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Free energy of Xe incorporation at point defects and in nanovoids and bubbles in UO2
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Intra- and intergranular fission gas bubbles in nuclear fuels are known to have a deleterious effect on fuel
performance, particularly at high levels of burnup. The mechanisms by which randomly distributed fission gas
atoms agglomerate to form larger fission bubbles are not well understood. Therefore, this paper aims to examine
the thermodynamics of bubble nucleation from isolated point defects to nanovoids and ultimately to bubbles of
≈2.0 nm using molecular-dynamics simulations employing empirical pair potentials. A thermodynamic driving
force for bubble nucleation from point defects is highlighted by the substantial reduction in the free energy of Xe
atoms contained within larger bubbles relative to accommodation at point defects. The simulations also illustrate
the processes that the lattice surrounding a fission gas bubble undergoes in order to prevent thermal resolution,
clearly indicating the thermodynamic imperative to ensure the Xe remains in the bubble.
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I. INTRODUCTION

Fluorite structured uranium dioxide (UO2) is the fuel
used most widely in the generation of electricity by nuclear
power. As a direct consequence of the fission process, the
concentration of uranium in the matrix is decreased and is
replaced by daughter elements, including noble gases, such as
krypton and xenon. The concentration of each of these fission
products (FPs) in the fuel at any given time will depend on a
number of factors, such as: (i) the age and use profile of the fuel
(i.e., burnup), (ii) the type of reactor, (iii) the thermodynamic
stability of the FP within the UO2 matrix, and (iv) the activation
energy for transport of the FP through the lattice. Point defects
are of fundamental importance when considering all the factors
mentioned above. The age, use profile, and type of reactor
will dictate the relative concentrations of the point defects
present, which will, in turn, influence the relative stability
of the daughter products within the matrix and also the rate
of diffusion through the lattice. This last phenomenon is
important as it dictates the rate at which FPs, which are
insoluble in the lattice, can precipitate to either the surface
or the grain boundaries.

Commensurate with the importance of point defects in
the accommodation of FPs, there has been a significant
effort to determine point-defect concentrations, distributions,
and properties in UO2. Atomistic simulation, in its various
guises, has shown itself to be particularly adept at providing
this information. First, Grimes and Catlow1 developed a
comprehensive framework for the theoretical investigation of
FP solution in UO2. This and related papers2–5 established
the differing concepts of incorporation energy and the related
solution energy. The FP incorporation energy Einc(FP) is
defined as the energy to incorporate a FP on a preexisting
point defect,

Einc(FP) = Edef(FPtrap) − Edef(Vtrap), (1)

where Edef(FPtrap) is the defect energy of the FP located on a
trap site and Edef(Vtrap) is the defect energy of the preexisting
trap [for incorporation at an interstitial site Edef(Vtrap) = 0].

This is only valid when the concentration of trap sites is greater
than the FP concentration. If the number of FPs exceeds the
number of trap sites, the FPs must create trap sites at which
to reside. Therefore, the energy required to create this defect,
Ef (trap), has to be added to the incorporation energy in order
to obtain a solution energy,

Esol(FP) = Einc(FP) + Ef (trap). (2)

A positive value for the solution energy suggests that the
FP is insoluble in the lattice.

The early empirical-potential-based simulation papers of
Catlow2 and then Grimes and Catlow1 predicted that the
lowest-energy process for Xe incorporation in stoichiometric
UO2 is for the Xe atom to sit in a charge neutral trivacancy de-
fect or Schottky (Sch) defect (i.e., [V′′′′

U :2V••
O ]× in Kröger-Vink

notation)6 or in the negatively charged divacancy [V′′′′
U :V••

O ]′′.
The solution of Xe at the neutral Sch defect is predicted
for hypostoichiometric urania (i.e., UO2−x), however, in a
hyperstoichiometric material (i.e., UO2+x) solution at the
cation vacancy is predicted to be the lowest-energy process.
This change in behavior is due to a significant decrease in
the formation energy of the uranium vacancy when the fuel is
oxidized.

