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The variation of formation energies of point defects and clusters in uranium dioxide (UO,) as a function of
their charge states is studied by density functional theory (DFT). Di- and trivacancies are considered as well
as various assemblies of oxygen interstitials, namely the cuboctahedral defect (either empty or filled) and the
split-di-interstitial. The energies of formation of these defects for various possible charge states are calculated
using the DFT + U approach. The occurrence of multiple minima is circumvented by the use of the U-ramping
technique [Meredig et al., Phys. Rev. B 82, 195128 (2010)]. One finds that point defects and vacancy clusters
bear their formal charges, deduced from the ionic picture of bonding in UO,. Conversely, clusters of oxygen
interstitials are much less charged than this fully ionic limit. The energy gain upon clustering is vastly modified
when the possible charge of defects is taken into account. Vacancy clusters prove only marginally stable compared
to their isolated counterparts. Clusters of oxygen interstitials are found energetically unstable with respect to

isolated interstitials in the stoichiometric compound.
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I. INTRODUCTION

Uranium dioxide is a key material for the nuclear industry. It
is indeed the usual fuel for pressurized water reactors. Atomic
defects are of key importance for several properties of UO,.
They drive diffusion properties, provide insertion sites for
fission products, and accommodate stoichiometry variations.
The last two properties involve not only point defects but also
their clusters. Indeed, some fission products are thought to be
preferentially accommodated in clusters of vacancies,'! while
oxygen interstitials are expected to aggregate into clusters in
the oxygen hyperstoichiometric oxide.’

It is well known that in semiconductors or insulators, point
defects and clusters may bear a charge. Indeed, the ionic picture
of bonding in UO,, namely the idea that bonding in UO, comes
mainly from the attraction of U** and O~ ions, naturally
suggests that point defects are charged; the expected charges of
oxygen and uranium defects being +2 for the oxygen vacancy,
—2 for the oxygen interstitial, —4 for the uranium vacancy,
and +4 for the uranium interstitial. Such formal charges are
assumed in the so-called point defect model,> which relates
the deviations from stoichiometry in uranium dioxide to the
concentrations of point defects and the concentrations of
electronic defects. The empirical potentials used to describe
UO, are also based on the interactions between oxygen and
uranium ions. When such potentials are used to describe atomic
defects, these defects are naturally considered to be charged.

Recent atomic scale simulations on defects in UO, use
density functional theory (DFT) to describe the chemical
interatomic bonding. In such works, the possible charge
of the point defects and clusters is generally overlooked
(see references below). For instance, no study exists to our
knowledge about the possible charge states of any cluster
in UO;. In the same way, almost all calculations on point
defects neglect their possible charge, the only exception we
are aware of being the recent works by Nerikar et al.*
Crocombette ef al.,’ and Andersson ef al., which all show
that point defects are indeed charged in UO;. The reason for
neglecting the charge of defects may originate from the fact
that initial DFT studies used a simple functional either in
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the local density approximation (LDA)’® or the generalized
gradient approximation (GGA).” With these functionals, the
insulating nature of UO, cannot be reproduced, and it comes
out as a metal (while it is in fact a Mott—Hubbard insulator'?).
In such calculations, it is therefore impossible to deal with
the possible charge of defects. This initial weakness may have
pushed/oriented the community into neglecting this possible
charge of defects in studies using more advanced beyond-LDA
methods even when these methods were able to reproduce the
fact that UO, is an insulator.

Going beyond the few studies mentioned above on point
defects, we extend, in this paper, the study of charge of defects
to point defect clusters. We use DFT simulations within the
so-called DFT + U framework.!!" We show that the energetic
properties of cluster formations are vastly modified when their
charge is taken into account, which has a great impact on their
stability with respect to point defects.

This paper is organized as follows. In the next section,
we present the methodology of our simulations. Sec. III
will present our results for the formation energies of point
defects and clusters as well as the thermodynamically relevant
clustering energies of point defects into clusters. In that
section, we shall also compare our results with the ones
available in literature (mainly on neutral defects). The final
section will be devoted to discussions focused mainly on the
impact of charge of defects on clustering.

II. METHODOLOGY

A. Technicalities

The calculations were performed in the DFT framework
using the projector augmented wave (PAW) method as im-
plemented in the ABINIT'>"!* code. The suitable PAW atomic
data were generated using the ATOM-PAW'? tool. The cutoff
energy used for all the calculations was 20 Ha, while the energy
cutoff for the fine fast Fourier transform grid was set to 30 Ha.

