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Momentum relaxation in a semiconductor proximity-coupled to a disordered s-wave
superconductor: Effect of scattering on topological superconductivity
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We study the proximity effect between a conventional semiconductor and a disordered s-wave superconductor.
We calculate the effective momentum relaxation rate in the semiconductor due to processes involving electron
tunneling into a disordered superconductor and scattering off impurities. The magnitude of the effective disorder
scattering rate is important for understanding the stability of the topological superconducting state that emerges in
the semiconductor, since disorder scattering has a detrimental effect and can drive the system into a nontopological
state. We find that the effective impurity scattering rate involves higher-order tunneling processes and is suppressed
due to the destructive quantum interference of quasiparticle and quasihole trajectories. We show that, despite
the fact that both the proximity-induced gap and the effective impurity scattering rate depend on interface
transparency, there is a large parameter regime where the topological superconducting phase is robust against
disorder in the superconductor. Thus, we establish that the static disorder in the superconductor does not suppress
the proximity-induced topological superconductivity in the semiconductor.
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Introduction. The possibility of engineering Hamiltonians
that exploit the properties of the interface between two dif-
ferent materials has recently attracted a lot of attention. There
are many proposals that exploit magnetic, superconducting,
and other properties for spintronics and quantum information
purposes.1–4 In particular, the prospect of realizing exotic topo-
logical superconducting states carrying Majorana fermions at
the interface between a semiconductor and a conventional
s-wave superconductor in sandwich structures5–12 is very
intriguing. The basic concept underlying these proposals is
that electrons tunneling between different materials inherit
their physical properties. For example, electrons virtually
propagating in the superconductor “feel” superconducting
correlations. This is the basic idea underlying the super-
conducting proximity effect which is used for realizing the
topological p + ip superconducting state at the interface. In
most of the previous studies,5–12 the s-wave superconductor
has been considered in the clean limit, and the effect of
the superconductor disorder on the induced state was not
addressed. However, it is well known that impurity scattering
in the active system (i.e., in the semiconductor) is detrimental
for topological superconductivity.13–18 While semiconductors
can be grown very clean, most ordinary s-wave supercon-
ductors (e.g., Al or Nb) are disordered and have a short
mean free path l. This motivates us to revisit the basics of
the superconducting proximity effect and take into account
the effects of disorder in the superconductor. As pointed
out in Ref. 18, superconducting disorder might act similar
to impurities in the semiconductor; see Fig. 1(b). Thus, the
effect of superconducting disorder on the stability of the
topological phase is an important open question which we
investigate in this Rapid Communication. The issue is of both
conceptual and practical importance: On the conceptual side
it may appear that disorder residing in the superconductor
could be detrimental to the semiconductor superconductivity
since the Anderson theorem ruling out the immunity of

s-wave superconductivity to nonmagnetic disorder may not
necessarily extend to topological superconductivity where
time-reversal invariance may be explicitly broken, and on the
practical side, disorder in the superconductor, if it turns out
to be detrimental to the proximity-induced superconductivity
in the semiconductor, may simply completely destroy the
topological phase. We note that what is important here is the
relative magnitude of the proximity-induced superconductivity
in the semiconductor compared with the proximity-induced
momentum relaxation rate. We note here that there are also
theoretical proposals19 for the realization of the non-Abelian
Majorana mode in cold atomic superfluid systems where
presumably the disorder effects of interest to us in this work
on the solid-state Majorana systems are of less relevance.

