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Magnetic order and spin dynamics in the proximity of a ferromagnetic quantum critical point:
A μSR study of YbNi4P2
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The local 4f -electronic spin dynamics and magnetic order in YbNi4P2 were studied by means of muon-spin
relaxation measurements. Zero-field muon-spin relaxation proves static magnetic order with a strongly reduced
ordered Yb3+ moment of (2.5–4.6) × 10−2μB , below TC = 140 mK. Above TC , the muon-spin polarization
P (t,B) is dominated by quasihomogeneous spin fluctuations and exhibits a time-field scaling relation P (t,B) =
P (t/Bγ ), indicating cooperative critical spin dynamics in the system. At T = 190 mK, slightly above TC , γ =
0.81(5), suggesting time-scale invariant power-law behavior for the dynamic electronic spin-spin autocorrelation
function.
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Lanthanide-based heavy-fermion (HF) systems are suitable
model systems to study emergent phenomena at a quantum
critical point (QCP), where collective quantum fluctuations
trigger the system continuously from a magnetically ordered
to a nonmagnetic ground state.1–6 However, despite intense
research, to the best of our knowledge, no 4f -based material is
known with a continuous ferromagnetic (FM) to paramagnetic
(PM) quantum phase transition (QPT). The existence of such a
QPT is also controversially discussed from a theoretical point
of view.7–11

Recently, Krellner et al. suggested that the HF metal
YbNi4P2 with a quasi-one-dimensional (1D) electronic struc-
ture exhibits FM quantum criticality above a low FM transition
temperature TC = 170 mK.12 YbNi4P2 crystallizes in the
tetragonal ZrFe4Si2 structure containing isolated chains of
edge-connected Ni tetrahedra along the c axis. The Yb atoms
are located in the channels between these Ni tetrahedral
chains. The reduced dimensionality in the Yb and Ni network
and the geometrical frustration between neighboring Yb
chains give rise to enhanced quantum spin fluctuations of
the magnetic Yb3+ ions. In the PM state above 50 K, the
magnetic susceptibility shows Curie-Weiss behavior with an
effective moment μeff = 4.52μB that is characteristic for
magnetic Yb3+ ions. Analysis of the magnetic entropy reveals
a Kondo energy scale of TK ≈ 8 K for the crystal electric
field ground-state doublet. The FM transition is evidenced
by distinct anomalies in magnetic susceptibility, specific heat,
and resistivity measurements. Low-T magnetization measure-
ments suggest an ordered FM moment of mord ≈ 0.05(4)μB .
Pronounced non-Fermi-liquid (NFL) behavior is reflected by
a stronger-than-logarithmic diverging Sommerfeld coefficient
and a linear-in-T resistivity state apparent in a T range
larger than a decade above TC . In external magnetic fields,
the NFL behavior is suppressed and FL behavior gradually
recovers. Therefore, YbNi4P2 is considered as a clean system
situated in the very close vicinity of a FM QCP, with
FM quantum fluctuations dominating thermodynamic and
transport quantities at T > TC .

The present knowledge on YbNi4P2 is based on mea-
surements of macroscopic magnetic, thermodynamic, and
transport properties. The next step in a deeper investigation of
this prospective FM quantum critical system is to get insight on
a microscopic level. Besides the nature of the magnetic order,
a central issue in the present context of critical behavior is the
spin dynamics. Since in systems close to a QCP, the ordered
moment is usually strongly reduced, muon-spin relaxation
(μSR) has proven to be an extremely valuable technique to
collect appropriate information.13–15

Here, we present μSR experiments on polycrystalline
YbNi4P2, providing microscopic evidence for static mag-
netism at T � TC ≈ 140 mK with an ordered moment of
mord = (2.5–4.6) × 10−2μB/Yb, depending on the assumed
muon site. Above TC , the muon-spin polarization P (t) obeys
the time-field scaling relation P (t) = P (t/B0.81(5)), indicating
cooperative and critical spin dynamics.