For noncorrelated electrons, the Perdew—Burke—Ernzerhof
functional'® within GGA was used. In order to account for the
strong correlations that exists between uranium f electrons,
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a so-called DFT + U term was added for these electrons. The
full rotationally invariant formulation of Liechtenstein et al.'*
was used with the full localized limit procedure to remove
double counting'® as implemented in ABINIT.'® The value of
U is specified below. The spin-orbit interaction was not taken
into account since it is commonly neglected in calculations
of point defects in UO,. We use a supercell approach to
calculate defect properties. The defect free supercell is a 2 x
2 x 2 repetition of the conventional cubic cell of UO,, thus
containing 96 atoms. Due to computational limitations we used
only the I" point to sample the Brillouin zone of the supercell,
which corresponds to an unshifted 2 x 2 x 2 k-point sampling
in the conventional cell. The calculations are performed at
constant volume, corresponding to a conventional 12-atom
cell of 5.51-A side, which is the equilibrium lattice constant
for our calculations (to be compared to the experimental value
of 5.47 A7)

Experimentally, the magnetic and crystallographic structure
of UO, varies with temperature. At noncryogenic temper-
atures, uranium oxide is paramagnetic with a perfect fluo-
rite structure. UO, exhibits a first-order phase transition at
Ty = 30.8 K to a transverse antiferromagnetic (AF) state!®
accompanied by a Jahn-Teller (JT) distortion of the oxygen
sublattice.'® The AF structure has long been believed to be 1k,
but it proves in fact to be 3k.2°

In calculations on defects, the magnetic structure is always
simplified to its 1k approximant (though bulk calculations on
the 3k structure exist?!). Most calculations investigate only the
fluorite structure. Some of the most recent studies compare
the results obtained for the fluorite and the JT distorted
structure.%?? In such calculations, the symmetries induced by
the atomic structure and the AF ordering are preserved in the
calculations, so many more symmetries are applied for the
fluorite structure than for the JT distorted structure, which
proves much less symmetric due to the atomic displacements.

We chose another approach. First, we chose not to in-
vestigate the JT distortion and to place the atoms in the
symmetric fluorite positions. By doing so, we aim to compare
our results with experimental data obtained at temperatures
very far from the Neel transition. Second, as paramagnetism
cannot be reproduced in the small cells we are dealing with,
we considered, as others, the 1k AF ordering. We believe
such calculations to be observed as paramagnetism than
as diamagnetic (no magnetism at all) calculations. Finally,
even if the atomic structure is symmetric, we turned off
any symmetrization of the electronic structure, thus allowing
complete freedom on the electronic wave function. Doing
so, we lift the symmetry constraints that exist on electronic
structure in calculations with full fluorite symmetry. We
believe that such calculations offer the best (though only
approximate) description of the atomic and electronic structure
of UO, at temperatures larger than 30 K.

B. Multiple minima problem

The DFT 4+ U approach introduces an orbital dependant
Hamiltonian so that the calculation may converge to different
points depending on the initial occupations of the density
matrix of f electrons.?® The errors due to this multiple minima
problem are quite large. It may rise up to about a few tenths of
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eV per formula unit in the case of UO,.?"??> The occurrence of
multiple minima probably spoiled many former calculations
on defects in UO, (see the analysis by Dorrado et al.** and
Crocombette et al.’). This difficulty is now acknowledged by
the community doing calculations on UQO,.>%3>* For lack of
a theoretical solution to solve the multiple minima problem
analytically, one has to resort to tricks to reach the real
minimum of the calculation, i.e. the true ground state. The
most exact way is the brute force approach which consists
in testing all possible density matrix occupations to find the
ones leading to the lowest energy.”**> However, this method
is intractable in practice for defects as one would have to
test different occupation matrices for uranium first, second,
etc., neighbors of the defects. Geng et al.?* recently proposed
a quantum-annealing approach which includes adding atomic
distortions of vanishing intensity to reach the true ground state.
This approach seems promising. However, little information
is given about its practical implementation, and it seems to
require huge calculation times. As a compromise, we chose
to use the U-ramping method recently proposed by Meredig
et al.*® Tn this method, one starts from a standard LDA or GGA
calculation, then one slowly increases the value of the U and J
parameters that appear in the DFT 4 U formalism.

Our calculations are performed in practice in the following
way: the structure of the supercell is relaxed within GGA down
to forces lower than 0.05 eV /A. A ramping calculation is then
performed at constant geometry with the possible additional
charge. The ramping starts from a simple GGA calculation,
then the U and J parameters of DFT 4 U are increased in
25 steps following an arithmetic sequence from zero up to
their maximum values of 4.5 eV for U and 0.5 eV for J. For
each step of the sequence, the calculation is restarted from the
density and wave function files of the previous step. In the
last calculation, the atomic structure is relaxed again down to
forces lower than 0.02 eV/A. We use this procedure for the
defective boxes as well as for the defect-free supercell, the
energy of which enters the definition of the formation energy
of defects. As acknowledged by their authors?® and observed
by others,?* the U-ramping method does not work perfectly,
as low-lying metastable states may be reached instead of the
absolute ground state in calculations on perfect UO,. However,
the error remains very small (Meredig et al.* find an error of
15 meV per formula unit in the case of UQO;). With such
calculations, we obtain a gap in the electronic structure of
2.74 eV, which s larger than the experimental value of 2.1 eV.!’
However, this discrepancy does not come from the U-ramping
procedure but is due to a too-loose sampling of the Brillouin
zone.”* Unfortunately, it was not possible to consider a tighter
mesh beyond the I' point, due to limits in computational
resources.

