PAW-GGAa 0.35 3.96
FLAPW-GGAb 3.94
FLAPW-GGAd 0.18 3.93
Exp.(293 K)g 3.89

aPresent PAW calculations using the VASP code27 and GGA of Perdew
and Wang25 with parametrization of Vosko, Wilk, and Nusair26 [with
240 (bcc) and 408 (fcc) irreducible k points for integration and
400 eV energy cutoff for the wave function].
bCalculations of Asato et al., Ref. 28, using the Jülich FLAPW code
and GGA of Perdew and Wang25 with parametrization of Morruzi,
Janak, and Williams, Ref. 29.
cFLAPW calculations of Herper et al., Ref. 30, using the WIEN95
code and GGA of Perdew and Wang25 (with 145 irreducible k points
for integration and 320 eV energy cutoff for the wave function).
dFLAPW calculations of Mohri et al., Ref. 31, using GGA of Perdew
and Wang25 [with 85 (fcc) and 84 (L10, L12) irreducible k points for
integration and 272 eV energy cutoff for the wave function].
eFLAPW calculations of Mishin et al., Ref. 32, using GGA of Perdew
and Wang25 [with 285 (bcc) and 489 (fcc) irreducible k points for
integration and 450 eV energy cutoff for the wave function].
fReference 33.
gPearsons Handbook, Ref. 34.
hFLAPW calculations of Timoshevskii et al., Ref. 35, using the
WIEN97 code and GGA of Perdew-Burke-Ernzerhof36 (with 84
irreducible k points for integration and 411 eV energy cutoff for
the wave function).
iAbrahams et al., T = 4 K, Ref. 37.

peaks. Since L12 structure at this composition would be also
characterized by (100) peaks, it might appear that at xPd � 2/3,
the configurational entropy has a tendency to transform β2

to L12, but this tendency is not strong enough for the β2 to
L12 order-order transition to occur. However, such a tendency
would be highly speculative, since, generally, the diffuse short-
range order (SRO) peaks do not necessarily appear at the same
positions as the long-range order (LRO) ordering vectors.

TABLE V. Theoretical and experimental data for L12 and L10

structures on magnetic moments (in μB) of unit cell (μu.c.), iron (μFe)
and palladium (μPd) atoms as well as lattice parameter a, tetragonality
(c/a), and heats of formation (in meV/at.) with respect to fcc-HS iron
and bcc iron (�H1 and �H2, respectively).

METHOD μu.c. μFe μPd a (Å) c/a �H1
a �H2

a

Fe3Pd, L12

PAW-GGAb 8.43 2.73 0.36 3.73 −42.7 70.9
FLAPW-GGAc 8.64 2.76 0.36 3.74 108.8
PAW-GGAd 3.76
Exp.(623 K)e 3.82
Exp.(1123 K)f −12.8

(±21.7)

FePd, L10

PAW-GGAb 3.30 2.96 0.38 3.85 0.98 −129.7 −54.0
FLAPW-GGAc 3.30 2.94 0.35 3.81 0.98 −46.3
FP-LAPWg 3.43
Exp.(700 K)e 3.86 0.96
Exp.(1123 K)f − 97.9

(±21.7)

FePd3, L12

PAW-GGAb 4.32 3.27 0.36 3.90 −138.5 −100.6
FLAPW-GGAc 4.32 3.32 0.34 3.90 −54.4
Exp.(700 K)e 3.86
Exp.(1123 K)f −118.5

(±21.7)
Exp.h 4.59

(±0.03)
Exp.i 4.36 3.10 0.42

a�H1 = E(σ ) − xFeE[Fe,fcc-HS] − xPdE[Pd,fcc], �H2 = E(σ ) −
xFeE[Fe,bcc] − xPdE[Pd,fcc].
bPresent PAW calculations using the VASP code27 and GGA approxi-
mation of Perdew and Wang25 with parametrization of Vosko, Wilk,
and Nusair (see Ref. 26) [with 120 (L12) and 576 (L10) irreducible k

points for integration and 400 eV energy cutoff].
cFLAPW calculations of T. Mohri et al., Ref. 31, using GGA
approximation of Perdew and Wang25 [with 85 (fcc) and 84 (L10, L12)
irreducible k points for integration and 272 eV energy cutoff for the
wave function].
dPAW potential calculations of R. R. Duplessis et al., Ref. 38, using
the VASP code27 and GGA approximation of Perdew and Wang25 with
parametrization of Vosko, Wilk, and Nusair, Ref. 26.
ePearson’s Handbook, Ref. 34.
fC. B. Alcock et al., R. Hultgren et al., and O. Kubaschewski et al.,
T = 1123 K (disordered, paramagnetic state), Ref. 39.
gFP-LAPW calculations of M. Elzain et al., Ref. 40, using the WIEN2K

code.
hM. H. P. Corrêa et al., Ref. 41.
iJ. W. Cable et al., Ref. 42.
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TABLE VI. Fcc formation energies �H = E(σ ) − xFeE[Fe,fcc-HS] − xPdE[Pd,fcc] (meV/atom) of the DFT input structures at xPd < 0.75
used for the Fe-Pd fcc cluster expansion. “ID” corresponds to the index in our structural database (� file), “PR” means prototype, “Superlattice
notation” describes orientation (hkl) and stoicheometry of layers when the structure is a superlattice (“None” means nonsuperlattice), “IT”
denotes the outer loop iteration number when the structure is first predicted to be a possible ground state, symbols “*” in IT column denote the
final DFT fcc ground states, and A1 means fcc HS.