The robustness of topological superconducting phases
against disorder has been investigated within the simple model
of one-dimensional spinless p-wave superconductors hosting
Majorana zero-energy modes at the ends.13,14,20 The presence
or absence of these exponentially localized Majorana modes
defines topological and nontopological phases, with the phase
boundary between them approximately given by �indτ ∼ 1.
Here �ind and τ are the proximity-induced gap in this spinless
p-wave model and the impurity scattering time, respectively. In
this Rapid Communication we assume that the semiconductor
is clean (we refer the reader to Refs. 13–16,18, and 20
for more details on the semiconductor disorder affects) and,
thus, τ is entirely determined by the disorder scattering in
the superconductor. One can ask the following question: Is
it possible to realize a topological phase in the sandwich
structures,5–8,11,12,15 given that both the proximity-induced
gap and the disorder scattering rate in the semiconductor
induced by the superconductor impurities depend on the
interface transparency? This question is particularly signif-
icant in view of the topological superconducting phase in
the semiconductor being equivalent to a spinless p-wave
superconductor.
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FIG. 1. (Color online) (a) Energy spectrum of the semiconductor
with Rashba spin-orbit coupling and Zeeman splitting. The position
of the chemical potential corresponding to the helical state. (b)
Tunneling of electrons into the bulk superconductor of thickness Lz

leads to a momentum relaxation rate in the semiconductor �.

In this Rapid Communication, we consider a simple
model for the semiconductor/superconductor heterostructure
and calculate the momentum relaxation rate due to electron
tunneling into a disordered superconductor. We find that the
impurity scattering rate τ−1 in the superconductor is quite
small (i.e., much smaller than proximity-induced gap �ind).
The reason for that is twofold: First, the scattering rate τ−1

vanishes in the lowest-order perturbation theory in tunneling
t and involves only higher-order processes; second, it is
further suppressed due to the destructive quantum interference
between quasiparticle and quasihole trajectories by a factor
1/pF ξ̄ , with pF and ξ̄ being the Fermi momentum and co-
herence length in the disordered superconductor, respectively.
The importance of quantum interference effects for higher-
order tunneling processes has been previously discussed in
the literature in the context of two-electron tunneling.21–23

Therefore, we conclude that the condition for the existence
of topological superconductivity can be satisfied even in the
presence of substantial superconducting disorder.24 In the
rest of this Rapid Communication, we present a detailed
calculation supporting this conclusion. We emphasize that, in
addition to being important for the realization of topological
superconducting phases hosting Majorana fermions, our result
is also very general and applies to all other superconducting
heterostructures involving the proximity effect.

Theoretical model. We consider a two-dimensional semi-
conductor in the proximity to an s-wave superconductor as
shown in Fig. 1. The Hamiltonian for the semiconductor reads

HSM =
∫

S

d2r�†(r)

[
p̂2

2m∗ − μ + Vzσz

+αR(σxp̂y − σyp̂x)

]
�(r), (1)

where S is the two-dimensional (2D) area of the semicon-
ductor, m∗ is its effective mass, μ is the chemical potential,
and αR is the Rashba spin-orbit coupling strength. The spinor
�(r) ≡ (ψ↑,ψ↓) and σi are Pauli matrices acting on the spin
degree of freedom. The Zeeman splitting Vz can be proximity
induced due to the presence of a ferromagnetic insulator [not
shown in Fig. 1(b)] in 2D proposals5 or due to an applied
in-plane magnetic field Vz = gSMμBB, with gSM being the g

factor in the semiconductor; see Refs. 5–8 and 25 for more
details on the relevance of Eq. (1) for generating topological
superconductivity in generic semiconductor-superconductor
heterostructures.

The superconductor can be described by the BCS model
with HS being the corresponding mean-field Hamiltonian. To
include disorder effects it is convenient to use exact eigenstates
formalism.26,27 In the normal state, single-particle energies εn

and wave functions φn(x) in the superconductor are defined by
the following one-body Schrödinger equation:

