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Validity of the diffusion equation at the atomic scale investigated via numerical simulations
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In the absence of theoretical predictions or experimental determinations, numerical simulations are used for
establishing the region over which diffusive mass fluxes linearly relate to concentration gradients (Fick’s law).
Two different physical situations have been studied: (i) vacancy-mediated hopping diffusion of atoms in a rigid
face-centered-cubic lattice and (ii) continuous atom diffusion in a model liquid. In the former, the random walk
of the vacancy-inducing atom diffusion is simulated, whereas, in the latter, continuous atom motion is studied
via molecular dynamics. The results show that, in both systems, Fick’s law is valid and, thus, the diffusion
equation applies, even in the presence of the strongest possible tracer concentration gradients, provided that the
diffusion time exceeds the value for the spreading of the tracer to become larger than a couple of nearest-neighbor
distances. These findings are discussed and are compared with results available in the literature.
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I. INTRODUCTION

At the hydrodynamic limit, the motion of tracer particles in
a matrix, viewed as a continuum, is satisfactorily described by
the diffusion equation, governing the space and time evolution
of the tracer distribution and flux. It allows the experimental

determination of the diffusion tensor D, a thermodynamic
quantity characteristic of the diffusion couple. However, there
are several examples of experimental situations requiring that
concentrations and fluxes of diffusing species are described
at the atomic scale, such as nanoscopic devices in which
long-lived large concentration gradients are desirable.1,2 In
such situations and/or under strong concentration gradients,
Fick’s law may not be applied,3,4 and the diffusion equation
should be replaced by a huge and possibly infinite set of
coupled discrete equations, expressing mass conservation
for tracer atoms, thus, increasing the complexity of the
deconvolution of the experimental data. The validity of the
diffusion equation in crystals at short diffusion times and
in the presence of large concentration gradients has been
studied by Martin and Benoist,4 who have suggested that this
equation may still be used providing that the wavelengths of the
Fourier components of concentration profiles are much larger
than the lattice parameter. However, no explicit thresholds
for the concentration gradient or the diffusion time have
been specified in this paper, and the proposed mathematical
developments are inconsistent3 (cf. Sec. V).

“Shall the diffusion equation apply at the atomic scale”
is a question about the soundness of Fick’s first law at this
scale, empirically stating that fluxes of species and their
concentration gradients are in linear relationships.5 Besides the
theoretical interest in establishing the domain of validity of this
law, it is worthwhile investigating the matter in the nowadays
context of the increasing importance of nanotechnologies.
Indeed, during processing, the annealing of devices—such
as quantum dot heterostructures in which atomistic strong
composition gradients are customary—triggers the interdif-
fusion of species at the interfaces with the potential to alter
their structural and optical properties.6,7 Current modeling

of composition-induced changes of the properties of such
devices assumes that Fick’s law may still be applied,8 whereas,
establishing the domain of validity of the diffusion equation
at the atomic scale and in the presence of strong composition
gradients would contribute to better defining the framework
for modeling.

In the present paper, the validity of Fick’s law at the
atomic scale is tested by: (i) numerical simulations of vacancy-
mediated self-diffusion in a rigid face-centered-cubic (fcc)
lattice and (ii) a molecular-dynamics (MD) study of self-
diffusion in a generic liquid modeled via the Lennard-Jones
(LJ) (12-6) potential used for the sake of comparison. The
results show that the diffusion equation can still be used at this
scale provided that concentration gradients do not exceed a
critical value and that the validity domain of this law extends
far down in the atomic scale.

The following sections, Secs. II and III, respectively, are
devoted to a brief overview of the theoretical background, to
the methodology adopted in the present paper, serving the
objective of a consistent representation of the results, and to
the details about the models and the computations. The results
are presented in Sec. IV. They are further commented on and
are compared to those of papers in the literature9,10 in Sec. V.
This discussion section also includes conclusions and some
perspectives.