Early quantum-mechanical simulations of UO2 failed to
reproduce its insulating behavior.7 Despite this apparent
limitation, Freyss et al.8 used density functional theory (DFT)
and the generalized gradient approximation (GGA) to study
Xe incorporation on different trap sites in UO2. Their results
predicted that the incorporation energy for Xe onto a uranium
vacancy is lower than on a vacant oxygen or an interstitial
site. These observations are in agreement with the previous
empirical-potential-based papers but, unfortunately, due to
computational constraints, defect clusters, such as the Sch
defect were not considered. The DFT-GGA simulations of Yun
et al.9 employed larger cells and enabled the incorporation
of Xe into di- and trivacancies (i.e., Sch defects) to be
studied. They found that the lowest-energy incorporation
process is for the Xe atom to reside on a Sch defect. More
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recent DFT + U simulations, which correctly predict UO2

to be an insulator, suggest that the process with the low-
est incorporation energy involves the neutral trivacancy.10,11

Furthermore, Nerikar et al.10 suggest that solution of Xe at
Sch defects is the most favorable solution process for both
stoichiometric and hypostoichiometric UO2, but as the oxygen
concentration increases, the cation vacancy becomes the most
thermodynamically stable solution site. More recent DFT
simulations employing the GGA + U exchange-correlation
functional predict that the divacancy is the lowest-energy
incorporation and solution process.12 Geng et al.13 suggest that
the thermodynamic competition between Xe′′′′

U and Xe×
Sch can

be influenced indirectly by the presence of clustered oxygen
defects.

Overall, there appears to be a broad consensus in the
literature concerning the mode of xenon accommodation at
point defects in UO2 across a wide compositional range. What
all of the computational investigations, mentioned above, have
in common is that, independent of how the forces between
ions are modeled (either via an empirical pair potential or
quantum mechanically), they all employ energy minimization
at 0 K to calculate the energy of the point defects. Temperature
effects, when considered, are then taken into account using the
point-defect models of Matzke14 and Lidiard15 and, therefore,
are extrapolated from this energy value at 0 K.

Since xenon is predicted to be insoluble in UO2 (Ref. 16),
it may be expected that Xe atoms would migrate either toward
the surface or to form either intra- or intergranular bubbles
or planar clusters.17 A number of papers have attempted
to understand the rate and mechanisms responsible for Xe
nucleation in UO2. Moore et al.18 predicted the aggrega-
tion of isolated Xe atoms into a single large cluster from
their molecular-dynamics (MD) simulations. The aggregation
process observed was enhanced by the high concentration
of Sch vacancy defects included in the simulations. Govers
et al.19 studied the evolution of in-pile bubble distributions and
estimated an activation energy for Xe diffusion of 0.9 eV. This
value is significantly lower than the 3.9 eV determined from
out-of-pile experiments by Cornell20 and the value of ∼3.9 eV
observed in an unirradiated sample.21 Atomistic simulation,
employing interatomic potentials22 and DFT23 has been used to
examine the different diffusion mechanisms for Xe migration
in UO2±x . For stoichiometric UO2, an activation energy of
4.5 eV was obtained using the empirical potentials22 in good
agreement with the 3.9 eV of Matzke,21 and values between
4.99 and 6.56 eV were obtained using DFT.23 The simulations
examined the role of point defects in facilitating Xe transport
through otherwise pristine UO2, therefore, they provide a good
comparison with the unirradiated sample. Mechanisms for Xe
resolution into the lattice have also been discussed.24–27

Fission gas bubbles measuring up to 12 Å in radius
have been observed at relatively low burnups of up to
18 GW−1 d−1 t.28,29 Similarly sized bubbles have also been
observed using TEM in UO2 irradiated with Xe3+ ions.30

At much higher burnups, these bubbles coalesce to form
larger fission bubbles. High-resolution TEM observations on
high-burnup fuels suggest fission bubbles can become as large
as 100 Å in diameter with Xe densities of 3.8–6.0 g cm−3

(0.029–0.046 mol cm−3 or a Xe:Sch ratio of 0.7–1.2) consis-
tent with the presence of Xe in its solid form.31 Martin et al.32

observe small nanometer-sized Xe aggregates containing solid
Xe with a cell parameter of 5.61 ± 0.02 Å.

Traditionally, either the van der Waals equation or the
ideal-gas law has been used to describe the equation of
state of fission gases in nuclear fuels, however, these models
have been found to provide an inadequate description for the
overpressurized gas bubbles found in the rim structure of
high-burnup nuclear fuel pellets.33 A number of simulation
papers have extended the equation of state for Xe into the
high-temperature and pressure regimes expected in a nuclear
reactor.33–35 The papers of Parfitt and Grimes24 and Xiao-Feng
et al.36 used MD simulations of pure Xe with the same densities
of gas atoms contained within their bubbles in UO2 to estimate
the pressure inside the bubble. Unfortunately, this ignores
the impact of gas-crystal interactions, and a more explicit
investigation of the equation of state of xenon contained in
bubbles in UO2 is essential.