[−�∇2/2m + V(x)]φn(x) = εnφn(x), (2)

where V(x) represents a particular realization of the disorder
potential and we set h̄ = 1. We assume here that the terms
breaking time-reversal symmetry in the superconductor are
small, but not in the semiconductor, either due to the
large difference in the g factors in semiconductor and
superconductor6–8 or because Zeeman splitting in the semi-
conductor is proximity induced by ferromagnetic insulator and
the amplitude for tunneling of electrons from superconductor
to ferromagnetic insulator5,25 is small and can be neglected.
In this case, the mean-field BCS Hamiltonian can be di-
agonalized using the following Bogoliubov transformation:
γ
†
nσ = ∫

d3x[Un(x)ψ†
σ (x) − σVn(x)ψ−σ (x)], where Un(x) and

Vn(x) are eigenfunctions of the corresponding of Bogoliubov–
de Gennes equation. For the spatially homogenous pairing
potential �0, the functions Un(x) and Vn(x) can be written
as Un(x) = unφn(x) and Vn(x) = vnφn(x), where un and vn

are defined as u2
n = 1

2 (1 + εn

En
) and v2

n = 1
2 (1 − εn

En
), with

En =
√

ε2
n + �2

0; εn and φn(x) are exact eigenvalues and
eigenfunctions of the single-particle Hamiltonian (2) which
can be chosen to be real.

The tunneling Hamiltonian between semiconductor and
superconductor reads

Ht =
∑

σ

∫
d3xd2r′[T (x,r′)ψ†

σ (x)ψσ (r′) + H.c.], (3)

where x and r′ denote the coordinates in the superconductor
and semiconductor, respectively, and T (x,r′), in the limit of
a barrier with low transparency, is defined as28,29 T (x,r′) =
tδ2(r − r′)δ(z) ∂

∂z
.

Momentum relaxation rate. We now calculate the scattering
rate of an electron in the initial state |p,σ 〉 where p,σ are
the electron momentum and spin, respectively, into a state
|p′,σ 〉. Due to the proximity to the disordered superconductor,
the momentum in the semiconductor is not a good quantum
number anymore and, as a result, levels |p,σ 〉 will have some
broadening �. Since the superconductor is a good metal, its
disorder can be well approximated by short-range impurity
scattering. Without any loss of generality, we first study the
case when αR and Vz are zero and then generalize our results
to the helical regime at the end of this Rapid Communication.

The scattering rate of an electron with momentum p can be
calculated using Fermi’s golden rule:

� = 2π
∑
p′

|Ap,p′ |2δ(ξp − ξp′ ), (4)

with Ap,p′ being the amplitude for scattering to the state p′,
which can be calculated perturbatively in tunneling t ,

Ap,p′ = 〈p,σ |Ht − Ht

1

HS
Ht + · · · |p′,σ 〉. (5)
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One can show that there is no contribution to the amplitude in
the lowest order of perturbation theory.17 The lowest nonzero
contribution appears in the second order in Ht . After simple
algebra, one finds that the amplitude in the second order in |t |
reads

Ap,p′ = 1

S

∑
n,σ ′,σ ′′

∫
dx1d r ′

1dx2d r ′
2T (x1,r′

1)T (x2,r′
2)

×〈 p,σ |ψ†
σ ′(r1)|0〉 〈0|ψσ ′′ (r2)| p′,σ 〉

× εn

ε2
n + �2

0

φn(x1)φn(x2). (6)

The factor εn/(ε2
n + �2

0) appears due to the cancellation
between particle and hole contributions to the amplitude
Ap,p′ . The amplitude (6) depends on eigenenergies εn and
eigenfunctions φn(x) obtained for a particular realization
of the disorder potential. Therefore, one needs to average
the rate � over different disorder realizations. The exact
eigenstates formalism is very convenient here. Alternatively
and equivalently, one could do a diagrammatic calculation of
the imaginary part of the self-energy by doing a perturbative
expansion in tunneling and summing ladder diagrams due to
the disorder as shown in Fig. 2. For s-wave superconductors
these two approaches are equivalent.27