C. Defects under study

As far as point defects are concerned, we dealt with the
oxygen vacancy and interstitial and the uranium vacancy. The
uranium interstitial was not considered. For the clusters of
defects, we focused on clusters of vacancies and clusters
of oxygen interstitials. The mixed divacancy (VyVp), made
of an oxygen vacancy neighboring an uranium vacancy, was
investigated, as well as the trivacancy (Vy2Vp), made of

144101-2



INFLUENCE OF CHARGE STATES ON ENERGIES OF ...

the association of two oxygen-vacancy first neighbors to
an uranium vacancy. For this last cluster, three different
arrangements of the two oxygen vacancies are possible. They
can be first, second, or third neighbors, with oxygen atoms
missing at the opposite sides of the edge, face, and body of
the cube containing the uranium vacancy. This corresponds to
(100), (110), and (111) directions for the line joining the two
oxygen vacancies.

Various structures of clusters of oxygen interstitials were
also calculated. We investigated here some of the clusters
proposed and calculated in literature.?’?® First, we considered
the cuboctahedral defect in which the cube formed by eight
oxygen atoms is replaced by 12 oxygen atoms forming a
cuboctahedron. It was found?’ that this cuboctahedron can
be either empty (COTv) or filled with an additional oxygen
interstitial (COTo) [see Fig. 1(a)], thus amounting to four and
five oxygen interstitials, respectively. Finally, we considered
the so-called split-di-interstitials with three oxygen interstitials
surrounding one oxygen vacancy [see Fig. 1(b)]. This cluster
was found by Geng et al. to be the stable form of 2:2:2 and
3:3:2 Willis clusters and noted V-30".” The same structure
was found independently by Andersson et al.?® and noted IX2.
We arbitrarily choose this last notation for this cluster. All
these defects can bear a charge. In reality, this means that the
overall charge inside a volume that includes the defect is not
zero. The usual way, which we follow in this paper, to deal with
such charged defects within supercell calculations, is to add or
remove electrons in the supercell containing the defects. For
each defect, we contemplated various possible charge states
based on the formal charges of uranium and oxygen ions in
UO,, namely U** and O?~. For point defects and oxygen
clusters, all possible charge states between the neutral to the
fully formally charged defect were investigated. For vacancy
clusters, a wide range of charges was also considered, namely
0to —4 for VyVp and 1 to —2 for Vy2Vo.

For each defect, one then has to perform a different calcu-
lation for each possible charge state (following the procedure
described above). One eventually obtains the energies and
structures of the boxes containing the defects in their various

(a) Split di-interstitial (b) Cuboctahedral cluster

FIG. 1. (Color online) Clusters of oxygen interstitials. The entire
supercells are represented. Yellow (light grey in print) and red
(black in print) spheres indicate regular uranium and oxygen atoms,
respectively. Left panel: split di-interstitial (IX2) with a —3 charge;
three oxygen atom (pink/dark grey in print) share and empty oxygen
site (indicated by a white sphere). Right panel: cuboctahedral (COTo)
cluster with —2 charge; 12 oxygen atom (pink/light grey in print) form
a cuboctahedron, the center of which (bright pink/bright grey in print
sphere) is either occupied (COTo) or empty (COTv).
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possible charge states. The atomic structures of the clusters
prove to depend lightly on their charge. The relaxed supercells
containing the COTo (charge —2) and the IX2 charge (—3)
clusters are given in Fig. 1.

D. Formation energies of defects

From the energy of the box containing the defect (Def) in a
specific charge (g), its formation energy can be calculated as
follows:

Efom. — gNtno2N4no _ (N 4 )E, — 2N +n0)E,

Def?
+q&F + corr. (1)
where:
(1) Ege’;q"”’w 10 s the energy of the box containing the

defect, with N + ny uranium atoms and 2N + np oxygen
atoms, N being the number of formula units in the perfect
supercell (i.e. N = 32). Here, no and ny can in principle be
either positive or negative, which corresponds to adding or
removing atoms, respectively. In this paper, as only vacancies
are considered for the uranium specie, ny is always negative.

(ii) g is the charge of the defect, ef is the Fermi energy,
and corr. stands for corrections to be applied on charged
calculations (see below).

(iii) Ey and Eg are the reference energies for uranium and
oxygen atoms, respectively. We chose to give the formation
energies in the so-called oxygen-rich conditions, where the
reference for oxygen is the oxygen molecule so that:

E,=1)2E,,. @

In practice the energy of the di-oxygen molecule was
calculated by imposing seven electrons up and five electrons
down for the 12 electrons of the 2s shells of the two oxygen
atoms. This procedure is needed to ensure the convergence of
the calculation to the triplet paramagnetic state, which is the
ground state of the oxygen molecule.

The reference energy for uranium must then follows from:

EN 2N
Ey =

—2Eo = Eyo, — Eo, (3)
where EV-2V is the energy of the defect-free supercell.