Therefore, the goal of this paper is to investigate the free
energy of Xe incorporated in point defects and in bubbles of
increasing size and to compare the equation of state for Xe
in gas bubbles in UO2 as a function of bubble density and
temperature.

II. METHODOLOGY

In our simulations, the lattice is treated as an array of
point charges that interact via a combination of a Coulombic
interaction and a parametrized short-range pair potential.
There have been a large number of pair potentials developed
for the UO2 system,1,37–46 and recently, there has been some
effort to evaluate their relative performance.47,48 For this
paper, the Morelon potential40 has been selected since this
potential has been optimized for the study of point defects.
This potential has been implemented successfully to examine
radiation damage from single49–51 and overlapping radiation
damage cascades in single-crystal UO2 (Ref. 52) as well as to
investigate radiation damage in polycrystalline UO2.53,54 Xe-
Xe interactions were modeled using the potential developed by
Tang and Toennies,55 which is based on an accurate description
of the van der Waals interactions calculated with different ab
initio methods. The Xe-U and Xe-O interactions are of the
Buckingham form with the parameters developed by Chartier
et al.56 by fitting to xenon incorporation energies at point
defects in UO2 calculated using DFT.

In a MD simulation, the forces on every ion in the supercell
are calculated, and the ions/atoms are allowed to move under
the influence of this force for a finite time period (in our
simulations, this was 1 fs). This process is repeated iteratively,
thus, allowing the time-dependent evolution of the lattice to
be followed. A series of cavities of increasing size were then
created by removing a number of Sch defects (i.e., one uranium
atom and two oxygen ions), thus, maintaining overall charge
neutrality. Furthermore, a Xe atom in a Sch defect represents
the reference state for an unclustered Xe atom in the lattice. The
smallest cavity to be studied, termed a nanovoid here, consisted
of four Sch defects with the configuration optimized to ensure
the largest possible free volume in the void (creation of the
nanovoid will be discussed in more detail later). Larger cavities
were created by removing all uranium and oxygen ions within
a sphere of radius rb centered on a uranium ion. Oxygen ions
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TABLE I. Table showing the details of our MD simulations.

Point Small Large
Property defect Nanovoid bubble bubble

Supercell 5×5×5 5×5×5 10×10×10 20×20×20
Number of ions 1500 1500 12 000 96 000
Initial radius/Å 6.0 10.0
Sch defects NAa 4 19 121

in cavity
Number of Xe 1 7 57 124

aNA stands for not applicable.

were then added/removed at random to/from the surface of the
bubble to ensure that the total number of oxygen ions removed
was exactly twice the number of uranium ions removed. Two
bubbles of different radii were used in this paper, a smaller and
a larger bubble with radii of 6 Å in a cell containing 12 000
ions and a 10-Å bubble in a supercell containing 96 000 ions,
respectively. From here on, these two bubbles are referred to as
the small and large bubbles, respectively, although it should be
noted that, in the fuel, both these bubbles would be considered
to be small. Xe atoms were introduced randomly onto the now
vacant UO2 lattice sites within the cavity. A summary of all
the simulation details employed herein is given in Table I.

All systems studied were equilibrated for 10 ps (10 000
time steps) under constant temperature and pressure conditions
using the Nose-Hoover thermo- and barostats. The average
lattice parameters, during the second half of this simulation,
were then used to create a new supercell that was allowed to
equilibrate under constant temperature and volume conditions
using the Langevin thermostat for a further 20 ps (20 000 time
steps). Once this equilibration was completed, the free energy
of each Xe atom in the system was determined.

In order to calculate the free energy of a Xe atom located
at a point defect or in a bubble, we perform an unusual
disintegration procedure.57 This disintegration procedure has
been used previously to investigate He solubility in β-SiC.58

The procedure is the conceptual opposite of the particle-
insertion method suggested by Widom59 in which an atom
is gradually introduced into the simulation cell. As MD is
discretized in time, the insertion proceeds step by step, and
slowly, therefore, the number of steps required to perform
the insertion is large. The disintegration method is simply the
opposite in which a selected atom is removed slowly from the
simulation cell. Below, we briefly recall why these procedures
do indeed lead to an estimation of the free energy of an atom.