ID Stoich. xPd PR Superlattice notation �H DFT �H CE IT

0 Fe 0.000 A1 0.0 1.6 0
371 Fe7Pd 0.125 D1 None − 7.5 − 5.5 0
211 Fe6Pd2 0.250 (115)A6B2 − 51.2 − 58.4 8
15 Fe3Pd L12 None − 42.7 − 48.1 0
282 Fe6Pd2 DO23 (401)A5BAB − 40.6 − 36.5 0
11 Fe3Pd W1 (311)A3B − 30.0 − 27.0 0
10 Fe3Pd L13 None − 24.8 − 24.7 0
4 Fe2Pd 0.333 β1 (001)A2B − 81.8 − 83.0 0
91210 Fe10Pd6 0.375 None − 85.3 82.6 3
372 Fe5Pd3 D3 None − 44.9 − 44.5 0
23 Fe3Pd2 0.400 (001)A2BAB − 99.1 − 98.9 5
588 Fe5Pd4 0.444 None − 93.0 − 96.5 1
585 Fe5Pd4 None − 89.6 − 88.9 1
1 FePd 0.500 L10 (001)AB − 129.6 − 125.4 0∗

12 Fe2Pd2 W2 (311)A2B2 − 124.3 − 122.0 0
9 Fe2Pd2 Z2 (001)A2B2 − 119.8 − 119.5 0
7 Fe2Pd2 Y2 (011)A2B2 − 119.4 − 116.2 0
289 Fe4Pd4 (014)A4B4 − 112.4 − 113.4 1
303 Fe4Pd4 (013)A4B4 − 110.5 − 114.1 4
91218 Fe8Pd8 None − 107.1 − 111.8 3
3258 Fe6Pd6 None − 106.7 − 111.2 7
286 Fe4Pd4 (014)A3B2AB2 − 96.4 − 98.7 4
307 Fe4Pd4 (013)A3B2AB2 − 93.2 − 93.2 4
17 Fe2Pd2 CH (201)A2B2 − 83.7 − 82.5 0
2 FePd L11 (111)AB − 58.6 − 60.8 0
373 Fe4Pd4 D4 None − 48.8 − 47.2 0
627 Fe4Pd5 0.556 None − 111.1 − 103.6 2
585 Fe4Pd5 None − 109.6 − 105.0 1
588 Fe4Pd5 None − 91.8 − 97.2 2
91235 Fe7Pd9 0.563 None − 120.4 − 116.9 3
112 Fe3Pd4 0.571 (112)AB2ABAB − 132.3 − 132.0 4
129 Fe3Pd4 (012)ABAB2AB − 127.1 − 126.2 4
23 Fe2Pd3 0.600 (001)ABAB2 − 146.7 − 144.8 1
20 Fe2Pd3 (011)A2B3 − 133.6 − 136.0 1
160 Fe3Pd5 0.625 (100)ABAB2AB2 − 150.4 − 150.2 5
372 Fe3Pd5 D5 None − 81.6 − 83.5 0
1852 Fe4Pd7 0.636 (013)AB(AB2)3 − 134.4 − 134.8 4
4 FePd2 0.667 β2 (001)AB2 − 157.7 − 159.2 0∗

3 FePd2 γ 2 (011)AB2 − 148.0 − 155.0 0
5 FePd2 α2 (111)AB2 − 118.9 − 117.1 0
16161 Fe4Pd10 0.714 (014)A2B2AB6AB2 − 120.2 − 117.2 3
36312 Fe4Pd11 0.733 (653)(AB2)3AB5 − 143.2 − 143.4 5

C. Phase identity: theory versus experiment

All the low-temperature phases obtained via the simulated
annealing in these Monte Carlo studies are in agreement with
our fcc DFT ground states at the corresponding compositions.
Such a result must be expected due to the use of the fcc cluster
expansion.

At xPd = 0.50, the simulated L10 type of ordering and
(100) peak above the phase transition both are in qualitative
accordance with corresponding experimental data on the order-

disorder transition5 and diffuse scattering from substitutionally
disordered monocrystal.51 However. the obtained transition
temperature 450 K is considerably lower than the experimental
∼970 K. A similar underestimated transition temperature was
also found by the Monte Carlo simulation using the interaction
parameters obtained from the experimental data on the diffuse
scattering in Ref. 50.

Because our simulation uses only the fcc cluster expansion,
the bcc phase is absent in Fig. 11. However, the experimental
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TABLE VII. Same as Table VI but for xPd � 0.75.

ID Stoich. xPd PR Superlattice notation �H DFT �H CE IT

4748 Fe3Pd9 0.750 (034)(AB2)2AB5 − 142.9 − 141.1 7∗

282 Fe2Pd6 DO23 (401)ABAB5 − 141.4 − 138.7 0
15 FePd3 L12 None − 137.5 − 138.6 0
16 FePd3 DO22 (201)AB3 − 135.6 − 140.1 0
300 Fe2Pd6 (013)AB5AB − 134.1 − 133.9 4
211 Fe2Pd6 (115)A2B6 − 132.6 − 129.9 3
342 Fe2Pd6 None − 131.5 − 130.4 3
8 FePd3 Z3 (001)AB3 − 130.4 − 126.2 0
6 FePd3 Y3 (011)AB3 − 124.3 − 127.3 0
11 FePd3 W3 (311)AB3 − 104.9 − 104.9 0
63521 Fe4Pd12 None − 101.9 − 105.7 3
13 FePd3 V3 (111)AB3 − 96.3 − 99.4 0
10 FePd3 L13 None − 91.8 − 92.3 0
580 Fe2Pd7 0.778 None − 136.6 − 135.5 2∗