One may then rewrite the formation energy of defects as a
function of the energies of di-oxygen and the defect-free box:

Eform. _ EN+nU,2N+n0 _ (N +nU)EN,2N
Def? — “~Def? N

+(ny —no/2)Eo, + ger + corr. 4)

Note that it is legitimate to choose other references for
oxygen and uranium energy. For instance, one could choose
for Ey the energy of bulk uranium, but then the reference
energy of oxygen should be deduced from Eq. (3) and not
chosen as % E(O;). Choosing, in the formation energies of
defects, oxygen and uranium energy references to be equal to
di-oxygen molecule and bulk uranium, respectively, would be
inconsistent from the thermodynamical point of view. It would
lead to errors in the formation energies of defects involving
both oxygen and uranium atoms (for instance clusters of
vacancies). These errors would scale as the formation energy
of the UO, compounds from its pure element counterpart and
amount to dozens of eV.
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We now turn to the last two terms of the formation energies
[Egs. (1) and (4)], which appear for charged defects only. The
first one, which involves the charge of the defect and the Fermi
level of the material, counts the energy gained or lost in the
charging process.?” The last term of Egs. (1) and (4) denotes
the corrections that should be introduced in charged supercell
calculations to remove the spurious interaction of the defect
with its periodically repeated images. We follow the procedure
recently set up by Taylor et al.** for the correction on the energy
of the supercell and the associated potential shift.

One finally obtains for charged defects a formation energy
which varies linearly with the Fermi level. In insulators, the
Fermi level can, in principle, lie anywhere between the top of
the valence band and the bottom of the conduction band. In
the next section, we therefore present the results for formation
energies as graphs, giving the energy as a function of the
position of the Fermi level between the top of the valence
band (chosen as the zero of energy for the Fermi level) and
the gap of the material (2.74 eV). The special case of pure
stoichiometric UQO, is discussed in Sec. I11.B.

III. RESULTS

A. Formation and reaction energies as a
function of the Fermi level

1. Formation energies of single defects

The formation energies of point defects (Vo, Io, and Vy)
are presented in Fig. 2. For the oxygen vacancy case, the three
lines corresponding to the three charge states contemplated are
explicitly drawn (see the upper panel of Fig. 2). For a given
position of the Fermi level, the most stable charge state is the
one whose formation energy is the lowest. One can see that, for
the Fermi level going from the valence to the conduction band,
it changes from +2 to 41 and eventually zero charge. In the
other figures, only the minimum in energy will be drawn with
changes in slopes corresponding to changes in charge states of
minimum energy, as indicated by the steplike curves.

As described above, Vg tends to be positive. Conversely,
I and Vy tend to be negative. These signs of the charges are
consistent with the ionic picture which predicts Vg to be 42,
Ip tobe —2, and Vyy to be —4. These formal charges are indeed
the most stable ones for a wide range of Fermi levels, but some
other charge states prove possible.

The formation energies of the vacancy clusters under study
are shown in Fig. 3. Note that V;;2V, being a stoichiometric
defect, its formation energy does not depend on the chosen
references. As far as the Vy-Vp divacancy is concerned, the
most stable charge state is —2 for most Fermi levels. This
is consistent with a fully ionic picture, which suggests the
association of +2 oxygen and —4 uranium vacancies. In the
same way, the trivacancies prove neutral for all Fermi levels
except the ones very close to the band edges. Considering the
three possible structures of a trivacancy, we find that the most
stable one has two oxygen-vacancy second neighbors to each
other [vacancies aligned along (110)].

For point defects and vacancy clusters, the ionic picture
seems therefore to work rather well; in the sense that, for the
majority of Fermi levels, the most stable states do have the
charge deduced by the ionic picture. One can see, however,

PHYSICAL REVIEW B 85, 144101 (2012)

g’_ I T T T T
s 12
&‘,8' VO ,,"' 8
> Ve o ©
P7E el s el =—=] =
S b
S 6f - s

. 1 ©
S5 a
€ 4f v =
£3
L 1 1 1 1 0
2 05 5 2 25

—

(=]

3 3
> o
S -1 S
N ©
e S
B s
= -

g | &)
L -4

5 1 1 1 1 1 -2
0.5 1 15 2 25
Fermi level (eV)
c 1 1 T T T O

T -2 Vi Jla8
> o
o 4 i
Qo - ©
5 __2 @
= =
2 6 8
© o
= 1-3
5 -8
w

-1Q . ! : ; Sl

0 0.5 1 1.5 2 25
Fermi level (eV)

FIG. 2. (Color online) Formation energies (broken lines, left
scale) and most stable charge states (step lines, right scale) of oxygen
vacancies (top), oxygen interstitials (middle), and uranium vacancies
(bottom) as a function of the Fermi level in oxygen-rich conditions.
In the case of oxygen vacancies, three lines corresponding to 0, +1,
and +2 charge states are drawn, while for the other defects, only the
minimum in energy is indicated.

that other stable charge states may appear when the Fermi
level deviates from midgap. More positive (negative) charge
states prove more stable when the Fermi level is close to the
valence (conduction) band.