We proceed by first introducing the identity∑
n

εn

ε2
n+�2

0
φn(x1)φn(x2) = ∫

dξ
ξ

ξ 2+�2
0
K(ξ,x1,x2), where

K(ξ,x1,x2) = ∑
n δ(ξ − εn)φn(x1)φn(x2) and reducing

disorder averaging of the rate � to finding correlation
functions of K(ξ,x1,x2). After straightforward manipulations,
the disorder-averaged scattering rate becomes

〈�〉 = 2π
∑
p′

δ(ξp − ξp′)
1

S2

∫ ∏
i=1...4

dxid r ′
iT (x1,r′

1)

× T (x2,r′
2)T (x3,r′

3)T (x4,r′
4)ei p(r ′

1−r ′
3)−i p′(r ′

2−r ′
4)

∫
dξ ′

×
∫

dξ
ξ

ξ 2+�2
0

ξ ′

ξ ′2+�2
0

〈Kξ (x1,x2)Kξ ′(x3,x4)〉. (7)

FIG. 2. (Color online) Diagrammatic perturbation theory in the
tunneling between the semiconductor and superconductor. Disorder
averaging is performed at each order in tunneling t . The thick
solid line represents the disorder-averaged Green’s function in
the superconductor Ḡ( p,ω). The bottom diagram corresponds to
irreducible contributions as far as disorder averaging is concerned
and is calculated here using exact eigenstates formalism.

Here the brackets 〈. . .〉 denote averaging over different real-
izations of the random potential V(x) in the superconductor.
The correlation function 〈Kξ1 (x1,x2)Kξ2 (x3,x4)〉 consists of
reducible and irreducible parts,

〈Kξ1 (x1,x2)Kξ2 (x3,x4)〉
= 〈Kξ1 (x1,x2)〉〈Kξ2 (x3,x4)〉 + 〈Kξ1 (x1,x2)Kξ2 (x3,x4)〉ir.

(8)

The reducible part can be easily calculated by relating
〈Kξ (x1,x2)〉 to the ensemble-averaged normal-state Green’s
function: 〈Kξ (x1,x2)〉 ≡ − 1

π
Im〈GR

ξ (x1,x2)〉 = νF f12. [Upon
averaging over disorder, one can neglect the energy depen-
dence of the density of states (DOS) here, i.e., 〈νF (ξ )〉 ≡ νF =
mpF /2π2. The function f12 is given by f12 = 〈eik(x1−x2)〉FS,
with 〈. . .〉FS being the average over electron momentum on
the Fermi surface. For three-dimensional (3D) systems the
function f12 is equal to f12 = sin(kF |x1−x2|)

kF |x1−x2| .] The irreducible
part 〈Kξ1 (x1,x2)Kξ2 (x3,x4)〉ir can be expressed in terms of the
classical diffusion propagators—diffusons and Cooperons.30

Assuming that time-reversal symmetry is preserved in the su-
perconductor, diffusons and Cooperons coincide,Pω(x1,x2) =
PD

ω (x1,x2) = PC
ω (x1,x2), and the irreducible part of the corre-

lation function (8) reads

〈Kξ1 (x1,x2)Kξ2 (x3,x4)〉ir

= νF

π
Re[f14f23P|ξ2−ξ1|(x1,x3) + f13f24P|ξ2−ξ1|(x1,x4)].

(9)

Using the above results, we can now perform integrals over ξ

and ξ ′ in Eq. (7). Since the reducible part of the correlation
function is energy independent, the energy integrals vanish.
Thus, irreducible terms do not contribute to the momentum re-
laxation rate; see also the diagrammatic calculation in Ref. 17.
The contribution of the irreducible part is proportional to

F (x,x′) =
∫

dξ ′
∫

dξ
ξ

ξ 2 + �2
0

ξ ′

ξ ′2 + �2
0

P|ξ2−ξ1|(x,x′)

=
∫

dξ ′
∫

dξ
ξ

ξ 2+�2
0

ξ ′

ξ ′2+�2
0

∫
dtei(ξ−ξ ′)tP(t,x,x′)