The premise of the particle-insertion method is that, when
an atom is inserted randomly into a system in thermodynamic
equilibrium, the change in the internal energy dU of the system
can be calculated from Eq. (3),

dU = dF + T δS, (3)

where dF is the change in the Helmholtz free energy, T is the
temperature, and dS is the concomitant change in entropy.
Should this insertion procedure be conducted sufficiently
slowly, the impact on the surrounding ions in a single time step
is negligible, and the process can be deemed to be quasistatic.
As this process is reversible, we can assume that there is no
creation of entropy (i.e., δScreated = 0) during a given time step,

and the total change in entropy is simply that exchanged with
the thermostat δSexchanged, and Eq. (3) becomes

dU = dF + T δSexchanged = dF + δQreversible, (4)

where δQreversible is the variation in heat during a reversible
process. The variation in the internal energy during a reversible
reaction may also be given by Eq. (5),

dU = δQreversible + δWreversible, (5)

where δWreversible is the work performed along the disintegra-
tion path. Combining Eqs. (4) and (5) gives Eq. (6) where
the change in free energy is the work performed along the
disintegration path,

dF = δWreversible. (6)

The simulation is performed under constant temperature
and volume conditions using a Langevin thermostat, and the
number of atoms in the simulation, other than the target atom,
remains constant (i.e., nj �=i), then,

dF =
j=1∑
N

(
δF

δnj

)
V,T ,nj

dnj +
(

δF

δT

)
V,n

dT +
(

δF

δV

)
T ,n

dV

=
(

δF

δni

)
V,T ,nj �=i

dni, (7)

therefore,

dF = μidni, (8)

where μi is the free energy of atom i, consequently,

μidni = δWreversible. (9)

Hence, if an atom is randomly added to the system dni = 1,
then

μi = Wreversible. (10)

As we are interested in the free energy of atoms in a specific
position within the simulation supercell, it is not possible
to insert an atom randomly. Therefore, we adopt a different
approach, whereby a target atom is disintegrated or slowly is
removed from the system and dni = −1 and

μi = −Wreversible. (11)

During our simulations, we determine the work generated
reducing the Xe interactions with the neighboring atoms
and then integrate this work along the disintegration path to
calculate the free energy. In the work presented here, each of
the Xe atoms in the system was disintegrated individually in
a series of simulations all started from the same equilibrated
system.

The quality of this procedure depends on the speed of the
disintegration as δScreated converges to zero as the difference in
the interactions between the target atom and its surroundings
after each step becomes increasing smaller. A value of 20 000
time steps (i.e., 20 ps) was found to be sufficient to ensure
that the disintegration process was quasistatic. All simulations
were conducted using the in-house MD code NDM.
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FIG. 1. (Color online) Diagrams showing the different arrange-
ments of the Sch defect clusters (a) Sch 1, (b) Sch 2, and (3) Sch 3. The
red spheres represent oxygen ions, and the red and green transparent
cubes represent oxygen and uranium vacancies, respectively.

III. RESULTS AND DISCUSSION

A. Point defects

The first goal of this paper is to examine the free energy of
Xe incorporation at point-defect trap sites in UO2. The defects
considered are Xe×

i , Xe′′′′
U , Xe••

O , Xe′′
dimer, and Xe×

Sch where the
three different initial configurations for the Sch trivacancy
defects are considered (see Fig. 1). Xenon free energies for all
of these defects at a number of temperatures are included in
Table II. The Xe free energies of two (2Xe×

Sch) and three Xe
(3Xe×

Sch) atoms incorporated into a single Sch defect also are
included. For these two last calculations, the values of the free
energies in Table II are the average over the three Sch defect
configurations.