II. THEORY AND METHODOLOGY

A. Theory

In a crystalline lattice, the local balance of diffusing tracer
atoms leads to a near-infinite set of coupled equations,3

∂ci

∂t
= w

2
(ci+1 + ci−1 − 2ci) . (1)

Equation (1) can be rewritten in the following way:

∂ci

∂t
= −(ji+1/2 − ji−1/2), (2)
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FIG. 1. (Color online) Schematic of atoms in (001) atomic planes
of the face-centered-cubic lattice onto the figure plane (axis [001],
stacking sequence: ABAB, . . .). Full and open symbols represent
atoms in planes of type A or B, respectively.

where

ji+1/2 = w

2
(ci − ci+1) , (3)

and

ji−1/2 = w

2
(ci−1 − ci) , (4)

with ci ,ci±1 representing the tracer concentrations expressed
as atom percentages in adjacent atomic planes labeled i and
i ± 1, w is the atomic jump frequency, and ji±1/2 are the net
exchange fluxes of tracer atoms, evaluated at median positions
between atomic planes (Fig. 1).

Assuming that a continuous and sufficiently derivable
function C(x,t) existed, such as ∀ i C(xi ,t) = ci(t) and taking
arbitrary values for x �= xi , Eq. (1) may be written3

∂C(xi,t)

∂t
= w

2
[C(xi+1,t) + C(xi−1,t) − 2C(xi,t)] , (5)

and expanded in Taylor series, it becomes

∂C(x,t)

∂t

∣∣∣∣
xi

= wd2

2

∂2C(x)

∂x2

∣∣∣∣
x=xi

+ O(d4), (6)

with d as the jump distance. Providing that the terms of fourth
order and above are neglected and the truncated equation
is assumed holding at any abscissa, one finds the usual
macroscopic diffusion equation with the diffusivity constant
D = wd2/2. Similarly, a continuous analog of the discrete
equations (3) and (4) can be defined by means of a continuous
flux function J (x,t), such as3

J (x,t) = −wd

2

∂C(x,t)

∂x
. (7)

Now, in the presence of strong concentration gradients,4 the
values of the discrete concentrations and fluxes, Eqs. (1)–(4),
may significantly differ from those predicted by neglecting
high-order terms and solving Eqs. (6) and (7). Assessing

the magnitude of higher-order terms as a function of the
concentration gradient requires high-accuracy measurements
and, thus, experiments difficult to perform. Instead, the
computer simulations of mass transport at the atomic scale
employed in the present paper are better adapted for first
addressing this question. The following section presents the
adopted methodology.

B. Method

1. General approach

The method adopted in the present paper is the following:
(1) A simple case study is chosen: It represents self-

diffusion in a one-component system of infinite extension
in the three space directions in which a planar diffusion
interface is created at initial time t = 0 by labeling A or
B atoms with abscissas negative or positive, respectively. In
this case, the thermodynamic force for mixing is the entropy
of the configuration. This nonequilibrium method has been
previously used by Kincaid in a paper aiming at calculating
corrections to the hydrodynamic description of self-diffusion
on short time scales.9,10

(2) At first, the considered case is a rigid fcc lattice. In
such systems, self-diffusion is mainly vacancy mediated,5

whereas, vacancy jumps of length equal to the first-neighbor
distance are assumed. The numerical simulation consists of
moving the vacancy at random and computing averages of
the atomic mean-square displacements and of the species
concentrations and fluxes (atoms A and B) on a plane-by-plane
basis [Eqs. (1)–(4)]. To ensure that statistical averages of these
quantities are meaningful, the number of vacancy jumps is
chosen large enough for the numerical values of the atomic
correlation factor to converge toward the theoretical value with
accuracy better than 1%.

(3) Simulation results can then be compared to the values
predicted by the analytic solution of the diffusion equation,
corresponding to these specific initial and boundary conditions
on a plane-by-plane basis. The comparison is, however, a
painful task since the diffusion profiles extend over an increas-
ingly large number of atomic planes as the number of vacancy
jumps increases. Fitting the analytical solutions of the diffusion
equation to the numerical values of the concentration and
the fluxes circumvents this difficulty. Thus, one obtains two
estimates of the Dt value, where D is the self-diffusivity and
t is the “annealing” duration to be compared to the theoretical
prediction of atom diffusion in the bulk, driven by the random
walk of thermal equilibrium vacancies. Differences between
these estimations and the bulk diffusivity are attributed to the
diffusion equation failing to apply at the atomic scale. They are
visualized via the graphical representations of concentrations
and fluxes on a plane-by-plane basis (cf. Sec. IV).