583 Fe2Pd7 None − 134.7 − 123.8 2
541 Fe2Pd7 (013)AB2AB5 − 128.8 − 132.5 4
30123 Fe3Pd12 0.800 (035)AB2(AB5)2 − 128.5 − 129.5 2
1092 Fe2Pd8 (014)ABAB7 − 127.3 − 124.0 2
28042 Fe3Pd12 (013)AB2(AB5)2 − 124.6 − 127.6 6
1133 Fe2Pd8 (013)A2B8 − 122.2 − 115.9 3
30 FePd4 (201)AB4 − 112.8 − 115.8 3
64323 Fe3Pd13 0.813 (014)ABAB5AB7 − 118.7 − 117.2 1
63086 Fe3Pd13 None − 115.0 − 120.1 7
67 FePd5 0.833 (301)AB5 − 118.4 − 119.4 1∗

6068 Fe2Pd10 None − 115.2 − 114.4 8
4830 Fe2Pd10 (023)AB2AB8 − 108.0 − 106.2 3
7900 Fe2Pd11 0.846 (013)AB2AB9 − 103.5 − 99.4 3
30073 Fe2Pd13 0.867 (503)AB5AB8 − 105.7 − 103.2 2∗

279 FePd7 0.875 (014)AB7 − 94.5 − 90.7 1
91276 Fe2Pd14 None − 91.3 − 90.4 3
269 FePd7 None − 90.0 − 93.6 7
290 FePd7 None − 85.6 − 88.0 1
371 FePd7 D7 None − 70.0 − 69.5 0
579 FePd8 0.889 Pt8Ti None − 94.2 − 91.8 2∗

502 FePd8 None − 78.0 − 77.1 2
1132 FePd9 0.900 (013)AB9 − 79.2 − 80.3 3
15787 FePd13 0.929 (014)AB13 − 58.5 − 59.0 3
28503 FePd14 0.933 (014)AB14 − 55.8 − 55.4 1
91145 FePd15 0.938 None − 48.9 − 50.5 8
0 Pd 1.000 A1 0.0 − 4.8 0

observation of a bcc→fcc transition in iron suggests that the
phonon and/or magnetic entropy contributions raise the free
energy of bcc Fe with respect to fcc Fe. If the same tendency
keeps for Fe-rich compounds, one would expect that L10

becomes stable at higher T , and the bcc-Fe+FePd2(β2) two-
phase field predicted here is replaced by bcc-Fe+FePd(L10),
as indicated in the experimental phase diagram. The com-
paratively low L10/disorder transition temperature obtained
by fcc Monte Carlo simulation may be also attributed to
phonon and/or magnetic entropy contributions not included
into simulation.

At xPd � 2/3, β2, and β2-like structures are observed
in simulation patterns at both high and low temperatures
(below order-disorder transition), whereas the experimen-
tally observed structure is L12.5 Moreover, the temper-

ature Tord = 832 K obtained in the simulation at xPd =
2/3 is considerably lower than the experimental Tord =
1093 K.

In order to confirm that there is no likelihood that the β2-like
Fe3Pd9 (ID-4748) structure, identified here as the T = 0 DFT
ground state, could have been experimentally misinterpreted as
L12, we perform a simulation of diffractograms for the ab initio
fully relaxed L12 and ID-4748 structures (see Fig. 12). The
simulated L12 pattern compares well with the corresponding
experimental diffractograms presented in Ref. 8. Figure 12
demonstrates that both FePd3 (L12) and Fe3Pd9 (ID-4748)
have five major peaks 111, 200, 220, 311, and 222. However,
200, 220, and 311 peaks in tetragonal Fe3Pd9 (ID-4748) are
triple-splitted. [Note that the same 200, 220, and 311 peaks in
tetragonal FePd (L10) are double-splitted.] These substantial
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TABLE VIII. Same as Tables VI and VII but for bcc formation energies �H = E(σ ) − xFeE[Fe,bcc] − xPdE[Pd,bcc] (meV/atom) of DFT
input structures used for Fe-Pd bcc cluster expansion. A2 means bcc.

ID Stoich. xPd PR Superlattice notation �H DFT �H CE I

0 Fe 0.000 A2 0.0 − 1.8 0
350 Fe7Pd 0.175 L1 None 43.0 42.5 0
11 Fe3Pd 0.250 (100)A3B − 2.1 3.5 0
14 Fe3Pd (310)A3B 40.0 40.3 0
8 Fe3Pd (211)A3B 42.7 43.7 0
6 Fe3Pd (110)A3B 44.0 46.6 0
13 Fe3Pd L60 None 57.4 58.5 0
10 Fe3Pd L14 None 59.8 57.0 0
16 Fe3Pd D03 (111)A3B 75.0 73.5 0
5 Fe2Pd 0.333 C11b (100)A2B 17.0 15.4 0
4 Fe2Pd (111)A2B 82.9 82.6 0
90304 Fe10Pd6 0.375 L6 None 57.2 61.8 0
354 Fe5Pd3 0.375 L3 None 69.3 65.5 0
520 Fe5Pd4 0.444 None − 15.7 − 16.1 4
246 Fe4Pd4 0.500 None − 39.9 − 43.7 1
353 Fe4Pd4 L4 None 27.8 25.8 0
17 Fe2Pd2 B32 (111)A2B2 44.0 44.1 0
354 Fe3Pd5 0.625 L5 None 0.8 2.3 0
90304 Fe6Pd10 0.625 L10 None 6.8 5.0 0
5 FePd2 0.667 C11b (100)AB2 − 95.9 − 92.5 0∗