In a μSR experiment positive spin-polarized muons are im-
planted into the sample, and the subsequent time evolution of
the muon-spin polarization is monitored by detecting the asym-
metric spatial distribution of positrons emitted from the muon
decay.16 μSR in longitudinal applied magnetic fields is domi-
nated by Yb-4f electronic spin fluctuations that couple to the
implanted muons. The μSR experiments on YbNi4P2 in zero
field (ZF) and longitudinal (LF) applied field—with respect
to the initial muon spin polarization—were performed on the
πM3 beam line at the Swiss Muon Source at the Paul-Scherrer-
Institut, Switzerland. The sample was prepared by crushing
∼270 mg of single-crystalline material, grown in a self-flux
at 1400 ◦C in a closed Tantal crucible, and characterized by
powder x-ray diffraction experiments, proving the absence
of any foreign phases. Detailed low-T measurements on
polycrystalline YbNi4P2 were reported elsewhere.12

Figure 1(a) displays typical time dependencies of the ZF
muon-spin polarization P (t) in YbNi4P2 at representative
temperatures above and below TC . A finite T -independent
background signal due to muons that stopped in a Ag
sample holder (signal fraction ≈50%) was taken into account.
At T � 160 mK, an exponential muon-spin relaxation is
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FIG. 1. (Color online) (a) Corrected muon-spin polarization P (t)
at ZF for representative T above and below TC ≈ 140 mK. At
T � TC , solid lines are fitting curves according to Eq. (1). (b) T

dependence of the ZF μSR frequency fμ(T ). The solid line is a
fit to the phenomenological function fμ = fμ(0)(1 − T

TC
)n. (c) T

dependence of the ZF static internal field distribution σ in Eq. (1).
The solid line is a guide to the eye. (d) T dependence of 1/T1T in the
PM regime. The line describes power-law behavior as 1

T1T
∝ T −1.5.

associated with fast fluctuating paramagnetic electron spins
with a relaxation rate λ(160 mK) ≈ 0.152(2) μs−1. Note that
dense static nuclear dipole moments would give rise to a
weak Gaussian relaxation in the PM regime. While cooling
through TC , an additional magnetic relaxation mechanism is
apparent, strongly increasing with lowering T . Below TC ,
a low-frequency oscillation with a Gaussian relaxation of
the muon-spin polarization is observed, indicating magnetic
ordering of weak electronic Yb3+ moments. The muon-spin
asymmetry data in the FM regime can be described best using
the functional form17,18

P (t) = 1

3
+ 2

3

[
cos(2πfμt) − σ 2t

2πfμ

sin(2πfμt)

]
e− 1

2 σ 2t2
,

(1)

where fμ and σ are the muon-spin precession frequency and
the Gaussian field width, respectively. The 2/3 oscillating
and the 1/3 nonoscillating terms originate from the spatial
averaging in polycrystalline samples, where 2/3 (1/3) of the
internal magnetic field components are directed perpendicular
(parallel) to the initial muon spin, causing a precession (no
precession) of the muon spin. The observation of a 2/3 and 1/3
signal fraction below TC implies dense magnetic moments and
proof that 100% of the sample volume shows static magnetic
order. The latter is supported by LF-μSR measurements, as
discussed in detail below. In the limit 2πfμ � σ , Eq. (1)

becomes a Gaussian damped cosine function. For 2πfμ → 0,
close to the magnetic transition, Eq. (1) is equivalent to the
Gaussian Kubo-Toyabe (GKT) function,19 which describes a
muon-spin relaxation due to a static Gaussian field distribution
centered around Blocal = 0. ZF-μSR on the antiferromagnet-
ically ordered system YbRh2Si2 (Ref. 14) reveals a similar
crossover from a Lorentzian to a Gaussian damped μSR
signal in the vicinity of the PM to magnetic phase transition,
attributed to a transition from dynamic to static magnetism of
magnetic Yb3+ moments.