(4) Molecular-dynamics simulations of self-diffusion in
a model liquid provide additional information about the
applicability of the diffusion equation in a position-disordered
system in which mass transport proceeds via continuous atom
movements. The investigation proceeds in the same way as
for the rigid-lattice case [see point (3)], except that instead of
computing the Dt products, diffusivity values are obtained as
the time variable is here explicitly known.
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2. Application details

Solving the macroscopic one-dimensional diffusion equa-
tion for an initial step distribution of a tracer (t = 0, C = 1 if x

� 0 and C = 0 otherwise) leads to the following expressions
for the tracer concentration C(x,t) and flux J (x,t) as functions
of the position and time (constant source diffusion problem),5

C(x,t) = 1

2

[
1 + erf

(
x

2
√

Dt

)]
, (8)

J (x,t) = −D
exp

(
− x2

4Dt

)
4
√

πDt
. (9)

For both systems studied in this paper, the simulations
provide numerical values of the concentration and the flux
of the species, respectively, ck(xi ,t) and jk(xi ,t) (k = A,B)
on a plane-by-plane basis. Adjusting Eqs. (8) and (9) to these
data provides, in general, two different values of the quadratic
tracer spreading 2Dct and 2Dj t , respectively, where t is the
annealing time. In the limit of weak concentration gradients or
long annealing times, Dc =Dj =Db is expected to hold, where
Db denotes the bulk diffusivity evaluated in both systems
via the Einstein or the Green-Kubo relations.5 Otherwise, the
values should be different Db �= Dc �= Dj �= Db.3

III. MODELS AND COMPUTATIONS

In the present paper, a close equivalence is guaranteed
between the “constant source” diffusion problem and the
size-limited computational models by verifying that, for all
the computations presented below, a bulk region is preserved
in subsystems A or B.

A. Rigid lattice

Three fcc lattice models have been used with linear
dimensions along the X||[100], Y ||[010], and Z||[001] space
directions, corresponding to 30 × 5 × 5, 30 × 10 × 10,
30 × 20 × 20, and 30 × 30 × 30 Bravais lattice cells.
The origin of the coordinates is positioned at the mass center
of the computational boxes, and a vacancy is created at a
lattice site chosen at random. Vacancy diffusion is simulated by
exchanging the defect with one of its 12 first neighbors, chosen
with equal probability, whereas, surface effects have been
circumvented by using periodic boundary conditions within
the minimum image convention. This process is repeated up
to 106 times for 103 initial configurations differing from each
other by the different initial position of the vacancy. The
squared displacements of atoms are averaged over all the initial
configurations and are recorded as a function of the number of
vacancy jumps. These computations allow for the estimation
of the atomic correlation factor f for the vacancy diffusion in
the fcc lattice,

f =
〈
δr2

i

〉
N

nvd
2
1nn

, (10)

and of the discrete values of the concentration of the species
ck
l in the atomic planes l, where nv is the number of vacancy

jumps, N is the number of atoms in the model, d1nn is the jump

length, set equal to the first-neighbor distance, and brackets
〈 〉N denote averages of squared atomic displacements over
all the atoms i in the model. However, atomic fluxes, jk

i±1/2
[Eqs. (3) and (4), k = A,B) cannot be determined without
the knowledge of the atomic jump frequency w, a value that
is not specified within the rigid-lattice model. This is why,
throughout this paper, computed flux values are expressed
in units reduced by the atomic jump frequency J # = J/w,
whereas, the bulk atomic diffusion coefficient Db is replaced
by

Dbδt = 1

6
f

nv

N
d2

1nn, (11)

where δt is the annealing duration. Given the method adopted
in this paper, testing the diffusion equation for applicability
at the atomic scale requires that the numerical estimation of
the atomic correlation factor has converged with reasonable
accuracy to its theoretical value f = 0.781 45, . . . ,11 for the
vacancy mechanism.