= π2
∫

dte−2�0|t |P(t,x,x′)

= π2 exp[−√
6|x − x′|/ξ̄ ]

4πD|x − x′| , (10)

where P(t,x,x′) is a solution of a 3D diffusion equation:
P(t,x,x′) = exp(−|x−x′|

4Dt
)/(4πDt)3/2. Here D is the diffusion

constant D = lvF /3, with l and vF being the mean free path
and Fermi velocity, respectively; ξ̄ = √

ξ0l is the coherence
length in disordered superconductors and ξ0 = vF /�0. Thus,
the expression for the rate 〈�〉 (7) now becomes

〈�〉 = 2π

S2

∑
p′

δ(ξp − ξp′)
∫ ∏

i=1...4

dxid r ′
ie

i p(r ′
1−r ′

3)−i p′(r ′
2−r ′

4)

× T (x1,r′
1)T (x2,r′

2)T (x3,r′
3)T (x4,r′

4)

× νF

π
[f14f23F (x1,x3) + f13f24F (x1,x4)]. (11)

Taking into account the expression for T (x1,r′
1), one can

now compute the spatial integrals. The integrand is a quickly
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decaying function and converges at short length scales p−1
F ,

where pF is the Fermi momentum in the superconductor.
Thus, the dominant contribution comes from x1 ≈ x4,
x2 ≈ x3, and x1 ≈ x3, x2 ≈ x4, respectively, and one finds
that 〈�〉 = 〈�1〉 + 〈�2〉:

〈�1〉 =
∑
p′

δ(ξp−ξp′)
(2π )3|t |4νF

πS2

×
∫

d r1d r2e
i( p+ p′)(r1−r2)F (r1,r2)

= 2π
∑
p′

δ(ξp − ξp′ )
2π3|t |4νF

SD

ξ̄√
ξ̄ 2| p + p′|2 + 6

≈
⎧⎨
⎩

12π2|t |4νF m∗√
2vF lpSM

F

log
[
pSM

F ξ̄
]

for pSM
F ξ̄ � 1,

√
6π3|t |4νF m∗ ξ̄

vF l
for pSM

F ξ̄ � 1,
(12)

〈�2〉 = 2π
∑
p′

δ(ξp − ξp′)
(2π )2|t |4νF

πS2

∫
d2r1d

2r2F (r1,r2)

= 2π
∑
p′

δ(ξp − ξp′)
2π3|t |4νF ξ̄√

6DS

=
√

6π3|t |4νF m∗ξ̄
vF l

. (13)

Here pSM
F is the Fermi momentum in the semiconductor, and

we have assumed that pF ξ̄ � 1. It is convenient to rewrite
the above expressions for the scattering rate 〈�〉 in terms of
the level broadening γ = 2πνF |t |2 in the semiconductor due
to the presence of a bulk metal. Then, one can estimate the
upper bound on 〈�〉 to be

〈�〉 ≈
√

6π3 γ 2

�0

m∗

m

1

pF ξ̄
. (14)

According to Eq. (14), the momentum relaxation rate due to
the presence of a disordered superconductor is proportional
to γ 2 whereas the proximity-induced gap is of the order of γ .
Furthermore, 〈�〉 is additionally suppressed due to quantum
interference effects by a nontrivial factor 1/pF ξ̄ � 1.