4 FePd2 0.667 (111)AB2 − 63.5 − 61.8 0
16 FePd3 0.750 D03 (111)AB3 − 46.8 − 46.5 0
10 FePd3 0.750 L14 None 1.5 4.1 0
622 Fe2Pd7 0.778 (421)AB2AB5 − 54.3 − 55.4 3
578 Fe2Pd7 (111)A2B7 − 12.2 − 11.7 1
29 FePd4 0.800 (111)AB4 − 43.0 − 43.6 1
77 FePd5 0.833 (111)AB5 − 38.1 − 44.7 1
90944 Fe2Pd14 0.875 None − 28.3 − 30.8 2
350 FePd7 L7 None − 13.9 − 12.8 0
619 FePd8 0.889 (124)AB8 − 46.2 − 42.0 1∗

90943 FePd15 0.938 None − 18.0 − 18.7 2
0 Pd 1.000 A2 0.0 1.2 0

differences leave no room for interpretation of the tetragonal
ID-4748 as cubic FePd3 (L12).

It is possible that the DFT-predicted tendency for β2
ordering could be detected at higher temperatures in dif-
fuse scattering experiments. Unfortunately, we can not find
experimental measurements of the diffuse scattering from
substitutionally disordered single crystal at these compositions
to compare with our results.

VI. CONCLUSIONS

In this paper, we perform a first-principles mixed-basis
cluster expansion for fcc and bcc Fe-Pd alloys. The leading
pair and many-body interactions controlling energetic and
thermodynamic phase stability in this system are distilled via
genetic algorithm selection. The input set of ∼100 structures
is altered iteratively in order to obtain a self-consistent
solution to the cluster expansion representation. Structures are
relaxed without symmetry constraints as fcc-based compounds
often revert to bcc/bct-like structures upon relaxation and
vice versa. We use the structural and magnetic “filters,”
determining whether a fully relaxed structure is of fcc/bcc and

high-/low-spin types for use it in the corresponding cluster
expansion. Our cluster expansions demonstrate the following
features.

In the Fe-rich composition range (see Fig. 7), a fcc-only
cluster expansion reveals a single (except fcc Fe) ground
state L10, whereas a bcc-only cluster expansion reveals no
ground states (except bcc Fe). However, L10 structure is
higher in energy than the phase separation into bcc Fe/fcc
FePd2(β2). If such (incoherent) phase separation were kineti-
cally slow, fcc L10 would be observed at low temperatures.
At higher temperatures, the experimental observation of
bcc→fcc transition of iron suggests the increase of bcc-Fe
free energy over fcc Fe due to the phonon and/or magnetic
entropy contributions. If the same tendency keeps for Fe-rich
compounds, the transformation from ground phase separation
bcc Fe/FePd2(β2) into bcc Fe/FePd(L10) is expected with
increase of temperature at xPd � 0.50 in accordance with
the experimental phase diagram. The comparatively low
L10/disorder transition temperature obtained by fcc Monte
Carlo simulation (see Fig. 11) may be also attributed to
phonon and/or magnetic entropy contributions not included
into simulation. We further find that the bcc random alloy
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TABLE IX. (Color online) Fcc structures corresponding the high-symmetry (Lifshitz) k points and described by one order parameter. All
coordinates are cartesian.

Structure L12 (A3B; AB3) L10 (AB) L11 (AB) D4 (A4B4) CH, “40” (A2B2)
ID 15 1 2 373 17

Prototypes Cu3Au CuAu-I CuPt NbP

Bravais Simple Simple Rhombohedral Face-centered Body-centered
lattice cubic tetragonal (trigonal) cubic tetragonal

Unit cell (1,0,0) ( 1
2 , 1

2 ,0) ( 1
2 , 1

2 ,0) (1,1,0) (1,0,0)

basis (0,1,0) ( 1
2 , 1

2 ,0) ( 1
2 ,0, 1

2 ) (1,1,0) (0,1,0)

vectors (0,0,1) (0,0,1) (1, 1
2 , 1

2 ) (1,0,1) ( 1
2 , 1

2 ,1)

Atomic A:(0,0,0) A:(0,0,0) A:(0,0,0) A:(0,0,0) A:(0,0,0)

positions B:( 1
2 , 1

2 ,0) B:(0, 1
2 , 1

2 ) B:(1,0,0) A:( 1
2 , 1

2 ,0) A:( 1
2 ,1, 1

2 )

in unit cell B:( 1
2 ,0, 1

2 ) A:( 3
2 ,0, 1

2 ) B:( 1
2 , 1

2 ,0)

(compl. ord.) B:(0, 1
2 , 1

2 ) A:(1, 1
2 , 1

2 ) B:(1, 1
2 , 1

2 )

B:(1, 1
2 , 1

2 )

B:( 1
2 ,0, 1

2 )

B:( 1
2 , 1

2 ,0)

B:(1,0,0)

Superlattice None A1B1 [001] A1B1 [111] None A2B2 [201]
(compl. ord.)