B. Lennard-Jones liquid

A Lennard-Jones (12-6) system has been simulated by using
molecular dynamics with potential parameters: σ = 0.3405 nm
and ε = 119.8 K, adapted for argon,12 at reduced density
ρ∗ = ρσ 3 = 0.85 and temperature T ∗/(ε/kB) = 1.67, where
kB is the Boltzmann constant. The chosen thermodynamic
state point is well within the region of stability of the liquid
according to the phase diagram of the Lennard-Jones (12-6)
potential found in the literature.12 For the sake of comparison
with the rigid fcc lattice, the system was made of N = 12 000
point particles, contained in a computational box with periodic
boundary conditions acting along the X, Y , and Z direc-
tions and with linear dimensions 30 × 10 × 10×(1.6755σ ).3

Interactions were cut off at a distance of rc = 2.5σ . The
Newtonian equations of motion were integrated with a time
step �tMD = 4.64 × 10−4(mσ 2/ε)1/2where m is the atomic
mass. Reduced Lennard-Jones units are used throughout the
text. The liquid state has been obtained from an initially
crystalline configuration equilibrated for a time long enough
to ensure that the specific heat has reached a stationary value.
Like the rigid-lattice case, the computational box has been
divided along the X axis in two equal volume subsystems in
which atoms were labeled A or B, respectively. Starting from
a well-equilibrated configuration, an equilibrium trajectory
made of n = 107 time steps has been produced, and average
distribution profiles and fluxes of atoms A and B have been
computed as a function of the annealing time.

Expressing mass conservation in a crystal, as in Sec. II A,
relies explicitly on the lattice geometry. Thus, the question
arises how the procedure presented in Sec. II B should be
reformulated in a liquid since, in this case, the average mass
density is a continuous and uniform function of the position.
For this purpose, the computational box has been divided in
nl = 1024 sublayers of equal thickness along the X axis,
a good compromise between the needs of a fine resolution
of the composition and flux profiles and that of reducing the
statistical noise to an acceptable level since the latter is directly
related to the particle content of the sublayers. Moreover, the
equilibrium MD trajectory is broken in segments of length t ,
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FIG. 2. (Color online) Lennard-Jones liquid: normalized velocity
self-correlation function at reduced density ρ∗ = 0.85 and temperature
T ∗ = 1.67. Molecular correlations are seen to vanish for time delays
longer than τ ∗

c ≈ 2.5.

the first configuration in each segment serving as an initial
state. The frontier between species A and B is located at the
abscissa X = 0. “Sliding” averages of distributions and fluxes
are then computed over the equilibrium trajectory,

ck
l (x,t) = 1

Vl

〈
nl∑

i=1

δ
(
x − xk

i,l

)〉
t

, (12)

jk
l (x,t) = 1

Vl

〈
nl∑

i=1

v
x,k
i,l δ

(
x − xk

i,l

)〉
t

, (13)

where k (k = A,B), denotes the atom species and ck
l (x,t), nl ,

v
x,k
i,l , and Vl , respectively, represent the k-atom concentration,

the number of particles, the x component of the k-atom velocity
in layer l, and the volume of the sublayers. The brackets
indicate sliding averages over segments of length t , composing
the MD trajectory.

For the reference purpose, the self-diffusion coefficient
of the bulk liquid has been calculated via the Green-Kubo
relation,

D = 1

3

∫ ∞

0
〈
v(τ )
v(0)〉 dτ . (14)

Figure 2 displays the velocity autocorrelation as a function of
the delay τ , the numerical integration of which yields the bulk
diffusivity in the liquid at this state point D∗ = 0.1032. This
value is in satisfactory agreement with the prediction D∗

LV =
0.0918, made using an interpolation formula introduced by
Levesque and Verlet,13 which reproduces the self-diffusion
coefficient of the Lennard-Jones liquid as a function of the
density and the temperature.