For YbNi4P2 a finite μSR frequency is clearly observed
below 150 mK. From the measured frequency value fμ =
0.188(1) MHz at 20 mK one can determine the internal
local field at the muon site to Blocal = 13.87 G using
Blocal = 2πfμ/γμ, with γμ = 2π × 13.55 kHz/G as the muon
gyromagnetic ratio. The local field Blocal as well as the local
static field width �Blocal = σ/γμ ≈ 6 G are very small for
conventional rare-earth magnets with large ordered moments.
The fractional width �Blocal/Blocal of the spontaneous field
distribution is ∼0.4 at low T and remains constant as
T → TC , which is a reasonable value for a magnetically
ordered HF system, as, e.g., in CeRhIn5, �Blocal/Blocal = 0.5
is observed.20 Thus, the local field distribution is nearly
uniform and homogeneous in the FM regime. The spontaneous
muon-spin precession and the Gaussian shape of the internal
field distribution below TC arise from a dense system of
weak magnetic moments with small, static magnetic inhomo-
geneities. The presence of a finite Blocal �= 0 proves coherent
magnetic order.

ZF-μSR allows a precise determination of the T depen-
dence of the magnetic order parameter, which is proportional
to the measured μSR frequency fμ. The T dependence
of fμ and σ is shown in Figs. 1(b) and 1(c). For T �
140 mK, both observables exhibit a continuous increase. The
T dependence of fμ can be fit to the phenomenological
function fμ =fμ(0)(1 − T

TC
)n for T < TC with n = 0.208 ±

0.02, fμ(T ) = 0.199(3) MHz, and TC = 140(2) mK. The
value of the effective critical exponent n, describing the
critical behavior close to TC , is between n = 0.125 and 0.325,
which are theoretically expected for two-dimensional (2D) and
isotropic three-dimensional (3D) Ising magnets, respectively.
This is not in contradiction with the claim of a quasi-1D
system. In such a system, the weak interchain coupling results
in an evolution from a 1D behavior at high T to a 2D Ising or
3D behavior at low T , which is intimately linked with (and is
a prerequisite for) the long-range ordering at finite T . The low
data point density between 0.6 � T

TC
� 1, however, precludes

the determination of the precise critical exponent. The obtained
value for TC agrees well with the value found in specific-heat
measurements on these single crystals.21

For all examined T � TC , the sample signal is analyzed
with a well-defined single fμ and σ , signaling that the
magnetic order is a bulk effect and that only one dominant
muon stopping site is present. In general, for the deter-
mination of the muon stopping site(s) it is important to
deduce the hyperfine coupling constant. One way to find
potential muon sites is to compare calculated and measured
quantities for the local field Blocal at the muon site. The muon
preferentially settles at tetrahedra or octahedra interstitial
crystallographic sites. From simple symmetry arguments the
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most probable muon stopping sites, using Wyckoff’s nota-
tion, are 4f (1/4,1/4,0), 8j (1/4,1/4,1/4), 4f (1/4,1/4,1/2),
8i(1/4,1/2,1/2), 4c(1/2,0,0), 4c(1/2,0,1/2), 2b(0,0,1/2),
and 2a(1/2,1/2,1/2). For a particular FM structure with the
magnetic Yb3+ moments aligned within the a-b plane and
a dominant 4f -μ dipolar interaction, one can determine the
expected internal field values for the proposed sites. Our lattice
sum calculations reveal that only at the 4c(1/2,0,1/2) site
and 8i(1/4,1/2,1/2) site a local field Blocal of the measured
absolute magnitude is found. For the 4c and 8i sites the
measured local field of Blocal = 13.87 G corresponds to a
static ordered moment of the Yb ions of mord = 0.046μB and
0.025μB , respectively. Both values are in good agreement with
the value deduced from recent magnetization measurements.12

The temperature dependence of the exponential relaxation
rate λL = 1

T1
, observed above TC , is plotted in Fig. 1(d) on

a log-log scale as 1
T1T

. Cooling down from 800 mK, 1
T1T

exhibits power-law behavior according to 1
T1T

∝ T −1.40(6). At

T � 190 mK, the power-law behavior in 1
T1T

persists in the
PM regime down to TC , however, with a slight change of
the critical exponent, i.e., 1

T1T
∝ T −1.5(1) (dashed-dotted line).