Space group
Int. Tab.47 Pm3m(221) P4/mmm(123) R3m(166) Fd3m(227) I41/amd(141)
Shoenflies O1

h D1
4h D5

3d O7
h D19

4h

Pearson cP4 tP4 hR32 tI8

Probability x+ x+ x+ x + 1
4 ηL× x+

distribution 1
4 ηX[exp(ikX1 R)+ 1

2 ηX exp(ikX1 R) 1
2 ηL exp(ikL1 R) [− exp(ikL1 R)+ 1

2 ηW[sin kW1 R+
function PR exp(ikX2 R)+ exp(ikL2 R)+ cos kW2 R]
(part. ord.) exp(ikX3 R)] exp(ikL3 R)+

exp(ikL4 R)]

P1 x + 3
4 ηX (1) x + 1

2 ηX (1) x + 1
2 ηL (1) x + 1

2 ηL (4) x + 1
2 ηW (2)

P2 x − 1
4 ηX (3) x − 1

2 ηX (1) x − 1
2 ηL (1) x − 1

2 ηL (4) x − 1
2 ηW (2)

mixing enthalpy is positive and has negative second derivative
in this composition range, indicating a tendency to spin-
odal decomposition. Thus bcc structures are not expected
to appear in Fe-rich composition range even at moderate
temperatures.

In the Pd-rich composition range (see Fig. 7), the bcc-only
cluster expansion shows two ground states: FePd2 (C11b)
and (124) bcc superlattice FePd8. However, none of the
bcc compounds are ground states if take into account the
competition from the obtained fcc ground states: FePd2

(β2), Fe3Pd9, Fe2Pd7, FePd5, Fe2Pd13, and FePd8. (100) fcc
superlattice FePd2 (β2) is the deepest ground state in the entire
compositional range of Fe-Pd. All the other five ground states
with higher palladium contents are the derivatives of FePd2

(β2) obtained by substitution of some iron atoms by palladium
in order to account for a different stoichiometry. [The bcc-
only ground state FePd2 (C11b) is also crystallographically
equivalent (differing only by the value of the c/a ratio) to
fcc FePd2 (β2).] We find that the L12 fcc structure detected
experimentally for FePd3 at higher temperatures is not a
T = 0 ground state, since the energy of newly discovered
Fe3Pd9 fcc structure is lower by ∼5 meV/atom than that
of L12. The fcc Monte Carlo simulation does not reveal the
secondary phase transitions from β2-like structures into L12

(see Fig. 11). All β2-like structures transform directly into
the disordered state at temperatures that are lower than those
measured experimentally for L12/disorder transitions. How-
ever, the simulated transition temperatures are high enough
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TABLE X. (Color online) Fcc structures corresponding the high-symmetry (Lifshitz) k points and described by two order parameters. All
coordinates are cartesian.

Structure D1 (A7B); D7 (AB7) L13 (A3B; AB3) DO22 (A3B; AB3) D3 (A5B3); D5(A3B5)
ID 371 10 16 372

Prototypes CuPt7, Ca7Ge CuPt3

Bravais lattice Face-centered Base-centered Body-centered Rhombohedral
cubic orthorombic tetragonal (trigonal)

Unit cell (1,1,0) ( 1
2 , 1

2 ,0) (1,0,0) (1,1,0)

basis (1,1,0) ( 1
2 , 1

2 ,1) (0,1,0) (1,1,0)

vectors (1,0,1) ( 1
2 , 1

2 ,1) ( 1
2 , 1

2 ,1) (1,0,1)

Atomic A:(0,0,0),B:(1,0,0) A:(0,0,0) A:(0,0,0) A:(0,0,0),A:( 1
2 , 1

2 ,0)

positions B:( 3
2 ,0, 1

2 ),B:(1, 1
2 , 1

2 ) B:( 1
2 , 1

2 ,0) B:( 1
2 , 1

2 ,0) A:( 3
2 ,0, 1

2 ),B:( 1
2 ,0, 1

2 )

in unit cell B:(1, 1
2 , 1

2 ),B:( 1
2 ,0, 1

2 ) B:( 1
2 ,0, 1

2 ) B:( 1
2 ,1, 1

2 ) B:( 1
2 , 1

2 ,0),B:(1,0,0)

(compl. ord.) B:( 1
2 , 1

2 ,0),B:( 1
2 , 1

2 ,0) B:( 1
2 ,0, 1

2 ) B:(1, 1
2 , 1

2 ) B:(1, 1
2 , 1

2 ),B:(1, 1
2 , 1

2 )

Superlattice None None A3B along [201] None
(compl. ord.)

Space group
Int. Tab.47 Fm3m(225) Cmmm(65) I4/mmm (139) R3m(166)
Shoenflies O5

h D19
2h D17

4h D5
3d

Pearson cF32 cF4 tI8

Probability x+ x+ x+ x+
distribution 1

8 ηX[exp(ikX1 R)+ 1
4 ηX exp(ikX1 R)+ 1

4 ηX exp(ikX1 R)+ 1
8 ηX[− exp(ikX1 R)+

function PR exp(ikX2 R)+ 1
4 ηL[exp(ikL1 R)+ 1

4 ηW[exp(ikW1 R)+ exp(ikX2 R)+
exp(ikX3 R)]+ exp(ikL4 R]) exp(ikW2 R)] exp(ikX3 R)]+

1
8 ηL[exp(ikL1 R)+ 1

8 ηL[− exp(ikL1 R)+
exp(ikL2 R)+ exp(ikL2 R)+
exp(ikL3 R)+ exp(ikL3 R)+
exp(ikL4 R)] 3 exp(ikL4 R)]