C. Least-squares fits

Equations (8) and (9) have been adjusted to the numerical
profiles of compositions and fluxes by using the least-squares
method and the multidimensional minimization package
MERLIN.14

IV. RESULTS

A. Diffusive motion: Time scales

1. Crystals

Atom diffusion in crystals is a correlated walk, for it is
mediated by the random motion of point defects present at
very low concentrations, even at the melting temperature. In fcc
crystals, self-diffusion is mainly due to the random movement
of thermal vacancies, whereas, the departure from randomness
of the atomic motion enters the microscopic definition of the
atom diffusivity via the correlation factor fv .5,11 From the
simulations, an estimation of its value is obtained via Eq. (10)
by computing the atomic mean-square displacement (MSD)
and extrapolating the value in the long-time limit. Figure 3(a)
shows that the relative error committed in estimating fv rapidly
reaches a system-size-dependent “plateau” for MSDs larger
than 〈δr2〉/a2 ≈ 10, where a is the Bravais lattice constant.

FIG. 3. (Color online) Vacancy diffusion on a fcc rigid lattice.
Relative deviation of the numerical estimation of the atomic correla-
tion factor from its theoretical value: (a) as a function of the atomic
mean-square displacement for different system sizes (Lx,Ly,Lz):
open circles, (30,5,5); diamonds, (10,10,10); triangles, (30,10,10);
and squares, (30,30,30) and (b) as a function of the number of
atoms N at a fixed value of the atomic mean-square displacement
〈δr2〉/a2 = 0.39 (a, Bravais lattice constant).
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Figure 3(b) shows that, at any fixed value of the atomic MSD,
here 〈δr2〉/a2 ≈ 0.39, the relative error committed on fv with
respect to the theoretical value [f th

v = 0.781 45, . . . (Refs. 15
and 16)] decreases when the system size increases. Most of
the results presented below were obtained with a system made
of 30 × 10 × 10 Bravais lattice cells (N = 12 000 atoms),
resulting in a relative error committed on fv , lower than 10−2.
This compromise minimizes the computational effort though
preserving sufficient accuracy in estimating fv and, thus, the
bulk diffusivity. Moreover, Fig. 3(a) shows that fv reaches
a system-size-dependent plateau at large MSDs with values
representing the best possible estimation of this quantity for
any given system size. This is the direct consequence of the
cutoff imposed by the boundary conditions on the diffusion
paths of the vacancy and the atoms.

2. Liquids

Like diffusion in crystalline solids, atomic MSDs in liquids
do not reach the asymptotic linear variation with elapsed time
(Einstein equation) before the effective decay of the particle
velocity self-correlation function (Fig. 2). In the context of
the present paper, species distributions and fluxes in the liquid
phase have been computed for diffusion times always higher
than τ ∗

c > 2.5, the characteristic time for velocity correlations
to vanish (Fig. 2).

B. Self-diffusion in the fcc rigid lattice

Vacancy-mediated self-diffusion has been investigated as
described in the above Secs. II B and III A. Figure 4(a)
represents the distribution of species B as a function of
the reduced abscissa X/a (a, the Bravais lattice constant)
for different annealing times. The spreading of B atoms at
the interface, after annealing during a time interval δt , is
characterized by the quantity δXc = 2

√
Dcδt and is obtained

from a least-squares adjustment of Eq. (8) to the simulation
data. The figure shows that Eq. (8), plotted with these values,
fits the tracer concentration profiles nicely (full, dashed, and
dotted lines). Once concentrations of species B are known,
the corresponding flux values are obtained as a function of
the atomic plane positions from Eqs. (3) and (4). Adjusting
Eq. (9) on these data yields another set of δXj = 2

√
Djδt that

accurately reproduces the corresponding discrete flux values
[full lines in Fig. 4(b)]. If the diffusion equation is valid at
the atomic scale, the relation δXc = δXj should always hold.
Figure 4(b) shows that this is generally true except for the
shortest annealing duration (triangles) for which the graphs
of Eq. (9) with δXc (dashed lines) or δXj values (full lines)
reveal significantly different. This finding suggests that the
failure of the diffusion equation at the atomic scale can be
efficiently monitored by plotting the ratios Dc/Db and Dj/Db

as a function of
√

2Diδt , where Di = Dc,Dj and Db is the
bulk diffusivity computed as indicated in Sec. III A. Figure 5
represents these ratios as a function of X = √

2Diδt/a (a, the
Bravais lattice constant). For X > Xcr ≈ 2.5, both ratios have
practically converged to value one, establishing thereby that
above this critical diffusion length, the continuous diffusion
equation can be safely used.