Table II shows the incorporation energies calculated using
energy minimization with both the empirical pair potential and
DFT and compares these with the free energies determined
using the disintegration technique for temperatures up to
1300 K. There is a good level of agreement between the
incorporation energies predicted using the empirical potential
and the DFT for simple Xe solution sites (i.e., Xei, Xe′′′′

U , and
Xe••

O ). This result is not surprising as the Xe-O and Xe-U
potential parameters were fitted using these defects.56 For
the more complex defects (i.e., those involving clusters of
vacancies), there is some discrepancy in the absolute energies,
however, the overall ordering of the incorporation energies
is predicted to be the same with both techniques predicting

that solution at the type-1 Sch defect (see Fig. 1) is the
most energetically favorable process and that incorporation
at an interstitial site is the least energetically favorable
solution process. Importantly, Table II shows that the effect
of temperature on the free energies of Xe accommodated at
point defects in UO2 is negligible as the results obtained from
static energy minimization simulations are almost identical to
the free energies obtained for Xe incorporated at the same trap
site at temperatures up to 1050 K. This is not the case for Xe
accommodated at an interstitial site where there is a relatively
large difference (0.3 eV) between the energy-minimized value
and the free energy at 300 K. The origin of this discrepancy is
that the Xe×

i defect is metastable and evolves to give a Xe••
O

defect with an O′′
i defect bound to it. This process is described

as part of a complex Xe diffusion pathway as discussed by Liu
et al.61 At higher temperatures (>1500 K), this Xe×

i displaces
a neighboring uranium atom from its lattice site, so the Xe
now resides on a [V′′′′

U :V••
O ]′′ defect cluster with a uranium and

oxygen interstitial bound to it, a process also observed in the
simulations of Xiao-Feng et al.36

Table II also shows that, for Xe solution at point defects,
such as Xe×

Sch 1 and Xe×
Sch 3, there is a significant change in

the Xe free energy for temperatures greater than 1050 K. This
is due to the increased mobility of the oxygen sublattice at
higher temperatures.62,63 Consequently, the arrangement of
the oxygen vacancy defects surrounding the uranium vacancy
defect will be altered such that the initial Xe incorporation site
may no longer be present. Therefore, we limit our paper to
temperatures up to and including 1050 K.

Upon incorporation of a second Xe atom in a single Sch
defect, the free energy of the Xe atoms increases dramatically,
especially at low temperatures. However, the incorporation
of a third Xe atom does not impact the average free energy
significantly.

B. Nanovoids

Small nanovoids consisting of a number of Sch defects
are an intermediary step in the formation of larger fission
bubbles.56 In order to study this step in the bubble formation
process, a small nanovoid consisting of four Sch defects
was created. The choice of four Sch defects is due to this

TABLE II. Table showing the free energies of Xe atoms incorporated at point defects in UO2. The results were compared to data obtained
using energy minimization (where there is no concept of temperature) where forces were evaluated using DFT and the empirical potential
employed here.56

Free energy/eV

Temperature/K Xe×
i Xe′′′′

U Xe••
O Xe′′

dimer Xe×
Sch1 Xe×

Sch2 Xe×
Sch3 2Xe×

Sch 3Xe×
Sch

DFT (0 K) 12.01a 5.77a 9.14a 1.2b 1.8b 2.3b

Empirical (0 K) 11.92c 5.40c 9.34c 4.87 4.21c 4.64 4.82
300 11.71 5.45 9.27 4.87 4.23 4.71 4.88 8.12 8.24
550 11.54 5.48 9.27 4.87 4.23 4.74 4.91 7.56 8.48
800 11.07 5.56 9.22 4.89 4.23 4.73 4.87 7.05 7.20
1050 10.81 5.56 9.14 4.82 4.24 4.77 4.77 7.18 7.11
1300 10.73 5.64 8.98 4.77 4.64 4.78 5.10 6.24 6.44

aThe local-density approximation.56

bThe GGA + U approximation.60

cChartier et al.56
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being the minimum number required to create a topologically
symmetric cavity. Four uranium atoms were removed such
that the vacancies formed the vertices of a tetrahedron. Oxygen
anions, which form cubes surrounding each uranium site, were
then removed from the corners of any edge shared by the
oxygen cubes surrounding two uranium vacancies. The final
oxygen vacancy was created by removing one of the oxygen
ions in a nearest-neighbor position with respect to one of the
uranium vacancies. The initial configuration of the nanovoid
is given in Fig. 2(a).