The formation energies per additional oxygen atom and
the charge states of the oxygen interstitial clusters are plotted
in Fig. 4. It is worth noting that, for all clusters, the charge
step by step decreases from zero to their formal ionic charges.
This leads to very high charges down to —10 for the COTo
cluster. However, such formal charges are reached only for
Fermi levels quite close to the conduction band, while for
intermediate values of e, the charge is around half of the
fully ionic limit. Therefore, for such clusters, assuming fully
charged configurations would lead to severe overestimation
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FIG. 3. (Color online) Formation energies (broken lines, left

scale) and most stable charge states (step lines, right scale) of vacancy
clusters, in oxygen-rich conditions for Vi Vy (see the text).

of the charges (and energies) for most positions of the Fermi
level. The formation energies per interstitial of the various
oxygen clusters appear rather close to each other. However,
the COTo cluster proves to be the most stable for all values of
eg. Conversely, the COTv and IX2 relative stability changes
with the position of the Fermi level.

2. Formation energies of composite intrinsic point defects

The previous section dealt with extrinsic defects, the
creation of which involves the addition or removal of atoms
from the crystal. In this section, we combine the formation
energies of extrinsic point defects to discuss the formation

|
\V]

d A
Charge of defect

Formation energy (eV)
&

—_— — ]

1
0 0.5 1 1.5 2 25
Fermi level (eV)

4
o

FIG. 4. (Color online) Formation energies per additional oxygen
atom (broken lines, left scale) and most stable charge states (step
lines, right scale) of clusters of oxygen interstitials in oxygen-rich
conditions.
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energies of intrinsic defects, which are the ones that do not
require atoms to be brought to or taken away from the crystal.
In this paper, we have access to the formation energies of
the oxygen Frenkel pair and the Schottky trio. These intrinsic
defects are the results of combinations of point defects which
correspond to the following reactions:

b—1,+V, &)

for the oxygen Frenkel pair and

B — V,+2V, (6)

for the Schottky trio.

The formation energies of these defects are the sum of the
formation energies of their constituents. As they do not involve
adding or removing atoms from the crystal, they prove not to
depend on the energy references for U and O. The charge
and energy of the constituents of the composite defects vary
with the Fermi level, and so does the formation energy of
the composite defects. The formation energies of an oxygen
Frenkel pair and a Schottky trio are indicated in Fig. 5 together
with a comparison of neutral calculations.

3. Clustering of defects

The energy of clustering of vacancies corresponds to the
following reactions:

Vv + Vo — VuVo (7

VUVO + VO d VUZVO. (8)

The clustering energy will be negative when the energy is
gained in the clustering reaction.?! As in the case of composite
defects, these energies depend on the position of the Fermi
level. For the clusters of oxygen interstitials, we choose to
plot the clustering energy per additional oxygen atom, which
allows direct comparison between them. The lines indicating
the clustering energies (see Fig. 6) exhibit many changes in
their slopes when the Fermi level varies from the valence to
the conduction band. Indeed, such a break appears each time

Oxygen Frenkel pair
— Schottky defect

Formation energy (eV)

0 05 1 15 2 25
Fermi level (eV)

o N~ OO 00 O
T
1

FIG. 5. (Color online) Formation energies of the oxygen Frenkel
pair and the Schottky defect. Solid lines indicate charged calculations.
Results of neutral calculations (broken lines) are given for comparison
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FIG. 6. (Color online) Clustering energies of the vacancy and
oxygen interstitial clusters. Solid lines indicate charged calculations.

Results of neutral calculations (broken lines) are given for compari-
son.

the charge of any defect appearing in the reaction equation
experiences a change in its charge state.

The clustering of vacancies proves energetically favorable.
However, the energy gains upon clustering decrease close
to the band edges. This is due to the large decrease of the
formation energies of charged configurations of the uranium
(oxygen) vacancies close to the conduction (valence) band.
This large decrease is less marked for vacancy clusters which
have lower charges than the sum of the charge of their isolated
counterparts.
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Conversely, for clusters of oxygen interstitials, the energy
of clustering proves to increase continuously when er goes
from the valence to the conduction band. Starting from
negative values, indicating energy gain upon clustering, it
swiftly becomes positive, which indicates that the association
of oxygen interstitials becomes more and more energetically
unfavorable.