Our results for the momentum relaxation rate can be
qualitatively explained as follows. From Eq. (10), one can
see that the rate 〈�〉 is proportional to the probability of a
quasiparticle to return to the junction within the time �−1

0 ,
which is the time an unpaired quasiparticle can spend in the
superconductor in a virtual state. This introduces a length scale
in the problem ξ̄ ∝ √

D/�0 above which return probability
is exponentially suppressed. Therefore, one can think that
the effective size of the system relevant for this process is
of the order ξ̄ . The momentum relaxation rate generated
by a superconducting layer of size ξ̄ is proportional to the
attempt frequency γin ∼ |t |2νF times the probability to return
to the semiconductor within time �−1

0 . The latter is given by
γout/�0 � 1, where γout ∼ |t |2ν2D

F /ξ̄ . (Here the DOS in the
semiconductor ν2D

F = m∗/2π , |t |2/ξ̄ 3 has a dimension E2 and
ν2D

F ξ̄ 2 scales as 1/E.) Combining all the terms, we finally
recover the expression for the rate 〈�〉 (14). In particular, these
arguments explain why 〈�〉 is suppressed by a factor 1/pF ξ̄ .

We now take into account the effect of Rashba spin-orbit
coupling and Zeeman splitting in the semiconductor and

discuss the momentum relaxation rate in the helical phase.
We are interested in the situation when μ is in the gap; see
Fig. 1(a). Thus, the rate 〈�〉 is determined by the scattering
amplitude between different momenta on the helical Fermi
surface, which is given by Ap,p′ = −〈p, − |Ht

1
HS

Ht |p′,−〉.
Here |p,±〉 denotes the state of an electron on the Fermi
surface with a particular chirality ±, and only the |p,−〉 band
is occupied in the helical state. The results of the calculation
can be straightforwardly obtained by repeating the steps above
but are not particular illuminating. For experimentally relevant
parameters, the rate 〈�〉 has to be multiplied by a factor O(1)
which originates from the change in the matrix elements,
as well as the density of states. Therefore, for practical
purposes one can use Eq. (14) in a 2D system. It is worth
pointing out, however, that in the limit m∗α2

R � Vz there is an
additional suppression of the impurity scattering rate because
the Berry phase of the Fermi surface is equal to π up to
corrections Vz/m∗α2

R � 1. In one-dimensional (1D) geometry
the suppression of the elastic backscattering for Vz/m∗α2

R � 1
is particularly important.

Our conclusion, i.e., the irrelevance of the disorder in the
superconductor to the topological phase, should also apply
qualitatively to 1D Majorana nanowire proposals7,8,16 in the
presence of a moderate external in-plane magnetic field since
the basic physics of proximity-induced superconductivity and
time-reversal invariance breaking are operational in both
situations. However, a magnetic field, in addition to a Zeeman
splitting, couples to the orbital degrees of freedom. Neverthe-
less, because a quasiparticle can dwell in the superconductor
during time t � �−1

0 , the area of the typical classical trajectory
A corresponding to the quasiparticle probability of return to the
same point, is small, A ∼ Lzξ̄ for Lz � ξ̄ [see Fig. 1(b)], and
the classical action along this trajectory Scl � 1 for B � 1T.
Thus, orbital effects due to an in-plane magnetic field do not
change our conclusion qualitatively.

The rate (14) should be considered as an upper bound on
the effective impurity scattering rate due to superconducting
disorder. We now estimate 〈�〉/�ind. Taking parameters for
InAs and Al, for example, we find that 1/pF ξ̄ ∼ 10−3 and
m∗/m ≈ 0.04. The effective proximity-induced gap varies
from �ind ∼ γ for m∗α2

R � Vz and � ∼ γ
√
m∗α2

R/Vz for
m∗α2

R � Vz. Assuming that γ ∼ �0 and taking the pes-
simistic numbers for spin-orbit coupling m∗α2

R/Vz ∼ 0.1, one
finds that the ratio of the scattering rate 〈�〉 (14) to the
proximity-induced gap �ind ∼ γ is small, 〈�〉/�ind ∼ 10−2.
This ratio involving the upper bound of the momentum
relaxation rate is indeed very small and we therefore conclude
that the topological superconducting phase emerging at the
interface is robust against disorder in the superconductor. In
this regard, the superconductor/semiconductor heterostructure
proposal for realizing Majorana fermions is different from
ones involving unconventional superconductors31 where weak
superconducting disorder destroys the topological phase.
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