FIG. 4. (Color online) Rigid lattice: (a) atomic concentration of
B atoms as a function of the positions of the (100) atomic planes
expressed in units of the Bravais lattice constant a. Full lines represent
the graphs of Eq. (8) using values of δXc = 2

√
Dcδt : triangles, δXc ≈

0.342; diamonds, δXc ≈ 0.862; full circles, δXc ≈ 2.051. (b) Fluxes
of B atoms in reduced units (see Sec. III A) corresponding to the
concentration profiles displayed in (a). Full lines: graphs of Eq. (9)
with δXj values, triangles, 0.395; diamonds, 0.847; and full circles,
2.045. Dashed lines: graphs of Eq. (9) with δXc values obtained
from adjustments of Eq. (8) to the concentration profiles [see (a)]. In
this figure, full and dashed lines are distinct only for the data series
corresponding to the shortest annealing time (triangles).

C. Self-diffusion in the Lennard-Jones liquid

In the Lennard-Jones liquid, average profiles of concen-
tration and flux of B atoms were computed as a function of
elapsed time δt over an equilibrium MD trajectory of 107 time
steps [Eqs. (12) and (13)].

Figure 6(a) displays the concentration profiles of B-atom
species as a function of the position at reduced elapsed times
δt∗1 = 2.5 and δt∗2 = 26.1 together with the least-squares fit
of Eq. (8) to the MD data. The time needed for molecular
correlations to vanish (Sec. IV A) is δt∗1 , whereas, δt∗2 is a time
value chosen arbitrarily as a representative of long annealing
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FIG. 5. (Color online) Rigid lattice: full symbols, diffusivity
ratios Dc/Db and open symbols, Dj/Db, where Db is the bulk
diffusivity as a function of X = (2Di δt)1/2/a (i = c,j ; a, the Bravais
lattice constant). Triangles: system size 30 × 10 × 10 lattice cells,
circles: system size 30 × 5 × 5 lattice cells.

durations. The corresponding diffusivity values D∗
c,1 = 0.097

and D∗
c,2 = 0.0985 are very close to the value of the bulk

diffusivity obtained via the Green-Kubo integral (Sec. II B)
D∗

b = 0.1032. It is worth noting that the MD data at the
diffusion interface (X∗ = 25) cope with the prediction of the
macroscopic diffusion equation CX∗=25 = 0.5 at any time.

For the sake of clarity, the flux profiles are presented
separately in Figs. 6(b) and 6(c) at δt∗1 and δt∗2 , respectively,
together with the fits of Eq. (9) to the MD data (full lines).
Dotted lines in these figures represent the graphs of Eq. (9)
using δX = 2

√
Dcδt values extracted from the above fits of

Eq. (8) on the concentration profiles [Fig. 6(a)]. Full and dotted
lines are difficult to distinguish from each other, especially in
Fig. 6(c), thus, indicating that D∗

c and D∗
j have practically

converged to a common value.
Similar to Fig. 5, Fig. 7 represents the diffusivities D∗

c or
D∗

j in the LJ liquid as a function of the average diffusion

distance of B atoms at the interface X∗
i = √

2D∗
i δt

∗(i = c,j ).
It appears that both diffusivity estimations have converged
to the bulk diffusivity value D∗

b (dashed horizontal line)
for average diffusion distances larger than a critical value
X∗

cr ≈ 1.75. Unlike D∗
c , D∗

j has practically converged to D∗
b for

diffusion lengths larger than X∗
vmc = √

2Djτc ≈ 0.70, where
τ ∗
c ≈ 2.5 is the critical delay for molecular correlations to

vanish. Moreover, the time delay δt∗ ≈ 16 for reaching the
critical diffusion distance X∗

cr largely exceeds τ ∗
c , meaning

that the molecular correlations cannot be invoked to explain
the failure of the continuous diffusion equation in the diffusion
time interval [0.7,1.75].