P1 x + 3
8 ηX + 1

2 ηL (1) x − 1
4 ηX − 1

2 ηL (1) x + 1
4 ηX + 1

2 ηW (1) x + 1
8 ηX + 1

2 ηL (3)

P2 x + 3
8 ηX − 1

2 ηL (1) x − 1
4 ηX + 1

2 ηL (1) x + 1
4 ηX − 1

2 ηW (1) x + 1
8 ηX − 1

2 ηL (3)

P3 x − 1
8 ηX (6) x + 1

4 ηX (2) x − 1
4 ηX (2) x − 3

8 ηX (2)
Atomic P1:(0,0,0),P2:(1,0,0) P1 : (0,0,0) P1 : (0,0,0) P1:(0,0,0),P1:( 1

2 , 1
2 ,0)

positions P3:( 3
2 ,0, 1

2 ),P3:(1, 1
2 , 1

2 ) P2 : ( 1
2 , 1

2 ,0) P2 : ( 1
2 , 1

2 ,0) P1:( 3
2 ,0, 1

2 ),P2:( 1
2 ,0, 1

2 )

in the unit cell P3:(1, 1
2 , 1

2 ),P3:( 1
2 ,0, 1

2 ) P3 : ( 1
2 ,0, 1

2 ) P3 : ( 1
2 ,1, 1

2 ) P2:( 1
2 , 1

2 ,0),P2:(1,0,0)

(part. ord.) P3:( 1
2 , 1

2 ,0),P3:( 1
2 , 1

2 ,0) P3 : ( 1
2 ,0, 1

2 ) P3 : (1, 1
2 , 1

2 ) P3:(1, 1
2 , 1

2 ),P3:(1, 1
2 , 1

2 )

for an experimental stabilization of these structures to be
possible.

We consider our determination of ground states results as
robust within the utilized DFT-GGA framework. The general
DFT tendency to β2-like structures at xPd � 2/3 eliminates
the possibility of DFT error for just some structures. Besides,
the energy difference between L12 and the DFT ground state
of the same stoichiometry is more than the estimated error
of our DFT calculations. Note that similarly to Fe-Pd, the
deep β2 ground state has been obtained in Cu-Au,53 Fe-Pt
(ferromagnetic),7 and Co-Pt54 from first principles despite

the experimentally observed L12 in these alloys at finite
temperatures.

At finite temperatures, the free-energy contributions from
configurational (substitutional), phonon, and magnetic ex-
citations may stabilize structures that are different from
T = 0 ground states. The configurational entropy is already
included in the Monte Carlo simulation. So we suggest
that phonons and magnetic disorder are responsible for the
experimentally observed L12 structure at finite tempera-
tures. An additional study of such effects is thus highly
desirable.

144201-19



CHEPULSKII, BARABASH, AND ZUNGER PHYSICAL REVIEW B 85, 144201 (2012)

TABLE XI. (Color online) Bcc structures corresponding the high-symmetry (Lifshitz) k points and described by one order parameter. All
coordinates are cartesian.

Structure B2 (AB) B32 (A2B2) L14 (A3B;AB3) A1 (AB) L4 (A4B4)
ID 2 17 10 1 353

Prototypes CsCl, β-CuZn NaTa γ -IrV,Ta2O

Bravais Simple Face-centered Rhombohedral Face-centered Body-centered
lattice cubic cubic (trigonal) orthorombic tetragonal

Unit cell (1,0,0) (0,1,1) ( 1
2 , 1

2 , 1
2 ) ( 1

2 , 1
2 , 1

2 ) (1,1,1)

basis (0,1,0) (1,0,1) ( 3
2 , 1

2 , 1
2 ) ( 1

2 , 1
2 , 1

2 ) (1,1,1)

vectors (0,0,1) (1,1,0) (1,1,1) (1,1,0) (0,2,0)

Atomic A:(0,0,0) A:(0,0,0) A:(0,0,0) A:(0,0,0) A:(0,0,0)

positions B:( 1
2 , 1

2 , 1
2 ) A:( 1

2 , 1
2 , 1

2 ) B:( 1
2 , 1

2 , 1
2 ) B:(0,1,0) A:( 1

2 , 1
2 , 1

2 )

in unit cell B:(0,0,1) B:( 3
2 , 1

2 , 1
2 ) A:(1,2,0)

(compl. ord.) B:( 1
2 , 1

2 , 3
2 ) B:(1,0,0) A:( 1

2 , 3
2 , 1

2 )

B:( 1
2 , 3

2 , 1
2 )

B:(0,1,0)
B:(1,1,0)
B:( 1

2 , 1
2 , 1

2 )

Superlattice A1B1 [001] A2B2 [111] None A1B1 [101] None
(compl. ord.)

Space group
Int. Tab.47 Pm3m(221) Fd3m(227) R3m(166) Cmmm(65) I41/amd(141)
Shoenflies O1

h O7
h D5

3d D19
2h D19

4h

Pearson cP2 cF16 oC8
Probability x+ x+ x+ x+ x+
distribution 1

2 ηH cos(kHR) 1
2 ηP[sin(kP1 R)+ 1

4 ηN[cos(kN4 R)+ 1
2 ηN cos(kN3 R) 1

4 ηN[cos(kN3 R)−
function PR cos(kP2 R)] cos(kN5 R)+ cos(kN2 R)+
(part. ord.) cos(kN6 R)] cos(kN5 R)+

cos(kN6 R)]

P1 x + 1
2 ηH (1) x + 1

2 ηP (2) x + 3
4 ηN (1) x + 1

2 ηN (1) x + 1
2 ηN (4)

P2 x − 1
2 ηH (1) x − 1

2 ηP (2) x − 1
4 ηN (3) x − 1

2 ηN (1) x − 1
2 ηN (4)
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APPENDIX A: PSEUDOPOTENTIAL VERSUS
ALL-ELECTRON

A verification of the systematic error associated with the
use of pseudopotentials rather than all-electron (FLAPW)
is done in Tables IV and V for pure iron and palladium
as well as for some of their compounds. We conclude the
following.