The observed 1
T1T

behavior is close to the T −4/3 temperature
dependence predicted by the self-consistent renormalization
(SCR) theory for a system close to a 3D ferromagnetic QCP.22

There is no prediction for an itinerant quasi-1D system in the
T range between the exchange energy scale and ordering tem-
perature. For an isolating ferromagnetic quasi-1D spin chain
the T dependence of the relaxation rate above TC depends
strongly on the details of the interactions—see, e.g., Ref. 23.

LF-μSR experiments allow to separate the dynamic con-
tribution to the relaxation of the muon-spin polarization.
Investigations of the low-T muon-spin dynamics yield ad-
ditional information about the origin of the NFL behavior
in YbNi4P2. Figure 2 displays the muon-spin asymmetry
function P (t) at T = 20 mK for different applied LFs.
The muon-spin relaxation is completely suppressed in an
applied field BLF ≈ 300 G, demonstrating that the internal
field distribution is static in nature. However, the observed
decoupling cannot be described accurately by a standard muon
asymmetry function that considers an internal field distribution

FIG. 2. (Color online) Corrected muon-spin polarization at T =
20 mK and various longitudinal magnetic fields BLF. The lines
represent theoretical depolarization curves for the static GKT function
in corresponding longitudinal fields.

FIG. 3. (Color online) Main panel: Field dependence of the
dynamic muon-spin relaxation rate λL. The solid curve represents
a Redfield fit. For display reasons, the ZF value is set at BLF =
0.01 G. Inset: Field dependence of the corrected muon-spin polariza-
tion P (t) at T = 190 mK.

which is symmetric around Blocal = 0. For comparison, Fig. 2
shows theoretical depolarization curves for the static GKT
function in the corresponding longitudinal magnetic fields.
This supports the ZF data, i.e., the observation of a broad
field distribution centered around a finite but small internal
field Blocal(20 mK) ≈ 13.87 G in the FM phase. Finally, when
BLF � Blocal, the muon-spin relaxation is decoupled from the
static Blocal as observed for BLF � 23 G.

At T > TC , the field dependence of the muon-spin relax-
ation probes the Fourier transform of the dynamic spin-spin
autocorrelation function q(t) = 〈Si(t) · Si(0)〉, which exhibits
exponential behavior for homogeneous systems and power-law
(or cutoff power-law) or stretched exponential behavior for
inhomogeneous systems. The inset of Fig. 3 displays the
muon-spin polarization P (t) at T = 190 mK, both in magnetic
LF between 13 and 143 G and ZF. The relaxation rate λL is
reduced with increasing field. The field dependence of λL is
given in the main panel of Fig. 3. It shows nearly no field
dependence for magnetic fields of less than ∼13 G, but varies
more strongly, as H−κ with κ ≈ 0.79(7), for higher fields.
From the field dependence of λL, the spin autocorrelation
time τc can be estimated using the Redfield formalism for
λL(BLF) = (2γ 2

μ〈B2
fluc〉τc)/[1 + (γ 2

μB2
LFτ

2
c )] considering τc as

independent of the applied field BLF. Here, Bfluc(t) describes
the time-varying local magnetic field at the muon site due
to fluctuations of neighboring Yb3+ moments, with a local
time-averaged second moment �2 = γ 2

μ〈B2
fluc〉 and a single

fluctuation time τc. For h̄ω � kBT (ω giving the spin fluctua-
tion rate), the fluctuation-dissipation theorem24 relates τc to the
imaginary component of the local q-independent f -electron
dynamic susceptibility, i.e., τc(B) = (kBT )[χ ′′(ω)/ω]. The fit
to the data (solid curve in the main panel of Fig. 3) yields
�2 ≈ 0.1 (MHz) and τc ≈ 6 × 10−7 s, the latter value nearly
three orders of magnitude larger than the one obtained for
YbRh2Si2 at T = 20 mK,14 suggesting very slow critical
fluctuations.