B. Energies for pure and stoichiometric UO,
1. Position of the Fermi level and associated energies

In the previous sections, energy results were given as a
function of the Fermi level. One could wish to specify the
position of the Fermi level in order to deal with numbers
and not curves. However, the exact point in the gap where
the Fermi level lies is not obvious. In principle, it cannot be
deduced from the energetics of the defects presented above.
Indeed, it may vary with the impurity content or with self
doping by the defects themselves. Things are simpler when
one deals with the ideal case of pure and stoichiometric
UO; in thermodynamic equilibrium. UQO; is then an intrinsic
semiconductor, meaning that the position of the Fermi level
is given by the equilibrium of electrons in the conduction
band and holes in the valence band. Neglecting the very small
shift that may appear due to the curvature of the valence and
conduction band,*” one can consider for all practical purposes
that er lies at the middle of the gap (i.e. &g = 1.36 eV in
our simulations). Indeed, the energy of the gap being smaller
than the formation energy of oxygen Frenkel pairs or Schottky
defects (with a 2/3 factor on this last energy to account for
the fact that Schottky defects involve three point defects), the
dominant disorder for stoichiometric UO; is the electron-hole
pair. Electrons and holes are thus the majority species, and they
are in equal concentrations to ensure charge neutrality. This is
realized when the Fermi level is positioned at midgap. Taking
into account the defect clusters does not change the picture as
their concentrations, at thermal equilibrium for stoichiometric
UQO; for any temperature of interest, are lower than the ones of
point defects (either for energetic or configurational entropy
reasons).

The Fermi level being at midgap, it is possible to specify
the charges of the various defects and to give figures for their
formation energies (see Table I). The corresponding formation
energies of composite defects and clustering energies are given
in Table II. One can note that, in the stoichiometric UO,, point
defects and vacancy clusters bear their formal charges while
the oxygen interstitial clusters are less charged than expected
from the ionic picture.

TABLE I. Charge and formation energies of point defects and
clusters in pure stoichiometric UO,. The energies are given with an
oxygen molecule reference (oxygen rich conditions).

Defect Io Vo Vu  Vi2Vo VyVo IX2 COTv COTo

Charge -2 2 —4 0 -2 =2 -3 —6
Ef(eV) —14 56 —4.7 4.2/3.3/3.8 —-09 —-1.0 -17 -34
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TABLE II. Formation energies of composite defects and clustering energies in pure stoichiometric UO,.

4*10 — 5*10 d 2[0 —

Formation Clustering Vu+ Vo = VuVo+ Vo — COTv COTo IX2
energies (eV) FPO Sch Vu2Vo  energies (eV) VuVo Viu2Vo (per at.) (per at.) (per at.)
Exp.3340 3.04.6 6.0-7.0
Charged calculations
This paper 4.2 6.4 4.2/3.3/3.8 —1.8 -0.5/-13/-0.8 1.0 0.7 0.9
Nerikar et al.* 2.7
Crocombette et al.’ 4.8
Andersson et al® noJT ~ 3.1/3.3/3.45.0/6.0/6.4 —04/-12/-1.2
Andersson et al.® JT 4.1/4.3/4.16.8/7.7/7.1 —-0.9/—-15/-1.3
Neutral calculations
This paper 7.0 11.8  4.2/3.3/3.8 —4.5 -3.1/—4.0/-3.5 —-04 —-05 0.1
Dorrado et al.?? JTmoJT ~ 6.5/5.8
Andersson et al.® JTmo JT 6.4/53 12.0/10.2 4.6/5.5 —29/-3.4 -0.2
Crocombette et al.’ 6.4 9.9
Geng et al 263% 5.4 10.6 5.0 0.4 -0.3 0.2
Brillant et al.3° -0.8
Thompson et al.’’ 4.1/3.3/3.5

2. Comparison with literature for point defects

The figures given in Table II allow the comparison of our
results with results from the literature. Such comparison can
only be qualitative, as many differences exist between the
various studies. These include the choices of simulation codes
but also the choices for atomic and electronic symmetries and
the treatment of the multiple minima problem.

We focus first on the neutral oxygen Frenkel pair for
which many calculated values are available in literature.
Recent analysis by Crocombette et al.’ and Dorado et al.?> of
published results show that many of them are quite probably
spoiled either by the absence of DFT + U corrections®® or
by the likely occurrence of multiple minima.*3>-* All these
calculations give spuriously small values. Thus, we focus
on recent calculations which take into account the possible
occurrence of metastable states. Our formation energy of the
neutral Frenkel pair is of the same order of magnitude but
slightly larger than the results obtained by Dorado et al.,”
Andersson et al..® Geng et al.,*> and Crocombette et al.’
The first two sets of results were obtained with symmetries
turned on. The authors considered either the full fluorite
symmetry (“no JT” in the table) or only the ones preserved
after introduction of the JT distortion (“JT” in the table).
Geng et al.’s*® calculations do not include symmetry either
on atomic positions or on wave functions, but use LDA
and not GGA as all other calculations do. Finally, the last
calculation by Crocombette et al.> was performed with the
same approach for the symmetry as in this paper (fluorite
structure no symmetrization of the wave functions) but with
a different theoretical framework [local hybrid gunctional for
correlated electrons (LHFCE) 3* and not DFT + U]. In view
of differences between the various calculation choices, we do
not know if this slightly larger value in our calculations for
the formation energy of the oxygen Frenkel pair is significant.
Nevertheless, we are confident it does not come from a multiple
minima problem, as this phenomenon is usually of larger
amplitude in the bulk energy and should thus lead to an

underestimation of the energy of formation of defects (as in
older calculations).