Figure 3 shows the average free energy of the Xe atoms
plotted as a function of the Xe:Sch ratio for Xe atoms contained
in the nanocavity for different temperatures ranging from
300 to 1050 K. The results show very little influence of the
temperature on the free-energy values as already shown for
the point defects. Therefore, in the following section, we only
discuss the results obtained at 300 K. When a single atom is
placed inside the cavity, it moves toward the central oxygen
vacancy such that it minimizes its interaction with the UO2

lattice. The free energy for a Xe atom accommodated as such
is about 1.5 eV. When a second Xe atom is placed in the
nanovoid, the repulsion between the Xe atoms forces them to
reside on two of the vacant uranium sites with an average free
energy of 3.88 eV. The third and fourth Xe atoms then reside on
the remaining vacant uranium sites [as shown in Fig. 2(b)], and
the free energies of the these Xe atoms are roughly unchanged,
3.67 and 3.86 eV for three and four Xe atoms, respectively. The
cavity is formed from four Sch defects, consequently, when
there are four Xe atoms contained within the nanovoid, the
Xe:Sch ratio is 1; therefore, this average value of 3.88 eV per
Xe atom can be compared to the free energy of a single Xe
atom accommodated in a single Sch defect of 4.21 eV. This
value is indicated by the dashed line in Fig. 3. As the average
free energy of the four Xe atoms accommodated in a Sch
defect (i.e., the Xe:Sch ratio is 1 in both cases), we predict a
thermodynamic driving force to nucleation that is independent
of temperature.

Incorporation of further Xe atoms into the nanovoid results
in a significant increase in the free energy of the Xe atoms
contained within (roughly 2 eV per xenon atom). This increase
in energy is due to the lack of an available vacant uranium
site and an increase in the pressure inside the void. For
those Xe:Sch ratios greater than 1, the average free energy
per Xe atom is always larger than the free energy of a single
Xe atom accommodated in a single Sch defect. Therefore,
the thermodynamic driving force present for lower Xe:Sch
ratios disappears. Consequently, one can expect that, in the
real material, the configurations of Xe:Sch ratios greater than
1 are unlikely to occur in nanovoids. Nevertheless, despite
this significant increase in the average xenon energy inside
the cavity, we do not see any resolution of the xenon into the
lattice. Interestingly, Fig. 3 shows that, when further Xe atoms
are introduced into the cavity, the average free energy per
Xe atom slightly decreases. This behavior appears counterin-
tuitive as it would be expected that, as the pressure inside the
bubble increases, there would be a concomitant increase in
the average free energy of the Xe atoms. However, rather than
xenon being resolved into the urania, as the pressure inside
the bubble increases, the Xe atoms force oxygen ions in the
region immediately surrounding the bubble into the lattice [as

FIG. 2. (Color online) Diagrammatic representation of (a) an
empty nanovoid (cavity) consisting of four Sch defects, (b) a nanovoid
containing four Xe atoms, and (c) a nanovoid containing seven Xe
atoms. The figures are a superposition of snapshots of the simulation
supercell with only the defect species shown. Transparent green and
red cubes represent uranium and oxygen vacancies, respectively, and
the red and gray spheres represent the average position of the oxygen
interstitials and Xe atoms, respectively. In (c), the oxygen interstitials
are the result of the oxygen ions surrounding the nanocavity being
forced off their lattice sites, thus, increasing the size of the void.

shown in Fig. 2(c)], thus, increasing the size of the cavity itself
and, subsequently, reducing the internal pressure in the void.
As a result, there is no resolution observed in our simulations
of nanovoids.
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FIG. 3. (Color online) Plot showing the Xe free energy as a
function of the Xe:Sch ratio for different temperatures ranging from
300 to 1050 K. The dashed line at 4.21 eV indicates the free energy
found for one Xe atom accommodated in a Sch defect.

C. Bubbles

Having established that there is a thermodynamic driving
force for the nucleation of small nanovoids containing Xe
atoms, for Xe:Sch ratios less than 1, we examine the Xe free
energy in larger size bubbles. Figure 4 shows the average
free energy over all Xe atoms contained within the small and
large bubbles as a function of the Xe:Sch ratio. For the small
bubble, the free energy was determined at 0.1, 300, and 1050
K, however, for the larger bubble, the free energy was only
determined at 300 K due to computational restraints. Also
included are the results obtained for the nanovoids from Fig. 3.

For both the small and the large bubbles, the average free
energy of the Xe atoms inside the bubble increases linearly
with the Xe:Sch ratio until the Xe:Sch ratio is ≈1.3. For this
range, the value of the average free energy per Xe atom is lower
than the free energy of a single Xe atom accommodated in a
single Sch defect. Therefore, as is the case for the nanovoid,

FIG. 4. (Color online) Plot showing the average free energy of
xenon in bubbles in the UO2 lattice as a function of the Xe:Sch ratio.