V. DISCUSSION AND CONCLUSIONS

The results of this paper are of practical importance for all
the situations requiring that mass transport be described at the
atomic scale, some of which are listed and are commented
on in Ref. 4, namely, relaxation or resonance methods for

FIG. 6. (Color online) Lennard-Jones liquid: (a) Atomic concen-
tration of B atoms as a function of the position at elapsed times open
circles, δt∗

1 = 2.5 and open squares, δt∗
1 = 26.1. Full and dashed lines

represent the fits of Eq. (8) to the MD data. (b) Flux of B atoms as a
function of the position at elapsed time δt∗

1 = 2.5. Full line: Eq. (9)
fitted to the MD data, dotted line: Eq. (9) with δX∗

c = 0.17 deduced
from the fit of Eq. (8) to the concentration profile (a). (c) Same as in
(b) at reduced elapsed time δt∗

2 = 26.1 and δX∗
c = 0.56.
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FIG. 7. (Color online) Lennard-Jones liquid: diffusivity values
as a function of the spreading of tracer atoms (B atoms) at the
diffusion interface X∗

i = (2D∗
i δt

∗)1/2. The values reported, D∗
c and

D∗
j , are determined from least-squares fits of Eqs. (8) and (9) on the

MD profiles of concentrations and fluxes. The horizontal dashed line
marks the value of the converged bulk diffusivity Db computed via
the Green-Kubo integral of the self-correlation function of particle
velocities. Dc and Dj have nearly converged to the bulk diffusivity
value for values of the tracer spreading larger than X∗

critical ≈ 1.75,
whereas, the value X∗

vmc ≈ 0.7 represents the diffusion length at
vanishing molecular correlations.

studying atomic jumps, studies of the kinetics of clustering and
nucleation of ordered phases, diffusion at grain boundaries,
and surface diffusion under irradiation. One should also
add to this nonexhaustive list, the problem of modeling the
properties of nanostructured devices, which are tightly related
to metastable compositions and atomistic strong composition
gradients. The results obtained in this paper (Sec. IV) show
that the condition Dc = Dj = Db is verified only above a
threshold value of the tracer spreading, whereas, for short
annealing durations, the values found are all different Db �=
Dc �= Dj �= Db with Dc,Dj underestimating the bulk
diffusivity systematically. Moreover, these conclusions hold
whatever is the atomic structure of the system, crystalline or
disordered (liquid).

Although the above-listed physical situations of interest
are more complicated than the simple case of self-diffusion in
crystals and liquids, the present paper establishes a method for
deciding on whether or not the diffusion equation can safely
replace the mass-conservation equations (1)–(4) by showing
how an estimate can be determined for the critical annealing
time or, equivalently, for the critical diffusion length above
which higher-order terms, appearing in Eq. (6), are negligible.
Moreover, the statement made in Ref. 4, that the diffusion
equation does not hold for high-concentration gradients and/or
short diffusion times should be weakened as the findings
of the present paper show that the diffusion equation still
correctly describes mass transport at the atomic scale for very-
short diffusion times and considerably large concentration
gradients.

The validity of this generic conclusion is likely to extend
over systems with mass transport mediated by mechanisms
other than vacancy diffusion. This suggestion is supported by
the close similarities, revealed in the present paper, existing
between crystals and liquids. However, additional work is
certainly required before extending the validity of this conclu-
sion to chemical diffusion in heterostructures or self-diffusion
in grain boundaries, for these are more complex cases than
the ones investigated here because of the dependence of the
diffusivity on the concentration of the species in the former
and the multiplicity of operating diffusion mechanisms in the
latter.17,18

Since Martin and Benoist4 have proposed analytic argu-
ments for discussing the atomic scale validity of the diffusion
equation at short times and large concentration gradients, it
was tempting to compare their results to the findings of our
present paper. However, their arguments rely on a Taylor series
expansion of the discrete concentrations ci , entering Eq. (1),
a mathematically incorrect procedure since the derivative of
the discrete function ci(x) does not exist. Accordingly, the
comparison is not possible between the predictions of the
aforementioned paper and the results of the present numerical
simulations.