The agreement for magnetic moment, lattice parameter,
and values of E[Fe,fcc-LS] − E[Fe,bcc] and E[Fe,fcc-HS] −
E[Fe,bcc] is good for pure solid elements and compounds,
especially taking into account the scatter in FLAPW results
obtained from different references. (The scatter may be
attributed to the different k mesh and energy cutoff parameters
used by different authors, see footnotes in Table IV).

In case of L12 Fe3Pd and L10 FePd compounds (see
Table V), the pseudopotential formation energies differ consid-
erably from those calculated within LAPW by Mohri et al.31

It is possible that such a difference is caused by insufficient
k mesh and energy cutoff parameters used in Ref. 31. For
example, the results of Ref. 31 in the case of Fe-Ni alloy
(with the same k mesh and energy cutoff parameters as
in Fe-Pd) differ from those of Ref. 32 (LAPW but with
much higher k mesh and energy cutoff) by 7, 20, 13, 55,
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TABLE XII. (Color online) Bcc structures corresponding the high-symmetry (Lifshitz) k points and described by two and three order
parameters. All coordinates are cartesian.

Structure D03 (A3B;AB3) L1(A7B);L7(AB7) L60 (A3B;AB3) L3(A5B3);L5(A3B5) L6(A10B6);L10(A6B10)
ID 16 350 13 354 90304

Prototypes Fe3Al,BiF3,Cs3Sb Fe8N CuTi3,Ta4O

Bravais lattice Face-centered cubic Body-centered cubic Simple tetragonal Body-centered cubic Simple cubic

Basis vectors (110)(110)(101) (111)(111)(020) (100)(011)(011) (111)(111)(020) (200)(020)(002)

Atomic A(000) A(000),B(110) A(000) A(000),A(120) A(000),A(110),A( 3
2

3
2

1
2 )

positions B(100) B(010),B(120) B(001) A(010),B(110) A(101),A(011),A( 1
2

1
2

3
2 )

in unit cell B( 3
2

1
2

1
2 ) B( 1

2
3
2

1
2 ),B( 1

2
3
2

1
2 ) B( 1

2
1
2

1
2 ) B( 1

2
3
2

1
2 ),B( 1

2
3
2

1
2 ) B(010),B(100),B( 1

2
1
2

1
2 )

(compl. ord.) B( 3
2

1
2

1
2 ) B( 1

2
1
2

1
2 ),B( 1

2
1
2

1
2 ) B( 1

2
1
2

1
2 ) B( 1

2
1
2

1
2 ),B( 1

2
1
2

1
2 ) B(111),B(001),B( 1

2
3
2

3
2 )

B( 3
2

1
2

1
2 ),B( 1

2
3
2

1
2 )

B( 3
2

1
2

3
2 ),B( 3

2
3
2

3
2 )

Superlattice A3B1 along [111] None None None None

Space group
Int. Tab.47 Fm3m(225) Im3m (229) P4/mmm (123) Im3m (229) Pn3m (224)
Shoenflies O5

h O9
h D1

4h O9
h O4

h

Pearson cF16 tP4

Probability x+ x+ x+ x+ x + 1
8 ηH cos(kHR)+

distribution 1
4 ηH cos(kHR)+ 1

8 ηH cos(kHR)+ 1
4 ηH cos(kHR)+ 3

8 ηH cos(kHR)− 1
4 ηP[exp(ikP1 R)+

function PR
1
4 ηP[exp(ikP1 R)+ 1

8 ηN[exp(ikN1 R)+ 1
4 ηN[cos(kN1 R)+ 1

8 ηN[exp(ikN1 R)+ exp(ikP2 R)]+
exp(ikP2 R)] exp(ikN2 R)+ cos(kN4 R)] exp(ikN2 R)+ 1

8 ηN[− cos(kN1 R)−
exp(ikN3 R)+ exp(ikN3 R)+ cos(kN2 R)−
exp(ikN4 R)+ exp(ikN4 R)+ cos(kN3 R) + cos(kN4 R)
exp(ikN5 R)+ exp(ikN5 R)+ +cos(kN5 R)+
exp(ikN6 R)] exp(ikN6 R)] cos(kN6 R)]

P1 x + 1
4 ηH − 1

2 ηP (1) x + 1
8 ηH + 3

4 ηN (1) x + 1
4 ηH + 1

2 ηN (1) x + 3
8 ηH + 1

4 ηN (3) x + 1
8 ηH + 1

2 ηP (4)

P2 x + 1
4 ηH + 1

2 ηP (1) x + 1
8 ηH − 1

4 ηN (3) x + 1
4 ηH − 1

2 ηN (1) x + 3
8 ηH − 3

4 ηN (1) x − 1
8 ηH + 3

4 ηN (2)

P3 x − 1
4 ηH (2) x − 1

8 ηH (4) x − 1
4 ηH (2) x − 3

8 ηH (4) x + 1
8 ηH − 1

2 ηP (4)