FIG. 5. (Color online) Spatial repartitions of Xe atoms contained
within two different bubbles: (a) a small bubble of diameter 1.2 nm
containing 48 Xe atoms (corresponding to a Xe:Sch ratio of 2.5)
and (b) a large bubble of approximately 2.0 nm containing 120 Xe
atoms (corresponding to a Xe:Sch ratio of 1.0). Each atom is colored
according to its free energy.

there is a thermodynamic driving force, which yields to the
nucleation of the Xe atoms. The intensity of this driving
force decreases as the Xe:Sch ratio increases, i.e., as the Xe
atom density in the bubble increases. Temperature appears to
have only a very small effect on the free energy at a given
Xe:Sch ratio. Furthermore, Fig. 3 shows that, as the size of
the bubble increases, the average Xe free energy decreases
for the same Xe:Sch ratio again suggesting a driving force
to nucleation of bubbles up to 10 Å in radius. This behavior
is due to the existence of a boundary layer at the interface
between the bubble and the UO2 lattice inducing a specific
spatial repartition of the Xe free energies. Figure 5(b) displays
the 120 Xe atoms contained within the large bubble at 300 K
corresponding to a Xe:Sch ratio of 1; the atoms have been
color coded with respect to their free energies. In this figure,
the Xe atoms with the highest free energies are concentrated
at the surface of the bubble in contact with the UO2 lattice.
Therefore, since, for the larger bubbles, the ratio between the
Xe atoms in the bubble core and the Xe atoms at the surface
increases, the average free energy decreases as the bubble
size increases. For Xe:Sch ratios higher than 1.3, the average
free energy per Xe atom in the small bubble becomes almost
constant and larger than the average free energy of a single
Xe atom. This behavior is explained by two phenomena. The
first is that, for these densities, the Xe atoms have formed a fcc
solid as represented in Fig. 5(a), which displays 48 Xe atoms
contained within the small bubble at 300 K corresponding to
Xe:Sch = 2.5. The second phenomenon is that, as is the case
for the nanovoids, the Xe atoms at the surface of the bubble
create more space for themselves by forcing oxygen ions into
the UO2 lattice, thus, increasing the size of the bubble and
keeping the Xe-Xe distance roughly constant.

Finally, we provide a comparison of the fission gas atoms
contained within a bubble and pure xenon in order to discuss
the importance of the gas-surface interaction. The free energy
of pure xenon was determined by creating an entirely separate
simulation supercell containing only Xe atoms. The density of
Xe inside the bubble was controlled by changing the size of
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FIG. 6. (Color online) Plot showing the average free energy of
xenon in bubbles in the UO2 lattice as a function of the Xe density in
the bubble. The average free energies determined for Xe atoms inside
the bubbles are then compared with pure xenon. The vertical dotted
lines represent the upper and lower bounds of the bubble density
observed from the experiment.31,64

the simulation supercell, and the simulations were performed
as before without the initial constant pressure equilibration.

Figure 6 shows a comparison of the free energy of Xe within
the cavities in UO2 and in a pure Xe supercell as a function of
the Xe density. Xe densities inside the cavities were determined
by assuming that the bubbles were approximately spherical,
and the radius was determined as the distance from the center
of the bubble to the nearest U4+ or O2− ion. The vertical dotted
lines marked in Fig. 6 represent the upper and lower bounds
of the estimated bubble densities from experiment.31,64

As discussed in Sec. I, Chartier et al.56 demonstrated
the efficacy of the Xe-Xe interaction derived by Tang and
Toennies55 by plotting the equation of state and comparing
with the experimental data of Beattie et al.65 and Zisman
et al.66 Consequently, we are confident that the empirical
potential acting between Xe atoms is accurate. For pure xenon,
Fig. 6 shows that, at low densities, when the xenon is in
a gaseous state, the average free energy is very close to
zero at both 300 and 1050 K. At these low densities, the
Xe atoms are sufficiently far apart that they are effectively
noninteracting, and hence, their potential energy is effectively
zero, thus, their total energy is equal to the atom’s kinetic
energy only. As the density increases, the Xe atoms begin to
arrange themselves into a fcc solid. The phase change occurs
at a density of 0.025 mol cm−3 at 300 K and 0.03 mol cm−3 at
1050 K. After the onset of solidification, the free energy then
decreases slightly as it approaches the equilibrium density for
solid Xe at each temperature. Further increases in the density
beyond the equilibrium value lead to a significant repulsive
interaction between the Xe atoms, and consequently, the free
energy increases dramatically as shown in Fig. 6. For the same
Xe density in the supercell, the free energy is predicted to
increase as a function of temperature.