The μSR time spectra in Fig. 3 are well described
with a stretched exponential relaxation function of the form
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FIG. 4. (Color online) Corrected muon decay asymmetry at
T = 190 mK for various magnetic fields as function of the scaling
variable t/B0.81

LF . The dashed-dotted line is a fit of the 13-G data with
P (t)/P (0) = exp[−λLt]−0.9.

P (t) = P (0) exp[−(λt)β]. An exponent of β ≈ 0.9 shows that
the relaxation rate is nearly uniform throughout the sample,
indicating that YbNi4P2 exhibits quasihomogeneous spin fluc-
tuations for T � TK . The spin dynamics is characterized by
a narrow distribution of correlation times (β = 1 corresponds
to one single correlation time). Thus, disorder-driven theories,
including Kondo disorder25,26 and the Griffith phase scenario27

as primary mechanisms for the observed NFL behavior, can
be ruled out. It further implies that the crystalline disorder
in YbNi4P2 is quite small, which is consistent with a small
residual resistivity (ρ0 ∼ 2.4 μ
 cm) and the stoichiometric
occupation of the crystallographic lattice sites revealed by the
x-ray structure refinement.12

A sensitive test to identify power-law or stretched exponen-
tial behavior of q(t) is a time-field scaling analysis of the muon-
spin relaxation function. In both cases a specific time-field
scaling can be found, i.e., the muon-spin relaxation function
P (t,BLF) obeys the scaling relation P (t,BLF) = P (t/Bγ

LF).
This relation applies only in the asymptotic strong field limit,
i.e., as long as 2πfμ = γμBLF � λL.28 If time-field scaling
is obeyed, a plot of P (t,BLF) versus t/B

γ

LF at T > TC will

be universal for the correct choice of γ , and distinguishes
between power-law (γ < 1) and stretched exponential (γ � 1)
correlations. For small BLF, the field dependence is expected to
be due to the change of fμ rather than an effect of field on q(t).
A breakdown of time-field scaling would occur for high fields
where q(t) is directly effected by the applied fields. Figure 4
shows the same asymmetry data, as displayed in Fig. 3, as
functions of the scaling variable t/B

γ

LF. For γ = 0.81(5) the
data scale well over ∼2.5 orders of magnitude in t/B

γ

LF and
for all fields between 13 and 143 G, except for 293 G. Here, at
large t , the data fall above the low-field scaling curve. Fields
μBBLF � kBT (with kB = Boltzmanns constant) would be
expected to affect the spin dynamics. The scaling exponent
γ = 0.81(5) < 1 implies that within the μSR frequency range,
the spin-spin correlation function q(t) is approximated by a
power law (or a cutoff power law) rather than a stretched
exponential or exponential,28 consistent with the Redfield
analysis. The power law is time-scale invariant and dynamical
modulations should therefore be observable in any time
window. The obtained time-field scaling of the relaxation data
is a signature of slow homogeneous spin dynamics. It strongly
indicates that the critical slowing down of spin fluctuations at
the magnetic phase transition occurs cooperatively throughout
the sample. In stoichiometric, homogeneous NFL systems
such behavior may arise from the effect of disorder on quantum
critical fluctuations inherent to a QCP. This is suggested for
the NFL compound YbRh2Si2.14,15

In conclusion, ZF-μSR in the stoichiometric NFL com-
pound YbNi4P2 clearly proves static magnetic ordering of
strongly reduced Yb3+ moments below TC = 140 mK. Above
TC , the muon-spin polarization P (t) obeys the time-field scal-
ing relation P (t) = P (t/B0.81(5)) for applied magnetic fields
B between 13 and 143 G, indicating cooperative and critical
spin dynamics. Power-law behavior of the dynamic spin-spin
autocorrelation function is implied by the observation of
γ < 1.28 The LF-μSR results suggest that the NFL behavior
observed at T > TC is induced by quasihomogeneous critical
spin fluctuations.
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