In Sec. II B, it was already mentioned that the nonequi-
librium method used in the present paper was already
employed by Kincaid, who used MD simulations and a
Lennard-Jones liquid for testing the validity of analytical
corrections for the hydrodynamic description of self-diffusion
on short time scales and the applicability of the telegrapher’s
equation for mass transport.9,10 In relation with the present
calculations, these papers suggest that, in liquids, “. . .the
diffusion equation solution spreads too rapidly,” a conclusion
drawn by comparing MD calculations of the spreading of
an initially thin film of labeled atoms with the analytical
solution of the diffusion equation. This conclusion is not
confirmed by the present paper, which shows instead that
differences between the discrete description of mass flow and
its continuous counterpart, i.e., the analytical solution of the
diffusion equation exist only for tracer profiles extending over
less than a couple of interatomic distances. Moreover, in his
MD calculations, Kincaid10 computed a tracer distribution
at times so short that molecular correlations were still very
strong, whereas, he used the converged (long-time) diffusivity
in the bulk liquid D∗ = 0.412 for solving the diffusion
equation at these time values.19 Figure 8(a) displays the
velocity autocorrelation function of a Lennard-Jones liquid
made of N = 4000 point particles at the state point T ∗ = 2.0,
ρ∗ = 0.5, also studied by Kincaid. In this figure, arrows mark
the time delays used by Kincaid and the values of the Kubo
integral computed up to this time. It visualizes how molecular
correlations affect the value of the diffusivity in the bulk
liquid. In the present paper, the liquid was simulated over
time intervals longer than the characteristic correlation time
τ ∗
c ≈ 2.5 (Fig. 2) at the studied state point, whereas, in the fcc

crystal, the simulated vacancy trajectories were systematically
longer than the minimum length required for the atomic
correlation factor to converge satisfactorily. Consequently, the
reported results all satisfy the requirement that the diffusivity
in the bulk of the studied systems has practically converged to
its value at the thermodynamic limit.
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FIG. 8. (Color online) (a) Equilibriumvelocity autocorrelation
function in a Lennard-Jones liquid at the state point T ∗ = 2.0,
ρ∗ = 0.5, and its Kubo integral values (diffusivity) at the delays
used in Kincaid’s paper.10 At elapsed time values shorter than τ ∗ =
2.7, molecular correlations are still significant. (b) Full line: shape of
an initial thin-film distribution of a tracer in a Lennard-Jones liquid
at the state point T ∗ = 2.0, ρ∗ = 0.5 after annealing during τ ∗ =
0.54, redrawn from Kincaid’s MD paper.10 Full circles: the thin-film
solution of the diffusion equation using the diffusivity value D∗ =
0.346 [see (a)], dashed line: the thin-film solution of the diffusion
equation using the diffusivity value D∗ = 0.412 as performed in
Ref. 10.

In disagreement with the conclusion drawn by Kincaid,
Fig. 8(b) shows that the thin-film solution of the diffusion
equation at time τ ∗ = 0.54 and diffusivity value D∗ = 0.346
[Fig. 8(a), full circles] fits his MD results redrawn in this figure
(full line) perfectly. For the comparison purpose, the thin-film
solution he has used at this time with D∗ = 0.412 is also
displayed in this figure (dashed line).

The present paper shows that, in the absence of molecular
correlations, separate fits of the solutions of the diffusion
equation on the MD concentration and flux profiles yield
diffusivity values that significantly underestimate the con-
verged bulk diffusivity for diffusion distances shorter than
X∗

cr ≈ 1.75. This is the atomic scale effect Ghez3 explains on
phenomenological grounds.

A mathematical analog of Fick’s equation is the Fourier
law, describing the evolution of thermal energy as a function
of the temperature gradient. Like the diffusion case, the
validity of this equation at the atomic scale has been a matter
of discussion until Ciccotti and Tenebaum20 addressed this
problem. These authors used MD and a Lennard-Jones (12-6)
model of argon to study heat transfer under strong temperature
gradients at the atomic scale. Similar to the findings of the
present paper, their results show that Fourier’s law is still
valid under remarkably strong temperature gradients, whereas,
the thermal conductivity obtained from these calculations
compares favorably with experimental data for argon.

In conclusion, in this paper, we have shown that the
diffusion equation applies at the atomic scale whenever the
diffusion distances are longer than a couple of first-neighbor
distances whatever is the atomic structure of the considered
system, crystalline or disordered (liquid). Work in progress
focuses on the validity of the diffusion equation in model
heterostructures in connection with the prediction of the
properties of nanostructured devices.
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