Within the bubbles, the phase change from a gaseous Xe to
a solid is retarded due to the surface of the urania restricting the
rearrangement of the Xe atoms into the perfect fcc structure

(see Fig. 5), although the exact density at which solidification
occurs is difficult to determine due to the small number of
atoms involved. At higher pressures, the forces on the Xe atoms
were sufficient to allow this rearrangement to occur on a MD
time scale. The average free energy of the Xe atoms contained
within the small bubble increases almost linearly with the
density of the fission gas up until the free energy reaches
≈4.5 eV at a bubble density of 0.04 mol cm−3. This rate of
increase in the free energy is substantially greater than for the
pure Xe and reflects the interaction of the Xe atoms with the
surface of the cavity. The rate at which the free energy increases
as a function of Xe density in the small bubble appears to be
independent of temperature.

A comparison of the free energy as a function of the
density in the small bubble and the pure gas suggests that
a model in which the Xe is considered to behave in a similar
manner to pure Xe is inappropriate in bubbles of this size.
At very high densities, the free energy plots for the small
bubble and the free xenon converge, this represents the point
at which the Xe is so dense that the surface interactions have
a comparatively negligible effect on the free energy. For the
large bubble in the low (i.e., <0.025 mol cm−3) and the high
(i.e., >0.54 mol cm−3) density regions, the free energy is
virtually identical to the pure Xe, however, in the intermediate
region, there is still a small discrepancy. Unfortunately, this
corresponds to the range of densities at which the bubbles are
predicted to occur in the fuel, therefore, treating Xe contained
in nuclear fuels as pure Xe may not be appropriate for bubbles
of this size (i.e., ≈2 nm in diameter), particularly at low
temperatures.

IV. CONCLUSIONS

MD simulations employing empirical pair potentials have
been used to study the free energy of Xe at point defects,
in nanovoids, and in small bubbles in the UO2 matrix. The
conclusion drawn from the simulations of Xe incorporation
at point defects shows that the most favorable trap site is the
charge neutral Sch defect with the two oxygen ions residing
on nearest-neighbor lattice sites, thus, maximizing the free
volume available to the fission gas atom. This is in agreement
with a wealth of other theoretical papers, both empirical and
quantum mechanical. Temperatures up to 1050 K have been
shown to have little or no effect on the free energy of Xe atoms
incorporated at point defects, or bubbles in UO2, raising the
possibility that defect formation energies determined using
first-principles methods may be extrapolated at intermediate
temperatures.

At no point in this paper was a Xe atom seen to undergo
thermal resolution to the crystal matrix (i.e., thermal resolution
does not occur on a MD time scale, however, it may occur at
larger time scales). The processes that the lattice has to undergo
in order to prevent resolution are evident from the point-defect
simulations to the simulations of the largest bubbles. A Xe
atom initially incorporated at an interstitial site in UO2 was
observed to displace an oxygen ion at low temperature and then
to displace a neighboring uranium ion at high temperature, a
process that has been observed elsewhere.36 Similarly, when
the pressure in the nanovoid or the bubble becomes sufficiently
great, rather than undergo resolution, the Xe atoms force
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oxygen ions from the bubble surface into the crystal lattice,
thus, relieving the pressure inside the cavity as illustrated in
Fig. 2(c).

Our simulations also demonstrate that there is a thermody-
namic driving force to bubble nucleation. This thermodynamic
driving force decreases linearly as the density inside the bubble
increases and is greater for larger bubbles.

Finally, we have highlighted the limitations of a fuel-
performance model that simply assumes the behavior of Xe
gas inside small gas bubbles in nuclear fuels behaves in a
similar manner to that of pure Xe. Whereas, this approximation
may be valid for the largest of bubbles in the matrix due to

a significantly decreased surface-to-volume ratio, it clearly
indicates that more work needs to be performed examining the
equation of state of fission gas trapped in nuclear fuels.
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