Much fewer results are available for oxygen Frenkel pairs
made of charged point defects (V' 2 and I5 2). Nerikar et al.’s*
calculated value of the formation energy quite certainly suffers
from a multiple minima problem. Crocombette et al.’ give
a slightly larger value than the present result. Andersson
et al.Sgive two sets of three different values (see Table II). In
these two sets, the first figure is for uncorrected calculations,
i.e. without the corrections on charged calculations that appear
in Eq. (1); the second is corrected, and the last one is for two
distant defects in the same cell. Unfortunately, the corrections
for charged defects are not identical between our calculations
and theirs. Comparing uncorrected values, we find our figure
(3.8 eV) to lie in between their two uncorrected figures, while
our corrected value is on the higher side of their bracket.

Beyond these comparisons, with previous calculations, the
most important point is that our value for charged defects
fits nicely in the experimental bracket,®> while the energy
of neutral Frenkel pairs are much larger than experiments.
This is quite reassuring for the validity of our simulations and
confirms that point defects are indeed charged in UO,.

Turning now to the Schottky trio, again, the most important
point is that our charged result is in good agreement with the
experimental bracket, while our neutral result is close to
the ones available in literature. The only available results for
charged defects (V{}_ + 2V3+) are on the ones by Andersson
et al.% Our uncorrected value (4.4 eV) proves larger than the
comparable values by Andersson et al., while our corrected
value falls in between their two sets of values.

To summarize on point defects, our values are on the larger
side of the spread observed in literature, but for charged
defects, they fall nicely within experimental brackets.

3. Comparison with literature for defect clusters

Clusters of defects have been less studied than point defects.
However, some results are available to compare with our

144101-7



JEAN-PAUL CROCOMBETTE

results. We find the Vyy Vy divacancy to be —2 in stoichiometric
UO,; with a clustering energy of —1.8 eV. The same charge is
contemplated by Andersson et al.® They find, as we do, that
charged divacancies are more stable than neutral ones. Our
clustering energy values are not far but larger than theirs. This
may be the consequence of the aforementioned difference in
the formation energies of oxygen Frenkel pairs. The value of
Brillant et al.*® for neutral calculations seems to suffer from a
multiple minima problem.

For trivacancies, one does not need to care about charges,
as these defects are neutral for stoichiometric UO,. Our values
for the formation energies compare very well with the results
given by Thompson et al.,’” using the same ramping method
to avoid the multiple minima problem. They indeed find very
close energies and the same ordering in energy for the various
arrangements of the two oxygen vacancies. In the works by
Geng et al** and Andersson et al.® the structure of the
trivacancies are not specified. Andersson et al. does not give
formation energies, but they can be deduced. Both studies thus
lead to results comparable to ours but slightly larger.

We are not aware of literature results on charged clusters
of oxygen interstitials but only of results for neutral config-
urations. Geng et al.”’*% considered the same clusters as we
did, while Andersson et al.?® focused on IX2 only. Our neutral
results agree with these previous results on the fact that COTo
clustering is favorable, and IX2 clustering is unfavorable.
However, we find COTYv to be stable, while Geng et al. find it
unstable.

IV. DISCUSSION

In view of our results and the comparison with other
works, the first thing to note is that the U-ramping method
appears to work well. Indeed, our values for formation
and reaction energies are close to the ones obtained with
quantum annealing or density matrix occupation control. For
instance, one does not observe in our results the very small
formation energies of point defects which indicate a wrong
ground state for the defect-free bulk. Moreover, the closeness
of our results on trivacancies with the ones obtained by
Thompson et al.’” shows that the U-ramping method leads to
reproducible results, which is very satisfactory. The remaining
small differences probably come from the different codes used
in their calculations (VASP) and ours (ABINIT).

Turning now to the importance of considering charged
defects, it appears clearly that formation energies can deviate
strongly from the values obtained for the neutral configurations
when charge is considered. Correspondingly, the most stable
charge state is very often not the neutral configuration. Thus,
concerning point defects, our calculations confirm what was
already obtained by others,*® namely that point defects in UO,
are charged. We find them to bear their formal charges, i.e. (2)’,
V5t, and V)~ in the stoichiometric material. Moreover, our
calculations show that clusters in UO, are charged, too. As
indicated above, we evidence that vacancy clusters bear their
formal charges, while oxygen interstitial assemblies are much
less charged than expected from the ionic limit (Table I). Such
incomplete charging of the oxygen clusters probably comes
from the fact that the ionic limit predicts huge charges (—4, —8,
and —10 for IX2, COTYv, and COTo, respectively). Such large
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accumulation of charge in a very small space induces a strong
repulsion, which destabilizes the highly charged clusters.