P4 x − 1
8 ηH − 1

4 ηN (6)

Atomic P1(000) P1(000),P2(110) P1(000) P1(000),P1(120) P1(000),P1(110),P2( 3
2

3
2

1
2 )

positions P2(100) P2(010),P2(120) P2(001) P1(010),P2(110) P1(101),P1(011),P2( 1
2

1
2

3
2 )

in the unit cell P3( 3
2

1
2

1
2 ) P3( 1

2
3
2

1
2 ),P3( 1

2
3
2

1
2 ) P3( 1

2
1
2

1
2 ) P3( 1

2
3
2

1
2 ),P3( 1

2
3
2

1
2 ) P3(010),P3(100),P4( 1

2
1
2

1
2 )

(part. ord.) P3( 3
2

1
2

1
2 ) P3( 1

2
1
2

1
2 ),P3( 1

2
1
2

1
2 ) P3( 1

2
1
2

1
2 ) P3( 1

2
1
2

1
2 ),P3( 1

2
1
2

1
2 ) P3(111),P3(001),P4( 1

2
3
2

3
2 )

P4( 3
2

1
2

1
2 ),P4( 1

2
3
2

1
2 )

P4( 3
2

1
2

3
2 ),P4( 3

2
3
2

3
2 )

and 11 meV/atom for Fe(fcc-LS), L12(Fe3Ni), L10(FeNi),
L11(FeNi), and L12(FeNi3), respectively.

In Table V, we also include the experimental data for
high-temperature formation energies. In case of L12 Fe3Pd and
L10 FePd compounds, the pseudopotential formation energies
differ considerably from those obtained experimentally. Such
a big difference is attributed to that the measurements were
done for the disordered high-temperature state, whereas
pseudopotential data correspond to the completely ordered
states. The difference is substantially diminished when instead

of completely ordered states, we consider the random phase
using cluster expansion (see Sec. III E).

APPENDIX B: DFT INPUT DATA FOR Fe-Pd
CLUSTER EXPANSIONS

Tables VI–VIII list the formation energies of all fully
relaxed fcc and bcc DFT inputs for corresponding cluster
expansions in Fe-Pd. Both DFT and fitted cluster expansion
formation energies are listed.
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APPENDIX C: fcc STRUCTURES CORRESPONDING
TO THE HIGH SYMMETRY (LIFSHITZ) POINTS

IN THE RECIPROCAL SPACE

In case of fcc crystal lattice, the reciprocal space k points
corresponding to four stars 
, X, L, and W satisfy Lifshitz
criterion43,44 being so-called high-symmetry k points or Lif-
shitz points. The Lifshitz criterion requires that the point-group
symmetries of such k points include intersecting symmetry
elements. In other words,45 any k direction can be reversed
by some transformation from the own symmetry group of the
high symmetry k point. Within the mean-field microscopic
and macroscopic (phenomenological) approximations,43,44

the structures corresponding to these high-symmetry k
points (Lifshitz structures) should be thermodynamically
stable within a comparatively wide temperature-composition
intervals, thus comprising large regions of the phase
diagram.

The cartesian coordinates (in 2π/a units, where a is an fcc
lattice parameter) of fcc high-symmetry (Lifshitz) inequivalent
k points in the first Brillouin zone are the following:


 = (0,0,0),

X1 = (0,0,1), X2 = (0,1,0), X3 = (1,0,0),

L1 = (
1
2 , 1

2 , 1
2

)
, L2 = (

1
2 , 1

2 , 1
2

)
,

L3 = (
1
2 , 1

2 , 1
2

)
, L4 = (

1
2 , 1

2 , 1
2

)
,

W1 = 1
2 (2,0,1), W2 = −W1, W3 = 1

2 (0,1,2),

W4 = −W3, W5 = 1
2 (1,2,0), W6 = −W5.

In Ref. 46, the lists were completed for fcc and bcc
structures described by the high-symmetry (Lifshitz) k points

and having the correspondence of one order parameter to
one star of k vectors (i.e., to one irreducible representation
of fcc or bcc space group). In Tables IX–X, such fcc
complete list is presented. There, PR is one-atom probability
distribution function equal to the probability of finding an
A-type atom at crystal lattice site with radius vector R.
The order parameters are chosen to be zero in completely
disordered state and all equal to unity in completely ordered
state. The space groups of completely and partly ordered
states are the same for each Lifshitz structure. The names
D3 and D5 are chosen for structures having no prototype in
literature.

APPENDIX D: bcc STRUCTURES CORRESPONDING
TO THE HIGH SYMMETRY (LIFSHITZ) POINTS

IN THE RECIPROCAL SPACE

In case of bcc crystal lattice, the k points corresponding to
four stars 
, H, P, and N satisfy Lifshitz criterion:


 = (0,0,0),

H = (0,0,1),

P1 = (
1
2 , 1

2 , 1
2

)
, P2 = (

1
2 , 1

2 , 1
2

)
,

N1 = (
0, 1

2 , 1
2

)
, N2 = (

1
2 ,0, 1

2

)
, N3 = (

1
2 , 1

2 ,0
)
,

N4 = (
0, 1

2 , 1
2

)
, N5 = (

1
2 ,0, 1

2

)
, N6 = (

1
2 , 1

2 ,0
)
.

In Tables XI–XII, the complete list of bcc structures
described by the high-symmetry (Lifshitz) k points is
presented.46 The names L14, L4, L1, L7, L3, L5, L6,
and L10 are chosen for structures having no prototype in
literature.
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