The deviations of formation energies between charged and
neutral calculations have a huge impact on the formation
energies of composite defects and on the clustering energies;
see the comparisons between charged and neutral calculations
in Figs. 5 and 6 and the numbers in Table I. For both the oxygen
Frenkel pair and the Schottky trio, the formation energy is
divided by about two when charged defects are considered.
As far as vacancy clusters are concerned, it appears that the
energy gained in the clustering process is largely overestimated
by neutral calculations. Clustering energies amount to 0 to
—2 eV for charged defects, while it ranks from —3 to —5
eV for neutral configurations. Even more importantly, for
oxygen interstitial clusters, taking into account the charge of
defects leads to a different qualitative conclusion than the one
obtained by neutral calculations. Indeed, while clustering is
favorable for neutral configurations, it shifts from favorable to
hugely unfavorable for the Fermi level going from valence to
conduction band.

The origin of the observed stabilization of charged defects
vs their neutral configurations and the interest of writing the
formation energies as a function of the value of the Fermi level
can be illustrated on the oxygen Frenkel pair case. It will also
allow us to highlight the shortcomings of neutral calculations.
UO; being arather ionic compound, oxygen ions tend to be —2.
Neutral calculations of the oxygen Frenkel pair are based on
adding an oxygen atom in a supercell while removing the same
atom in another supercell. As the oxygen specie has a strong
electronegativity, the oxygen interstitial wants to attract two
electrons. In a neutral calculation, these electrons must come
from the supercell containing the interstitial, and indeed it was
found in literature® that a neutral oxygen interstitial bears in
fact —2 charge with two uranium in the box experiencing
a change of charge from +4 to +5. In the same way, a
neutral oxygen vacancy repels two electrons and introduces
two U3T uranium ions in the simulation box.?* The cost of
creating these wrongly charged U3* and U+ ions in neutral
calculations explains why the formation energy of an FP made
of oxygen atoms is higher than the one of an FP made of oxygen
ions. Indeed, if one performs charged calculations with +2
charge for the vacancy box and —2 charge for the interstitial
box, one in fact reproduces the addition of an O?>~ ion in
a box and its removal in another one. In such calculations,
the charge of the displaced oxygen ion is preserved in the
process, and there is no need to transfer electrons locally
to or from surrounding uranium ions. To rephrase it, neutral
calculations force the charge compensation to proceed locally,
both in the interstitial and vacancy supercell. On the contrary,
in charged calculations, the charge compensation is global,
the —2 interstitial equilibrating the 42 vacancy. Moreover,
writing the formation energies of charged defects as a function
of the position of the Fermi level allows extending the above
reasoning to isolated defects. Indeed, electrons and holes
(or U3* and U in an ionic picture) exist in excess in the
material with respect to atomic defects. The charging of the
defects can thus proceed at the expense of such equilibrium
electrons or holes. The energetic cost of these charges is
given by the Fermi level, which is the chemical potential of
electrons.
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Considering the clusters of defects, as in the case of point
defects, charging leads to a decrease in their formation energies
(see Figs. 2 and 3). Nevertheless, their formation at the expense
of point defects is much less favorable when the charge of
defects is considered. For vacancies, the overestimation of
the binding of clusters in neutral calculations comes from the
fact that vacancy clusters are in fact less charged than their
isolated constituents. The overestimation of the energies made
in neutral calculations is thus larger for isolated vacancies
than for clusters. This spuriously enlarges the clustering
energy in neutral calculations. The same reasoning applies for
assemblies of oxygen interstitials. Indeed, such clusters being
less charged than suggested by the ionic limit, their energy
in neutral calculation is relatively less overestimated than for
isolated interstitials.

Finally, having investigated the possible charge of clusters,
we obtain of new picture on their stability. Our calcula-
tions show that vacancy clusters are only marginally stable
compared to isolated vacancies. They are thus expected to
be minority in the material due to configurational entropy,
which favors disconnected defects. For assemblies of oxygen
interstitials, the situation is even more drastic, as such clusters
prove energetically unstable in UO,. One can thus expect them
to be in negligible amount even in the case of a supersaturation
of oxygen interstitials, e.g. under irradiation.

V. CONCLUSION

In this paper, we studied the charge of point defects and
clusters in UO,. We showed that the charging of defects
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induces huge effects on their formation energies as well
as on their clustering energies. Point defects and vacancy
clusters bear their formal charges, while assemblies of oxygen
interstitials are less charged than expected in the ionic limit. As
a consequence, the ionic picture of bonding in UO, does not
work perfectly to predict the charge of defects. A complete
search as the one we did, investigating all possible charge
states and their energies as a function of Fermi level, should
thus be performed, especially when new kinds of defects are
considered.

From the calculated energies, we deduced, first, that
vacancy clusters have a small binding energy and will be
minority in the material due to entropy reason. Second,
oxygen interstitial clusters prove energetically unstable in
the stoichiometric material and are thus expected to be in
negligible amount, even in the case of supersaturation of
oxygen defects.

Finally, the charge of defects and clusters are expected to
play a role in other aspects of their behavior. For instance,
diffusion properties through migration energies, as well as
energetics of fission products, are expected to be affected by
the charge of defects.
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